
A Decision Support System for “De Joglo” Restaurant
Using Frequent Pattern Tree Data Mining

Andreas Handojo 1, Gregorius Satia Budhi 2, Nadia Andreani Dwiyono 3
Department of Informatics Engineering, Faculty of Industrial Technology, Petra Christian University

Siwalankerto 121-131, Surabaya 60236, Indonesia
+62-31-2983455

1 handojo@petra.ac.id, 2 greg@petra.ac.id

1. Introduction
Now days, the technology developments in Indonesia is increasing fast. There’s so many companies

that use computer technology to obtain information, this is including on the restaurants that use computer
technology to recording sales transactions and data storage system. For a small restaurant, such
technology may be sufficient for managers to making decisions. But, unlike on the quite large restaurant,
which has more variety menu and many different models of customers. This will make managers will have
more difficulty to decide anything because the data that must be consider and processed is quite a lot.

So a system that can assist managers on making decisions that needed. Therefore in this research, will
be build a computer based system that process sales data using Frequent Pattern tree data mining to create
a decision support system for the restaurant manager. For example, if customers order food A, usually
customers will order food B. So, the restaurant can increase sales of food A and food B by made it a food
package that contains both of the food. But, even though the system can issue a correlation between sales
order, expertise from the manager is still needed, for example to predict whether the decision is
appropriate to be applied or not.

2. Data Mining
Data mining is a process to discover interesting knowledge from large amounts of data that stored in

the database [1]. Technically this analysis in general is dedicated to be able to work on large amount of
data, with the goal of data mining that produce decisions and conclusions that guaranteed for accuracy.
Data mining is also part of the process of Knowledge Discovery in Databases (KDD). KDD process
consists of the following steps (Figure 1):
• Data cleaning, remove noise and inconsistent data.
• Data integration, integrating multiple data sources that can be combined.
• Data selection, selection of data relevant to the analysis task is retrieved from the database.
• Data transformation, the process where’s data is transformed or consolidated into a format suitable for

processing in data mining.
• Data mining, an essential process in which the method was applied to extract data patterns.
• Pattern evaluation, the process to identify interesting patterns to be represented into the knowledge-

based.
• Knowledge presentation, process visualization and knowledge representation techniques are used to

provide useful knowledge to the user.

Figure 1 : The Process of Knowledge Discovery in Database [1]

3. Market Basket Analysis

Market Basket Analysis refers to the methodology of the study of consumer habits by finding
associations between some of the products offered. For example: finding that the item “A” is usually
purchased by the consumer with another item “B” at a specific time. This technique is also called
association rule analysis.

The purpose of the market basket is to know what products are purchased simultaneously. Analysis
of transaction data to generate a product purchase patterns that often occur on sales. Such information can
help sellers to increase sales rate [4]. Suppose in a restaurant, to answer the question "What are the foods
that may be ordered at the same visit by customer?" To answer this question market basket analysis can
process on the sales transaction data at these restaurants so that the result can be applied to a variety of
sales planning in the restaurant, for example in determining the food package [4].

4. Frequent Pattern Tree (FP Tree) [2][3]
FP-Tree is an efficient algorithm for finding patterns in database transactions. FP-Tree is formed by a

root (root) are labeled “null”, that’s a set of sub-tree which consists of certain items and a frequent header
table. Each node in the FP-tree contains three important information, (1) label item that inform the type of
items that represented the node, (2) count that represents the number of transactions that passes through
the node, and (3) link that connects node and label item between node-link.
For more details, we can look at this example, we see the transaction database in Table 1 with minimum
support = 3.

Table 1 : Data Transaction
Transaction ID Item Bought Frequent Item

100 f, a, c, d, g, i, m, p f, c, a, m, p
200 a, b, c, f, l, m, o f, c, a, b, m
300 b, f, h, j, o f, b
400 b, c, k, s, p, c, b, p
500 a, f, c, e, l, p, m, n f, c, a, m, p

1. Scan the database to determine the total count of each item. If there is the same item, it can be combined
with the same number of transaction. In accordance with a pre-determined minimum support, then get the
frequency of occurrence of each item as follows: (f: 4), (c: 4), (a: 3), (b: 3), (m: 3), (p: 3) sorted from the
largest number

2. First, we make the root of the tree and give the value "null", and then scan the database for the second
time. Scan of the first transaction leads to the development of the first branch of the tree: < (f: 1), (c: 1) (a:
1), (m: 1), (p: 1)>. Note that items in the transactions are sorted based on the items most often ordered. For
the second transaction that is <f, c, a, b, m>, because <f, c, a> is already on the path previously during <f,
c, a, m, p>, then the number of nodes at this prefix increases 1, and a new node (b: 1) created and linked as
a child of (a: 2) and another new node (m: 1) created and linked as a child of (b: 1). After the scanning all
the transactions, the node on the tree will produce a tree that can be seen in Figure 2.

Figure 2 : Tree on Example.

3. Looking for a conditional pattern base. In Figure 2 shows the "mine (<f:3, c:3, a:3> | m)" involves three
items (a), (c), (f), in a sequence. The first comes from the frequent pattern (am: 3), which is "mine (<f:3,
c:3> | am)". The second comes from the frequent pattern (cm: 3), which is "mine (<f:3> | cm)", and the
third only come from frequent pattern (fm: 3). Then do recursion by calling "mine (<f:3, c:3> | pm)"
produces (cam: 3), (fam: 3), and call "mine (<f:3> | cam) ", which produce the longest pattern (fcam: 3).
Similarly, by calling" mine (<f:3> | cm) ", producing a pattern (FCM: 3). Thus, the entire sequence
involving the "m" is <(m: 3), (am: 3), (cm: 3), (fm: 3), (cam: 3), (fam: 3), (fcam : 3), (fcm: 3)>. This
shows that the single path FP-tree mining process can be done by searching all combinations of items in
that path.
Next, find the conditional FP-Tree. Support count of each item on each conditional pattern bases are
added, and every item that has a number less than the minimum support is removed, as shown in Table 2.

Table 2 : Conditional FP-Tree

Item Cond. pattern base Cond. FP-Tree
p {(fcam:2), (cb:1)} {(c:3)} | p
m {(fca:2), (fcab:1)} {(f:3, c:3, a:3)} | m
b {(fca:1), (f:1), (c:1)} Ø
a {(fc:3)} {(f:3, c:3)} | a
c {(f:3)} {(f:3)} | c
f Ø Ø

So the combination results obtained in Table 3:

Table 3 : FP-Tree Combination

cp : 3 fcam : 3 fca : 3 fc : 3

fcm : 3 fa : 3
fam : 3
cam : 3
fm : 3
cm : 3
am : 3

ca : 3

After the combination is obtained, then searched his association rule by seeking support and confidence

• Support
c p –– c p, support = 3
p c, support = 3

• Confidence
c p –– c p, confidence = 3/4 = 75%

 p c, confidence = 3/3 = 100%

5. Design And Implementation

The design and implementation for this application can be seen on flowchart system Figure 3 and

Figure 4.

Login

End

Create Table

Encode Table

Generate Frequent
Itemsets

Tree

Conditional
Pattern Base

Conditional
FP-Tree

Generate
Association Rules

Graph and
Report

Start

Generate Frequent
Itemsets Pilih tabel

Input minimum
support

Header_tabel[a-1] =
kode item

a = 0

Ya

a = a + 1

For i = 0 to banyaknya
kode item

Get kode item dan
jumlah count tiap item

Jumlah item count
>= min supp?

i

For n = 0 to jumlah order

For i = 0 to jumlah
header_table

Tampilkan kode item =
header_table[i]

i

n

Return

Tidak

Figure 3 : Flowchart System Figure 4 : Generate Frequent Item sets Flowchart

After login and make a connection to the database, user can create new table and encode new code
for each item (food) in the restaurant database. Then, system can generate frequent itemsets (Figure 4)
based on minimum support that define by user and build the FP Tree and show it on report.
This application will be built on computer server with specification below:

• Processor : Intel Centrino Core Duo T2300 @ 1,6 GHz
• Memory : 512 MB
• HardDisk : 80 GB
• Operating System : Microsoft Windows XP Home Edition (5.1)

The main interface from this application will shown on Figure 5 to Figure 8.

Figure 5 : Main Menu Figure 6 : Generate Frequent Itemset Process

Figure 7 : Generate Association Rules Process Figure 8 : Graphic Report

6. TESTING

For testing, this research will process one year period restaurant sales data and the result can be seen
on Table 4.

Table 4: Testing Results for Process Time

No Transaction Amount
Minimum Support

(Frequent Item Sets)
Amount of Rules Process Time

10 % (7) 362 1 m 44 s 1 66
15 % (10) 174 53 s
10 % (18) 486 3 m 30 s 2 178
15 % (27) 58 41 s
10 % (28) 366 3 m 59 s 3 271
15 % (41) 44 1 m 2 s
10 % (83) 146 9 m 38 s 4 827

15 % (125) 26 3 m 58 s
10 % (423) 66 28 m 13 s 5 4221
15 % (634) 31 9 m 12 s
10 % (846) 46 7 h 43 m 21 s 6 8454

15 % (1269) 14 2 h 58 m 48 s

Testing Result for Process Time

0

5000

10000

15000

20000

25000

30000

66 178 271 827 4221 8454

Amount of Transaction

Ti
m

e
(s

ec
on

d)

Min Support 10%
Min Support 15%

Figure 9. Results Comparison for Process Time

From Figure 9, we can see that the more amounts of transaction data, the more time is required to

run the mining process. Meanwhile, the smaller the minimum support, then the more time is required in
carrying out the process.

Comparison Number of Rules

0

100

200

300

400

500

600

66 178 271 827 4221 8454

Amount of Transaction

N
um

be
r

Ru
le

s

Min Support 10%

Min Support 15%

Figure 10 : Results Comparison of Number of Generated Rule
From Figure 10, we can see that number of rules that generated not influenced by number of the

transaction. The greater the minimum support, the fewer number of rules generated.

7. Conclusion

From the testing of this application, we have conclusion as follows:

• The smaller the minimum support that user define, then the more frequent item sets generated so the
more time is required in carrying out the process.

• Number of Rules that generated not influenced by number of the transaction, but by number of
frequent item sets that generated

References

[1] Han, Jiawei., Kamber, Micheline. (2001). Data mining concepts and techniques. Morgan Kaufmann.
[2] Han, J., Pei, J., Yin, Yiwen. (2004). Mining frequent patterns without candidate generation. Simon Fraser

University. Netherlands: Kluwer Academic.
[3] He, Z., Xu, X., Deng, S. (2004). A FP-Tree based approach for mining all strongly correlated pairs without

candidate generation. USA: World Scientific and Engineering Academy and Society.
[4] Olson, David dan Yong Shi. (2007). Introduction to bussines data mining. New York: McGraw-Hill.

