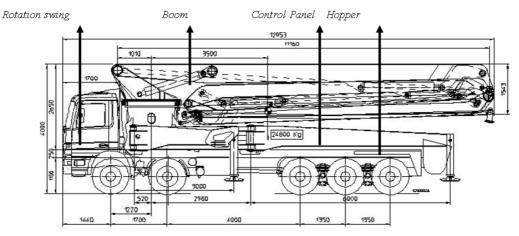
ANALISIS PRODUKTIVITAS CONCRETE PUMP PADA PROYEK BANGUNAN TINGGI

Sentosa Limanto

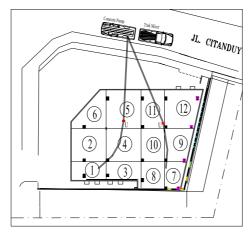
Program Studi Teknik Sipil, Universitas Kristen Surabaya, Jl. Siwalankerto I/ 121-136 Surabaya Email: leonard@peter.petra.ac.id

ABSTRAK


Perkembangan proyek konstruksi terutama untuk bangunan bertingkat semakin komplek dan membutuhkan penanganan yang baik. Seiring dengan perkembangannya membutuhkan peralatan yang mempunyai teknologi yang lebih baik sehingga dapat membantu kelancaran pelaksanaan proyek. Salah satu alat yang banyak digunakan dalam proyek konstruksi saat ini adalah *mobile concrete pump*. Pentingnya peranan *concrete pump* dalam proyek konstruksi beton bertulang untuk bangunan tinggi membuat penggunaan *concrete pump* lebih sering dipergunakan. Hal yang harus diperhatikan adalah produktivitasnya agar menjadi efektif. Hasil penelitian dianalisis dengan uji regresi diperoleh nilai Y = -0,0073 X + 0.4142.

Kata kunci: proyek konstruksi, produktivitas, mobile, concrete pump, regresi

1. PENDAHULUAN


Proyek konstruksi bangunan tinggi semakin berkembang. Perkembangan itu pasti akan diikuti dengan implementasi teknologi peralatan lebih canggih yang pasti akan membantu kelancaran pelaksanaan. Alat yang banyak digunakan dalam proyek konstruksi saat ini adalah *concrete pump* (Gambar 1.). Semakin berkembangnya proyek konstruksi bangunan tinggi, membuat kebutuhan akan *concrete pump* di sebuah proyek menjadi sangat penting. Penelitian ini bertujuan untuk mengetahui pelaksanaan/produktivitas *cocrete pump* pada suatu proyek. Pelaksanaan pekerjaan konstruksi (*construction operation*) memberikan beberapa pengertian antara lain menurut Suharto, Iman, (2000), adalah kegiatan pembangunan yang harus diselesaikan berdasarkan anggaran dan jadwal yang telah ditentukan dan terdiri dari bermacam-macam kegiatan yang memerlukan berbagai macam disiplin ilmu. Sedangkan menurut Arditi, D.,1989, pelaksanaan konstruksi perlu memperhatikan parameter-parameter antara lain anggaran biaya, jadwal dan mutu produk sebagai parameter penting bagi penyelenggaraan proyek dan telah ditentukan sejak awal proyek berlangsung. *Construction operation* berarti pencapaian sebuah akhir produksi dan dapat berulang di masa depan (Halpin, et.al, 1992).

Suatu proyek dikatakan sukses apabila kontraktor berhasil mendapatkan laba maksimum dan *owner* mendapatkan hasil yang memuaskan serta tepat waktu dalam penyelesaiannya (Nunnaly, S.W., 2000). Salah satu yang menentukan kesuksesan suatu proyek adalah produktivitas. Produktivitas memiliki bermacam-macam arti, masing-masing bidang pengetahuan memiliki pengertian yang berlainan tentang produktivitas, adapun berbagai macam pengertian produktivitas adalah sebagai berikut: Kamus Besar Bahasa Indonesia mendefinisikan produktivitas sebagai "kemampuan untuk menghasilkan sesuatu." Sedangkan Kosmatka S.H. (1992) menyatakan bahwa produktivitas adalah rasio antara kegiatan (*output*) dan masukan (*input*).

Gambar 1. Gambar Mobile Concrete Pump secara teknis

Dalam pelakasanaanya *concrete* pump mempunyai beberapa tahap sebelum dimulai pemompaan. Sebelum digunakan, pipa *concrete pump* harus dilumuri dengan mortar agar beton yang akan menggalir tidak melekat pada permukaan dalam pipa. Mortar diangkut oleh *truk mixer* lalu dituangkan ke *concrete pump*, selanjutnya persiapan proses pemompaan mortar. Setelah dituangi oleh mortar tadi, *concrete pump* dapat digunakan untuk memompa beton segar yang sudah dituangkan. *Truk mixer* pengangkut beton mendekati *concrete pump* lalu memposisikan corong penyalur beton pada *concrete pump*. Setelah itu *truk mixer* menuangkan campuran beton segar ke *concrete pump* sampai campuran beton dalam *truk mixer* habis. Proses penuangan beton terus berlangsung dengan pasokan dari *truk mixer* yang lain sampai pengecoran selesai. Volume pengecoran lantai basement = 87,895.0 m3, ground floor = 73,095.0 m3, lantai I sampai dengan III masing-masing = 99,962.5 m3 dan lantai IV = 103,637.5 m3

Gambar 2. Urutan proses pengecoran

Untuk proses pemerataan beton cair itu dilakukan setelah beton tersebut dipompakan dari truk mixer ke lapangan. Proses pemempaan dilakukan sesuai dengan urutan angka pada denah di atas. Untuk meratakan beton cair tersebut dibutuhkan waktu dan tenaga manusia, oleh karena dalam 1 segmen bisa dibagi menjadi beberapa bagian agar proses perataan dapat berjalan dengan cepat dan baik. Dengan jumlah pekerja \pm 15 orang dengan efektif dapat meratakan dengan cepat beton cair seluas \pm 2,5 – 3,0 m² untuk sekali pemempaan. Dengan plat setebal 20 cm maka sekali memompa *concrete pump* dapat membawa \pm 0,5-0,6 m³.

2. LANDASAN TEORI

Produktivitas concrete pump adalah volume truk *mixer* dibagi dengan waktu pompa efektif atau ditulis dalam perumusan sebagai berikut: Produktivitas *real concrete pump* (m³/ menit) = <u>volume tiap segmen / waktu total</u> (Ahuja, Hira N., 1983).

Volume tiap segmen, yaitu volume dari tiap segmen.pada tiap lantai.

Waktu efektif, yaitu waktu dimana concrete pump memompa beton cair untuk dialirkan ke segmen – segmen

Waktu *delay*, yaitu waktu dimana *concrete pump* berhenti melakukan pemompaan. Waktu *delay* ini bisa disebabkan bermacam-macam hal, seperti pemindahan pipa dari segmen 1 ke segmen 2, atau bisa juga pekerja yang bermalasmalasan.

Waktu total, yaitu jumlah dari waktu efektif dan waktu delay.

Dalam melakukan analisa data digunakan metode regresi sederhana untuk mengetahui hubungan antara faktor ketinggian gedung dengan produktivitas *concrete pump*. Selain analisa regresi juga menggunakan korelasi sederhana, standar eror,koefisien determinasi.

3. METODE PENELITIAN

Dalam penelitian ini terdapat dua variable, yaitu waktu dan pekerja/SDM. Jenis penelitian ini dilakukan dengan menggunakan: studi kepustakaan dan penelitian di lapangan. Studi kepustakaan dilakukan dengan pengumpulan data atau informasi dilakukan dengan mempelajari berbagai literatur. Sedangkan penelitian lapangan dilakukan dengan penelitian proyek yang terletak di Surabaya dan pelaksanaan proyek tersebut harus masih berlangsung. Dari data yang diperoleh di lapangan akan diolah dengan analisis yang memakai program *Microsoft Excel*.

Analisa regresi digunakan untuk memperoleh hubungan antara variabel X dengan variabel Y. Analisa regresi dinyatakan dengan persamaan: Y = A + BX dimana "A" merupakan konstanta variabel Y dan "B" merupakan koefisien dari variabel Y. Keterangan dari persamaan analisa regresi ini dapat dilihat pada formula dibawah ini:

$$A = \frac{\sum Y \times \sum X^2 - \sum X \times \sum XY}{n \times \sum X^2 - (\sum X)^2} \dots (1)$$

$$B = \frac{n \times \sum XY - \sum X \times \sum Y}{n \times \sum X^{2} - (\sum X)^{2}}$$
 (2)

Keterangan: X = variabel X, Y = variabel Y, n = jumlah data

Analisa korelasi dinyatakan seperti terlihat pada formula dibawah ini :

$$r = \frac{n \times \sum XY - \sum X \times \sum Y}{\sqrt{\left[n \times \left(\sum X^{2}\right) - \left(\sum X\right)^{2}\right] \times \left[n \times \left(\sum Y^{2}\right) - \left(\sum Y\right)^{2}\right]}}$$
 (3)

Keterangan: r = korelasi, X = variabel x, Y = variabel y, n = jumlah data

Analisa korelasi berguna untuk mengetahui keeratan hubungan antara variabel-variabel yang digunakan. Secara matematis batas dari perhitungan analisa korelasi yaitu $-1 \le r \le 1$, dimana r maksimum = 1 dan r minimum = -1. Berikut ini adalah penjelasan mengenai perhitungan analisa korelasi antara variabel X dan variabel Y.

Data tersebut akan diolah dengan analisis yang memakai program *Microsoft Excel*. Supaya suatu penelitian dapat berhasil dengan baik dan memuaskan, maka diperlukan sistematika dalam melakukan penelitian dan penyusunan laporan.

4. HASIL PENELITIAN DAN PEMBAHASAN

Bangunan kantor Bank Sinar Mas, Surabaya, terdiri dari 6 lantai. Konstruksi proyek ini menggunakan struktur baja komposit. Pengecoran pada proyek kantor Bank Sinar Mas ini dilakukan pada setiap lantai. Untuk bagian basement dan ground floor pengecoran dilakukan setelah struktur bangunan basement itu selesai dan tidak menunggu penyelesaian struktur bangunan lantai yang lain. Untuk lantai 1 sampai dengan lantai 4 pengecoran dilakukan setelah balok dan kolom baja selesai dipasang sampai lantai 4. Untuk pengecorannya digunakan concrete pump merk IHI type IPF 110 dan truk mixer dipakai milik PT. Jayamix

Pada saat pengecoran, volume truk, jumlah pekerja, waktu efektif pemompaan, waktu total, dicatat setiap harinya. Kemudian setelah data terkumpul, dikelompokkan berdasarkan ketinggian. Pengelompokkan data berdasarkan ketinggian ini untuk mengetahui pengaruh produktivitas *concrete pump* berdasarkan ketinggian.

Produktivitas adalah rasio antara kegiatan (output) dan masukan (input). Dalam kasus ini yang disebut dengan output adalah luasan dari segmen-segmen untuk tiap-tiap lantai. Sedangkan untuk input, dalam hal ini adalah waktu. Waktu dalam perhitungan produktivitas pengecoran ini meliputi 3 macam, yaitu:

Waktu efektif, yaitu waktu dimana concrete pump memompa beton cair untuk dialirkan ke segmen-segmen.

Waktu *delay*, yaitu waktu dimana *concrete pump* berhenti melakukan pemompaan. Waktu *delay* ini bisa disebabkan bermacam-macam hal, seperti pemindahan pipa dari segmen 1 ke segmen 2, atau bisa juga pekerja yang bermalasmalasan.

Waktu total, yaitu jumlah dari waktu efektif dan waktu delay.

Waktu total = waktu efektif + waktu *delay*

Produktivitas *concrete pump* dipengaruhi oleh waktu, baik itu waktu *delay* maupun waktu efektif. Besar kecil dari waktu total banyak dipengaruhi oleh waktu *delay*. Makin besar waktu total terutama waktu *delay*, maka makin kecil produktivitas dari *concrete pump* tersebut. Produktivitas masing-masing segmen pada lantai *basement, ground floor*, lantai 1, lantai 2, lantai 3, dan lantai 4 dapat dilihat pada Tabel 1. sampai dengan Tabel 6. dibawah ini.

Tabel 1. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total Basement

Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		Efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	4.4625	6.21	0.719	10	0.446	16.21	0.275
2	7.35	7.72	0.952	8	0.919	15.72	0.468
3	6.8	8.52	0.798	7	0.971	15.52	0.438
4	11.2	14	0.800	9	1.244	23	0.487
5	9.2	10.6	0.868	8	1.150	18.6	0.495
6	10.29	12.2	0.843	7	1.470	19.2	0.536
7	4.2	6.33	0.664	8	0.525	14.33	0.293
8	6.3	8.12	0.776	7	0.900	15.12	0.417
9	7.175	8.51	0.843	7	1.025	15.51	0.463
10	7.35	7.74	0.950	10	0.735	17.74	0.414
11	6.0375	7.15	0.844	8	0.755	15.15	0.399
12	7.62	8.54	0.892	8	0.953	16.54	0.461
Total	87.985						
Mean		8.803	0.829	8.083	0.924	16.887	0.429
S.Dev		2.342	0.085	1.084	0.289	2.426	0.078

Tabel 2. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total *Ground Floor*

Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	4.4625	7.07	0.631	8	0.558	15.07	0.296
2	7.35	9.51	0.773	10	0.735	19.51	0.377
3	6.8	8.41	0.809	7	0.971	15.41	0.441
4	11.2	14.25	0.786	7	1.600	21.25	0.527
5	9.2	6.82	1.349	6	1.533	12.82	0.718
6	3.02	7.87	0.384	8	0.378	15.87	0.190
7	4.2	10.22	0.411	9	0.467	19.22	0.219
8	6.3	8.33	0.756	7	0.900	15.33	0.411
9	7.175	7.63	0.940	7	1.025	14.63	0.490
10	7.35	8.44	0.871	7	1.050	15.44	0.476
11	6.0375	8.2	0.736	8	0.755	16.2	0.373
12							
Total	73.095						
Mean		8.795	0.768	7.636	0.906	16.432	0.411
S.Dev		2.055	0.260	1.120	0.395	2.494	0.149

Tabel 3. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total Lantai 1

Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	6.1625	4.93	1.250	15	0.411	19.93	0.309
2	10.15	5.44	1.866	10	1.015	15.44	0.657
3	6.8	8.12	0.837	15	0.453	23.12	0.294
4	11.2	8.96	1.250	20	0.560	28.96	0.387
5	12.8	4.64	2.759	15	0.853	19.64	0.652
6	5.8	10.24	0.566	10	0.580	20.24	0.287
7	6	7.04	0.852	20	0.300	27.04	0.222
8	6.3	8.97	0.702	10	0.630	18.97	0.332
9	9.275	6.72	1.380	15	0.618	21.72	0.427
10	3.675	4.8	0.766	20	0.184	24.80	0.148
11	8.4	7.42	1.132	15	0.560	22.42	0.375
12	13.4	9.72	1.379	15	0.893	24.72	0.542
Total	99.9625		_		_		_
Mean		7.250	1.228	15.000	0.588	22.25	0.386
S.Dev		1.989	0.605	3.693	0.242	3.75	0.160

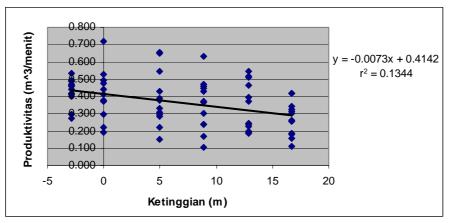
Tabel 4. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total Lantai 2

Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	6.1625	10.88	0.566	15	0.411	25.88	0.238
2	10.15	7.78	1.305	15	0.677	22.78	0.446
3	6.8	8.63	0.788	20	0.340	28.63	0.238
4	11.2	9.52	1.176	15	0.747	24.52	0.457
5	12.8	10.33	1.239	10	1.280	20.33	0.630
6	5.8	9.12	0.636	10	0.580	19.12	0.303
7	6	12.51	0.480	45	0.133	57.51	0.104
8	6.3	7.15	0.881	10	0.630	17.15	0.367
9	9.275	10.14	0.915	15	0.618	25.14	0.369
10	3.675	7.21	0.510	15	0.245	22.21	0.165
11	8.4	7.88	1.066	10	0.840	17.88	0.470
12	13.4	11.39	1.176	20	0.670	31.39	0.427
Total	99.9625						
Mean		9.378	0.895	16.667	0.598	26.045	0.351
S.Dev		1.724	0.299	9.614	0.302	10.788	0.148

Tabel 5. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total Lantai 3

Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	6.1625	5.12	1.204	20	0.308	25.12	0.245
2	10.15	5.64	1.800	20	0.508	25.64	0.396
3	6.8	8.42	0.808	20	0.340	28.42	0.239
4	11.2	9.3	1.204	15	0.747	24.3	0.461
5	12.8	4.8	2.667	20	0.640	24.8	0.516
6	5.8	10.62	0.546	20	0.290	30.62	0.189
7	6	5.23	1.147	25	0.240	30.23	0.198
8	6.3	3.05	2.066	25	0.252	28.05	0.225
9	9.275	6.97	1.331	10	0.928	16.97	0.547
10	3.675	4.98	0.738	15	0.245	19.98	0.184
11	8.4	7.7	1.091	15	0.560	22.7	0.370
12	13.4	11.12	1.205	15	0.893	26.12	0.513
Total	99.9625						
Mean		6.913	1.317	18.333	0.496	25.246	0.340
S.Dev		2.537	0.597	4.438	0.256	4.004	0.142

Tabel 6. Produktivitas Waktu Efektif, Waktu Delay, Waktu Total Lantai 4


Segmen	Volume	Waktu	Produktivitas	Waktu	Produktivitas	Waktu	Produktivitas
		efektif		Delay		Total	
	(m^3)	(menit)	(m³/menit)	(menit)	(m³/menit)	(menit)	(m³/menit)
1	6.1625	7.85	0.785	25	0.247	32.85	0.188
2	10.15	8.67	1.171	25	0.406	33.67	0.301
3	6.8	12.9	0.527	30	0.227	42.9	0.159
4	11.2	14.28	0.784	30	0.373	44.28	0.253
5	12.8	7.395	1.731	30	0.427	37.395	0.342
6	5.8	16.32	0.355	35	0.166	51.32	0.113
7	6	8.03	0.747	25	0.240	33.03	0.182
8	6.3	9.37	0.672	10	0.630	19.37	0.325
9	9.275	10.71	0.866	25	0.371	35.71	0.260
10	7.35	7.65	0.961	10	0.735	17.65	0.416
11	8.4	11.83	0.710	15	0.560	26.83	0.313
12	13.4	17.09	0.784	15	0.893	32.09	0.418
Total	103.638						
Mean		11.008	0.841	22.917	0.440	33.925	0.272
S.Dev		3.459	0.346	8.382	0.224	9.714	0.098

Dari nilai-nilai produktivitas pada masing-masing *item* di atas kemudian dianalis secara statistik untuk mendapatkan produktivitas dari masing-masing ketinggian yang nantinya akan dibuat grafik untuk mengetahui rata-rata produktivitas terhadap ketinggian

PENGARUH KETINGGIAN PADA PRODUKTIVITAS PENGECORAN

Dari nilai-nilai produktivitas masing-masing ketinggian kemudian dihitung pengaruh ketinggian terhadap nilai produktivitas, sehingga didapat persamaan sebagai berikut

Y = -0.0073 x + 0.4142, persamaan tersebut menunjukkan bahwa setiap kenaikan $\pm 4.1 \text{ m}$, maka produktivitas yang dihasilkan menurun sebesar $0.0073 \text{ m}^3 / \text{menit}$ (Gambar 3.)

Gambar 3. Analisa Regresi Pengecoran Masing – Masing Segmen Tiap Lantai

5. KESIMPULAN

Hasil analisa regresi diperoleh nilai-nilai sebagai berikut:

 $Y = -0.0073 \text{ X} + 0.4142 \text{ menunjukkan bahwa produktivitas } concrete pump (Y) bergantung pada ketinggian gedung (X), bahwa setiap kenaikan <math>\pm 4.1 \text{ m}$, maka produktivitas concrete pump akan menurun sebesar $0.0073 \text{ m}^3/\text{menit}$. Dan nilai korelasinya r = 0.3666, yang menunjukkan adanya keterkaitan/kedekatan antara variable X dan variable Y.

Adanya waktu *delay* yang sebagian besar disebabkan oleh pekerja, hal ini dapat mempengaruhi besar kecilnya produktivitas *concrete pump*.

DAFTAR PUSTAKA

Ahuja, Hira N. (1983). Techniques in planning and controlling construction project. New York: John Wiley And Sons

Arditi, D., & Patel, B.K. (1989). Impact Analysis of Owner-Directed Acceleration. *Journal of Construction Engineering and Management*, 115 (1), 144-157.

Halpin, Daniel W., & Riggs, Leland S. (1992). Planning and Analysis of Construction Operations.

Kosmatka S. H., & Panarese W. C (1992). Design and Control of Concrete Mixtures, 3rd edition.

Nunnaly, S. W. (2000). Managing Construction Equipment, 2nd edition.

Suharto, Iman. (2000). Management Project.

Lollietes 6

Lollietes 7

Lolli