
RTESS: Real Time Expert System Shell

Leo Willyanto Santoso
Petra Christian University

Siwalankerto 121-131
Surabaya, 60236, Indonesia

+62 31 298 3455

leow@petra.ac.id

ABSTRACT

The improving performance of inference engine in expert system
has become an important research in recent years; as it is not
realistic to search through all production rules during each cycle
using an exhaustive search. Expert systems with a large set of
rules can be slow, and maybe not suitable for real-time
application. In this paper, new algorithm for forward chaining and
backward chaining in inference engine is proposed. This
algorithm accommodates balanced binary searched tree and binary
tree sort that have good performance in large database. Moreover,
this new inference engine is more certain as well. Displaying
image and other supporting materials as the answer is facilitated.

Categories and Subject Descriptors

I.2.1 [Application and Expert Systems]: Inference Engine; I.2.5

[Programming Language and Software]: Health Expert System.

General Terms

Algorithms, Performance, Design.

Keywords

Forward chaining, backward chaining, certainty factor, binary
search tree, binary tree sort.

1. INTRODUCTION
During the past decades, expert system has been explored
extensively. Expert system is a computer program that works in
specific domain knowledge, exhibits a degree of expertise to solve
the problem [5, 6].

Inference engine is the brain of the expert system. Today, several
inference engine programs that try to derive answer from the
knowledge base only accommodate one method to create decision,
namely forward chaining or backward chaining. Inference engine
of VP-Expert, one of the expert system shell, works only using
backward chaining method to solve the problem [4, 6]. The
development of new expert system cell which accommodates two
methods, forward chaining and backward chaining is really
needed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2009, December 14–16, 2009, Kuala Lumpur, Malaysia.
Copyright 2009 ACM 978-1-60558-660-1/09/0012...$10.00.

The advantages of combining two methods are to reduce time
consuming and to improve the result confidence. The illustration
between a general practitioner and a medical patient will explain
the situation. When the medical patient tells the condition of the
body, in this task, forward chaining is used. Then, the general
practitioner predicts the disease from the explained symptoms of
medical patient. To make sure the diagnosis, the general
practitioner asks several questions to the medical patient. In this
task, backward chaining is implemented.

Sometimes an expert deal with uncertainty information, because
of disguise or incomplete information. There are two sources of
uncertainty that must be encountered in an expert system. They
are:
- Uncertainty with regards to the validity of knowledge base

rule.
- Uncertainty with regards to the validity of user response.
Let’s consider the example of the following question for a medical
patient: do you have coughing? Where the expected answer is
either ‘yes’ or ‘no’. A strictly ‘yes’ or ‘no’ response to the
question may be unsatisfactory. The confidence factor or certainty
factor (CF) is needed. A scale of 0 to 10 where an 0 represents a
judgement that there is no coughing at all while a 10 indicates that
the patient is experiencing the most intense pain imaginable. The
question could be formed like this: “do you have coughing
(0/10)?”. If the user responds with, let’s say a value of 9, then this
is an indication that coughing are at a very intense level.

An alternative question could be built in that situation that could
be more appropriate or possibly even better than the use of scale
or explicit confidence factor. The question is: “Indicate the level
of intensity of coughing? Extreme, very intense, moderate,
minimal or none.” In this example, the user selects only the
response that seems most appropriate rather than deal with a
numeric value.

Furthermore, the other problem in expert system is ineffective
search strategy [6, 11]. By implementing balanced binary search
tree and binary tree sort, it can reduce time consuming in
searching process [2, 9].

This paper presents a new expert system shell which has high-
quality performance and fast to reach the solution. Previous real
time expert system only deals with specific problem. For example
real time expert system for fault diagnosis [1], real time expert
system for computer network monitor and control [3], real time
expert system for monitoring cardiac operated patients [13], and
real time expert system for control of electrophysical complex
[12]. By developing real time expert system shell, it can be used
for broad problem. This new expert system shell has several

method in inference engine, explanation capability, and certainty
factor calculation. Next, this expert system shell will be a
framework of real time expert system.
The remaining part of this paper is organized as follows. Section 2
presents an overview of current proposal for dealing with expert
systems. Section 3 depicts the approach that we have delineated to
solve the proposed problems. Section 4 discusses the performance
of proposed methods. Finally, section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK
In this section, the previous work of backward chaining, forward
chaining, binary tree sort and balanced binary search tree are
presented.

2.1 Backward Chaining
Backward chaining is an inference method used in artificial
intelligence. It is one of two reasoning methods that uses the
inference rules – the other is forward chaining, also known as
modus ponens.

Backward chaining starts with a list of goals (or a hypothesis) and
works backwards from the consequent to the antecedent to see if
there is any data available to support any of these consequents
[4, 6, 11]. An inference engine using backward chaining will
search the inference rules until it finds one which has a
consequent (Then clause) that matches a desired goal. If the
antecedent (If clause) of that rule is not known to be true, then it
is added to the list of goals (in order for your goal to be
confirmed, you have to provide data that confirms this new rule).
Figure 1 shows backward chaining diagram.

Figure 1. Backward chaining diagram

Because the list of goals determine which rules are selected and
used, this method is called goal-driven; which is in contrast to
data-driven forward-chaining inference. The backward chaining
approach is often employed by expert systems.

2.2 Forward Chaining

Forward chaining is one of the two main methods of reasoning
when using inference rules (in artificial intelligence). The
opposite of forward chaining is backward chaining.

Figure 2. Forward chaining diagram

Forward chaining starts with the available data and uses inference
rules to extract more data (from an end user for example) until a
goal is reached [4, 6, 11]. An inference engine using forward
chaining searches the inference rules until it finds one where the
antecedent (If clause) is known to be true. When found it can
conclude, or infer, the consequent (Then clause), resulting in the
addition of new information to its data. Inference engines will

iterate through this process until a goal is reached. Figure 2 shows
forward chaining diagram.
Because the data determines which rules are selected and used,
this method is called data-driven, in contrast to goal-driven
backward chaining inference. The forward chaining approach is
often employed by expert systems, such as CLIPS.

2.3 Certainty Factor (CF)

Certainty factor theory is a popular alternative to Bayesian
reasoning. The basic principles of this theory were introduced by
MYCIN, a diagnostic medical expert system [4, 11]. Certainty
factors theory provides a judgmental approach to uncertainty
management in expert system. An expert is required to provide a
certainty factor, cf, to represent the level of belief in hypothesis H
given that evidence E has been observed. The maximum value of
the certainty factor was +1.0 (definitely true) and the minimum -
1.0 (definitely false). Table 1 shows condition and the value of cf.
The certainty factors method uses rules of the following form
 IF E is true

THEN H is true {cf}

Certainty factors are used if the probabilities are not known or
cannot be easily obtained. Certainty theory can manage
incrementally acquired evidence, the conjunction and disjunction
of hypotheses, as well as evidences with different degrees of
belief. Table 1 shows some basic uncertain terms.

Table 1. Uncertain terms and their interpretation

Uncertain Term CF

Definitely not -1.0

Almost certainly not -0.8

Probably not -0.6

Maybe not -0.4

Unknown -0.2 to 0.2

Maybe 0.4

Probably 0.6

Almost certainly 0.8

Definitely 1.0

2.4 Binary Tree Sort
Binary tree sort is a sort algorithm that builds a binary search tree
from the keys to be sorted, and then traverses the tree (in-order) so
that the keys come out in sorted order [7].
The algorithm of binary tree sort is as follows.

Algorithm Binary Tree Sort

1. tree = maketree(x[10]);
2. for (i = 1; i < n; i++) {
3. y = x[i];
4. q = tree;
5. p = q;
6. while (p != null) {
7. q = p;
8. if (y < info(p))
9. p = left(p);
10. else
11. p = right(p);

12. }
13. if (y < info(q))
14. setleft(q,y);
15. else
16. setright(q,y);
17. }
18. intrav (tree);

Figure 3. Algorithm of Binary Tree Sort

2.5 Balanced Binary Search Tree
The most efficient method of searching is the balanced binary
searched tree [2, 9, 10]. Balanced binary search tree is a binary
search tree (BST) that attempts to keep its height, or the number
of levels of nodes beneath the root, as small as possible at all
times, automatically [9, 10]. It is one of the most efficient ways of
implementing ordered lists and can be used for other data
structures such as associative arrays and sets.
Most operations on a binary search tree take time directly
proportional to the height of the tree, so it is desirable to keep the
height small. Ordinary binary search trees have the primary
disadvantage that they can attain very large heights in rather
ordinary situations, such as when the keys are inserted in sorted
order.
Balanced binary trees solve this problem by performing
transformations on the tree (such as tree rotations) at key times, in
order to reduce the height.

3. REAL TIME EXPERT SYSTEM SHELL
The combination of powerful searching and sorting algorithm in
database, integrating two algorithms of knowledge acquisition in
inference engine and supported by certainty factor calculation
become a real time expert system shell (RTESS). The algorithm of
RTESS can be seen in Figure 4.

Algorithm RTESS

Input: Rules
1. Error checking;
2. While (error=0)
3. if (option method=forward)
4. forward_chaining;
5. if (option method=backward)
6. backward_chaining;
7. if (option method=forward & backward)
8. forward&backward_chaining;

End

Figure 4. Algorithm of RTESS

In error checking procedure, this system checks the syntax of rule
with cf and rule without cf. Syntax checking without cf is
checking process that gets key string of rule which entered into
system. There are 13 key string, namely: ACTIONS, FIND,
RULE, IF, ‘=’, ASK, CHOICES, IMAGE, ‘;’, ‘:’, THEN, OR and
AND. The combination of key strings in rule will be checked
whether there is a syntax error or not. If there is a syntax error,
then an informative error message will be displayed.
In RTESS, forward chaining is a method that take given set of
rule then answer of given rule will be put into working memory.
After that, each given rule will be checked, if rule premise
produce true value then the result of the rule will be put into

working memory. Then, the rule status becomes true so it does not
need to be checked again. The rule checking process will be
started from the beginning. This process repeats until the goal
value has been reached or set of rule already answered and there is
no finding goal. The algorithm in Figure 5 show the algorithm of
forward chaining.

Algorithm: Forward Chaining

1. Initialization.
Establish 3 empty tables, the Working Memory table, the
Attribute-Queue table, and the Rule/Premise Status table.

2. Start inference.
Assign a value to a specific premise attribute, where this
attribute must not appear in any conclusion clause.

3. Rule scan and check for convergence.
Examine the Rule/Premise Status table. If no rules are
active, STOP. Otherwise, scan the active rule-set premise
clauses for all occurrences of attribute on the top of the
Attribute-Queue table, and record any changes in status of
the premise clauses of active rule set.
a. If the premise of any rule is false then mark the

associated rule as being discarded. Repeat this for all
rules having a false premise. When complete, proceed
to step 3b.

b. If the premise of any rule is true then mark the
associated rule as being triggered and place its
conclusion attribute and rule number at the bottom of
the Attribute-Queue table. Repeat this for all rules
having a true premise. When complete, proceed to
step 3c.

c. If no rules are presently in the triggered state, go to
step 5. Otherwise, go to step 4.

4. Rule firing.
Cross out the topmost attribute on the Attribute-Queue
table. Change the status of the rule associated with the new
topmost attribute from triggered to fired. Place the
conclusion associated with the fired rule at the bottom of the
Working Memory table. Return to step 3.

5. Queue status.
Cross out the topmost attribute on the Attribute-Queue table
and proceed to step 6.

6. Convergence check and rule marking.
Scan the active rule set for any unmarked, active rule. If no
such rules can be found, STOP. Otherwise, mark the first
such rule found and go to step 7.

7. Query
For the most recently marked rule, query the user for the
value of an attribute in any of the rule’s free premise
clauses. If the user has a response then goes to step 8.
Otherwise, continue this step for all remaining free premise
clauses of the marked rule. If all such clauses have been
examined without a user response, return to step 6.

8. Rule unmarking
Place the associated attribute and rule number on the top of
the Attribute-Queue table. Unmark the most recently
marked rule and return to step 3.

End

Figure 5. Forward Chaining Algorithm

Backward chaining is a method that finds goal position firstly.
Figure 6 shows the algorithm of backward chaining.

Algorithm: Backward Chaining

1. Initialization.
Establish 3 empty tables, the Working Memory table, the
Goal table, and the Rule/Premise Status table.

2. Start inference.
Specify a final goal. Place the associated goal attribute at
the top of the Goal table.

3. Rule scan and check for convergence.
Scan the conclusion clause of the active rule to find any
concurrence of the goal attribute presently on the top of the
Goal table.
a. If the Goal table is empty, STOP.
b. If only one such rule may be found, go to step 6. If

several such rules may be found, and any of these are
triggered, select any one of the triggered rules and
proceed to step 6. Otherwise, arbitrarily select one
rule among the rules found that contains the subject
goal attribute in its conclusion clause set, and go to
step 6.

c. If no active rules are found that contain the subject
goal attribute in their conclusion clause set, then go to
step 4.

4. Query.
For the goal attribute on top of the Goal table, find the
associated query if one exists. If there is no query associated
with this goal attribute, then STOP. Otherwise, query the
user, record his or her response, remove the top goal
attribute from the Goal table and place it in the Working
Memory table. Go to step 5.

5. Rule/premise status update.
Using the contents of the Working Memory table, update
the Rule/Premise Status table. Specifically, if the premise of
any rule is false, discard that rule, and if the premise is true,
trigger that rule. Return to step 3.

6. Rule evaluation.
a. If this rule is triggered, then remove the current

topmost goal attribute from the Goal table and place it
in the Working Memory table. Change the status of
this rule from triggered to fired. Go to step 5.
Otherwise proceed to step 6.

b. If this rule is not triggered, then select the first
unknown premise attribute of the rule and place it at
the top of the Goal table. Return to step 3.

End

Figure 6. Forward Chaining Algorithm

Mixed chaining method is a combination of forward chaining
method backward chaining method. In this method, user will be
given set of data that need to be answered. These will be done in
forward chaining. Then, user can select the implementation of
backward chaining if the data that need to be answered satisfies
user needs and goal is still searching. Figure 7 shows the steps of
mixed chaining method.

Step Rule (rule type) Facts (goals) Chaining
(firing)

1
2
3

{}
R1 (B)
R3 (B)

AC(K)
AC(FH)
AC(FEB)

B
B

4
5
6
7
8
9

R8 (F)
R4 (F)
R7 (F)
R5 (F)
R6 (F)
R2 (B)

ACG(FEB)
ACGB(FE)
ACGBD(FE)
ACGBDH(FE)
ACGBDHE(F)
ACGBDHEK(F)

F(fired)
F(fired)
F(fired)
F(fired)
F(fired)
F(fired)

Figure 7. Mixed Chaining Algorithm

4. EXPERIMENTS
In this section, we present experimental result comparing the
performance of new RTESS using several thousand of rules. This
system was built in Microsoft Visual C++ on a PC with 2.4 GHz
Pentium ® 4 CPU and 1 GB of RAM under MS Windows XP
Pro. Figure 8 is a screenshot for a simulation using tourism rule
data.

Figure 8. Interface of RTESS

It shows a result of the process where the answer and its certainty
factor is displayed. This system shows the result not only in text
format, but in image as well.

Performance of RTESS

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7

Number of rule (in thousands)

S
e
c
o

n
d

s

Figure 9. The Performance of RTESS

Figure 9 shows the performance of RTESS. This figure reports the
execution times obtained by RTESS over rules with increasing
number of rule. The curve shows an almost linear scalability. As
can be seen from the graph, running times grow when the number
of rule is increased.

The Comparison Between RTESS and VP Expert

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

Number of Rule (in thousands)

T
im

e
 (

S
e
c
o

n
d

)

RTESS

VP-Expert

Figure 10. The Comparison Performance between RTESS and

VP Expert

Figure 10 shows the performance comparison between RTESS
and VP Expert. It can be seen that RTESS outperforms the VP
Expert.

5. CONCLUSION
This paper deals with the implementation of balanced binary
search tree and binary tree sort to support methods in inference
engine – forward chaining, backward chaining and mixed
chaining. The focus of this paper is to reduce running time and to
display certainty factor of the result.

The emphasis of this paper was on feasibility – identification of
possible approaches and development of methods to put them into
practices.

We are currently working on the evaluation of performance and
the reliability of methods proposed in this paper. Firstly,
benchmarking for performance evaluation indicates for which
method is the most efficient and effective from response time
point of view. The next concern is the quality of the result.

6. REFERENCES
[1] Angeli, C. 2000 Application of a real-time expert system for

fault diagnosis. IEA/AIE 2000, LNAI 1821, pp 184-191.
Springer-Verlag Berlin Heidelberg.

[2] Barnes, G. M., Noga, J., Smith, P. D. and Wiegley, J. 2005
Experiments with balanced-sample binary trees, ACM
SIGCSE Bulletin, 37(1): 166-170.

[3] Dunning, B.B. and Switlik, J. 1988 A real-time expert system
for computer network monitor and control. Database
Summer pp 35-38.

[4] Giarratano, J.C. and Riley, G. 1994 Expert Systems:
Principles and Programming, PWS Publishing Co., Boston,
MA.

[5] Gunawan, F. 2008 Developing Expert System using Forward
and Backward Chaining. Thesis. Petra Christian University

[6] Ignizio, J.P. 1991 Introduction to Expert Systems: The
Development and Implementation of Rule-Based Expert
Systems. Singapore:McGraw-Hill Book Co.

[7] Langsam, Y., Augenstein, M. J., and Tenenbaum, A. M.
1996 Data structure using C and C++, Prentice-Hall, New
Jersey.

[8] Lee, K. C., Cho, H. R., and Kim, J. S. 2008 An expert system
using an extended AND-OR graph. Knowledge-Based
Systems, 21(1):38-51.

[9] Li, C. C. 2006 An immediate approach to balancing nodes in
binary search trees, Journal of Computing Sciences in
Colleges, 21(4): 238-245.

[10] Manthey, B. and Reischuk, R. 2007 Smoothed analysis of
binary search trees, Theoretical Computer Science,
378(3):292-315.

[11] Negnevitsky, M. 2005 Artificial intelligence: a guide to
intelligent systems, 2nd Ed., Addison Wesley, England.

[12] Rybin, V.M., Rybina, G.V., Ochinsky, V.V., and Stepankov,
V.U. 1999 Real-time expert system for control of
electrophysical complex. In Proc. of International

conference on accelerator and large experimental physics

control systems pp. 124-126.

[13] Sukuvaara, T., Koski, E.M., Makivirta, A., and Kari, A.,
1993 A knowledge-based alarm system for monitoring
cardiac operated patients – technical contruction and
evaluation. Int J. Clin. Monit Comput., 10(2): 117-126.

