
Web Page Similarity Searching Based on Web Content
Gregorius Satia Budhi
Informatics Department

Petra Chistian University
Siwalankerto 121-131

Surabaya 60236, Indonesia
(62-31) 2983455

greg@petra.ac.id

Justinus Andjarwirawan
Informatics Department

Petra Christian University
Siwalankerto 121-131

Surabaya 60236, Indonesia
(62-31) 2983455

rudya@petra.ac.id

Rubia Sari Setiadi
Informatics Department

Petra Christian University
Siwalankerto 121-131

Surabaya 60236, Indonesia
(62-31) 2983455

ABSTRACT
Application that discussed in this paper is able to perform the
process of finding web pages that have similar content to the url
of the desired web page. Also developed an automated process for
crawling web pages. This crawling process will continue since the
process is activated. The search process begins by entering a url
and web page url is obtained from the extract to get the key words
that represent the web page. The keywords will be processed into
a basic form using the Porter Stemmer algorithm. TF-IDF method
used to obtain the importance of a keyword. Furthermore Jaccard
Coefficient formula used to find similarity between web pages.
Applications are limited to Web Page in English. Based on test
results concluded that this application has worked well and can be
utilized.

Keywords
Web Page Similarity, Crawler, TF-IDF, Porter Stemmer, Jaccard
Coefficient, Keyword Extraction

1. INTRODUCTION
It has been widely available search engines to find data. No doubt,
internet is the largest current source of data. Realizing these facts
that the available data increases rapidly, then we can conclude
tremendous potential to find data via the web. The web page has a
variety of content, but sometimes there are web pages that discuss
the same event.

The application will do a search on the web page that has
similarities to other web pages. The similarity search based on the
contents of the web pages.

2. SUPPORTING THEORY
The only way to collect URLs is to scan collected pages for
hyperlinks to other pages that have not been collected yet. This is
the basic principle of crawlers. They start from a given set of
URLs, progressively fetch and scan them for new URLs (out-
links), and then fetch these pages in turn, in an endless cycle. New
URLs found thus represent potentially pending work for the
crawler [3].

2.1 Automatic Keyphrase Extraction
We define automatic keyphrase extraction as the automatic
selection of important, topical phrases from within the body of a
document.

Many journals ask their authors to provide a list of keywords for
their articles. We call these keyphrases, rather than keywords,
because they are often phrases of two or more words, rather than
single words. We define a keyphrase list as a short list of phrases
(typically five to fifteen noun phrases) that capture the main topics
discussed in a given document [7].

2.2 Stopword and Stemming
Stopword [3]: Most natural languages have so-called function
words and connectives such as articles and prepositions that
appear in a large number of documends and are typically of little
use in pinpointing documents that satisfy a searcher's information
need.

Stemming [3]: Device to help match a querry term with a
morphological variant in the corpus. Common stemming methods
use a combination of morphological analysis and dictionary
lookup. Stemming ca increase the number of documents in the
response, but may at times include irrelevant documents.

2.3 Porter Stemmer Algorithm
Here we present the Porter Stemmer algorithm (Suffix Stripping
Algorithm) that we use in the application:

To present the suffix stripping algorithm in its entirety we will
need a few definitions [5].

A \consonant\ in a word is a letter other than A, E, I, O or U, and
other than Y preceded by a consonant. (The fact that the term
`consonant' is defined to some extent in terms of itself does not
make it ambiguous.) So in TOY the consonants are T and Y, and
in SYZYGY they are S, Z and G. If a letter is not a consonant it is
a \vowel\.

A consonant will be denoted by c, a vowel by v. A list ccc... of
length greater than 0 will be denoted by C, and a list vvv... of
length greater than 0 will be denoted by V. Any word, or part of a
word, therefore has one of the four forms:

 CVCV ... C

 CVCV ... V

 VCVC ... C

 VCVC ... V

These may all be represented by the single form

 [C]VCVC ... [V]

where the square brackets denote arbitrary presence of their
contents.

Using (VC){m} to denote VC repeated m times, this may again be
written as

 [C](VC){m}[V].

m will be called the \measure\ of any word or word part when
represented in this form. The case m = 0 covers the null word.

The \rules\ for removing a suffix will be given in the form

 (condition) S1 -> S2

This means that if a word ends with the suffix S1, and the stem
before S1 satisfies the given condition, S1 is replaced by S2. The
condition is usually given in terms of m, e.g.

 (m > 1) EMENT ->

Here S1 is `EMENT' and S2 is null. This would map
REPLACEMENT to REPLAC, since REPLAC is a word part for
which m = 2. The `condition' part may also contain the following:

*S - the stem ends with S (and similarly for the other letters).

v - the stem contains a vowel.

*d - the stem ends with a double consonant (e.g. -TT, -SS).

*o - the stem ends cvc, where the second c is not W, X or Y.

And the condition part may also contain expressions with \and\,
\or\ and \not\, so that

 (m>1 and (*S or *T))

tests for a stem with m>1 ending in S or T, while

 (*d and not (*L or *S or *Z))

tests for a stem ending with a double consonant other than L, S or
Z. Elaborate conditions like this are required only rarely.

In a set of rules written beneath each other, only one is obeyed,
and this will be the one with the longest matching S1 for the given
word. For example, with

 SSES -> SS

 IES -> I

 SS -> SS

 S ->

(here the conditions are all null) CARESSES maps to CARESS
since SSES is the longest match for S1. Equally CARESS maps to
CARESS (S1=`SS') and CARES to CARE (S1=`S').

2.4 Term Frequency - Inverse Document
Frequency

Tf-idf method is a way to give weight to the relationship of a word
(term) of the document. This method combines the two concepts
for calculating weights: frequency of occurrence of a word within
a particular document and the inverse frequency of documents
containing the word. Frequency of occurrence of the word in the
document are given showing how important word in the

document. Frequency of documents containing those words show
how common the word [4].

The general formula for tf-idf:

ij

ij ij

w = tf x idf

N
w = tf x log

n

 (1)

Description:

wij = weight of the word / term tj in the document

tfij = number of occurrences of the word / term tj in the di

N = number of all documents in the database

n = number of documents containing the word / term tj

Based on the above formula, regardless of the value of tfij, if N = n
then we will get the result 0 (zero) for the calculation of the IDF.
It can be added to the value 1 in the idf, so the calculation of the
weight to be as follows:

ij ijw = tf x (log(N/n) + 1) (2)

In this paper the calculation of the tf will be replaced by the
calculation method that we proposed in another paper [2].

2.5 Weight of Word / Term
Weight 1 (W1) is the frequency of words in a article. The number
of same words in the article is calculated. The result will be
divided by the total words in the article, by also considering the
frequency of the words in the article [2].

Weight 2 (W2) is a value that is determined by the position of
a first sentence that is used the word in a paragraph. In
general, every paragraph in a good writing of an article
usually only provides one main idea [2]. Because this
application is used to process documents in English, then
we use the formulation from Jonas and Araki to calculate
W2, namely: W2 = Early(j) = 2 if j < 10 first sentence in a
paragraph and 1 otherwise [6].

The calculation of the tf to be as follows:

ij ij ijtf = W1 x W2 (3)

2.6 Jaccard Coefficient
The percentage of relevance covered by two sets is known as the
Jaccard coefficient and is given by

j

n

kq kjk=1
n n n2 2

kqk=1 k=1 k=1

A B
sim(q, d) = J(A, B) =

A B

w w

w kj kq kjw w w

∩

∪

≅
+ −

∑
∑ ∑ ∑

 (4)

This measure is fairly intuitive and often one of the more widely
used measures when comparing IR systems. In a set theoretic

sense, the Jaccard measure signifies the degree of relevance
covered by the union of two sets [1].

3. APPLICATION DESIGN
The design of the the application can be seen in the flowchart in
Figure 1 to Figure 5.

Figure 1. Application Design Flowchart

Figure 2. Crawling Process Flowchart

Figure 3. Keyphrases Search Flowchart

Figure 4. TF-IDF Processing Flowchart

Figure 5. Document Similarity Finding Flowchart

4. APPLICATION INTERFACES
The interfaces of the application are divided into two parts,
namely:

a. Pages for the User:

On the main page (Figure 6) the user can enter a web page to
search its similarity to another website. After pressing 'enter' or
press the 'search' button then the application will find and display
similar web pages. The Display results can be seen in Figure 7.

Figure 6. User Main Page Interface

Figure 7. User Search Result Interface

b. Pages for the Administrator:

On the administrator page (Figure 8), the admin can set the
number of links in the search, the depth of crawling, what
percentage of content in the English language for the web to be
processed, the minimum similarity that is displayed, whether the
position of words included in the calculations, and limits the
location of a words included in the initial word in a paragraph.
After doing all the settings, the administrator can enable the
crawler and the similarity calculation process. Crawling and also
the calculation results of similarity can be seen in Figure 9 and
Figure 10.

 Figure 8. Administrator Setting and Processing Interface

Figure 9. Administrator Crawling Result Interface

Figure 10. Similarity between Documents Result Interface

5. TESTING
There are two kinds of experiments are performed, namely:

1. Testing of similarity ranking results from the application,
which compared with the manually ranked by three sources
and site Copyscape (http://www.copyscape.com) that offer
similar services. List web pages that are tested and test results
can be seen in Table 1 and Table 2.

Table 1. List of Web Pages for The Testing

IdIdIdId URLURLURLURL

1 http://www.jhedge.com/story/fiction/bridge.htm

2 http://www.geocities.com/Athens/Acropolis/9343/bridge.htm

3

http://www.bebo.com/Chapters.jsp?ChapterId=3695291437&

MemberId=3695253583

4 http://www.strangeroad.com/Stories/Stories100.php

5
http://forum.gamenetworks.com/viewtopic.php?f=228&t=443&s
t=0&sk=t&sd=a&start=495

6 http://chuntian11.blogspot.com/2007_11_01_archive.html

7 http://chuntian11.blogspot.com/2007/11/bridge.html

8
http://forum.gamenetworks.com/viewtopic.php?f=228&t=443&s
t=0&sk=t&sd=a&start=490

9 http://mattkline.wordpress.com/

Table 2. Similarity Rangking Comparation

Id URL Similarity Ranking

 A B C D E

1* - - - - -

2 1 1 1 1 1

3 2 3 2 2 2

4 3 4 3 4 3

5 4 6 7 6 7

6 5 5 5 7 5

7 6 2 4 3 4

8 7 7 6 5 6

9 8 8 8 8 8

Description:
*: URL id of the web that became the reference

A: The order of ranking the results of www.copyscape.com

B: The order of ranking results from Web Content Finder
Application

C: The order of ranking respondent 1

D: The order of ranking respondent 2

E: The order of ranking respondent 3

From the test results can be seen that the ranking of the
applications are not much different from the ranking produced by
Copyscape site. But the result is quite different when compared to
the manual ranking compiled by the respondents.

2. Testing the processing time of all calculations against the
number of URLs that are processed. The test result can be
seen in Figure 11.

Comparation of URLs vs Calculation times

0
20

40
60

80
100

120
140

160
180

200

10 16 42 60 89 120

 URLs

T
im

es
 (
m

in
u
te

s)

Figure 11. The Comparation of URLs and Processing times

From the test results of the processing time can be concluded that
the more URLs that are processed then the longer the process.

6. CONCLUSION
From the comparison of the results of the ranking of URLs can be
seen that the system can show good results. Because the results
are not much different from the results of the ranking on a
professional site that offers similar services. From the calculation
speed of the process can be concluded that the application is ready
to be implemented.

7. ACKNOWLEDGMENTS
Our thanks to Dr. Rolly Intan, who has helped us to get a better
understanding of the research that he has done and also provide
any important advice for the research we’ve done.

8. REFERENCES
[1] Berry, Michael W. and Browne, Murray. 2006. Lecture

Notes In Data Mining. World Scientific Publishing Co.

[2] Budhi, Gregorius S., Intan, Rolly, Rostianingsih, Silvia and
Riantarno, Stevanus R. 2007. Indonesian Automated Text
Summarization. Proceeding of International Conference on
Soft Computing, Intelligent System and Information
Technology, Denpasar, Bali.

[3] Chakrabarti, Soumen. 2003. Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan Kaufmann
Publishers.

[4] Intan, Rolly and Defeng, Andrew. 2006. HARD: Subject-
based Search Engine Menggunakan TF-IDF dan Jaccard's
Coefficient. Jurnal Teknik Industri Vol. 8, No. 1.

[5] Porter, M.F. 1980. An algorithm for suffix stripping. Program,
14(3) pp 130-137.

[6] Sjobergh, Jonas and Araki, Kenji. 2006. Extraction based
summarization using a shortest path algorithm. 12th Annual
Language Processing Conference NLP2006. Yokohama.
Japan.

[7] Turney, P.D. 2000. Learning algorithms for keyphrase
extraction. Information Retrieval, 2 (4), 303-336. (NRC
#44105).

	1. INTRODUCTION
	2. SUPPORTING THEORY
	2.1 Automatic Keyphrase Extraction
	2.2 Stopword and Stemming
	2.3 Porter Stemmer Algorithm
	2.4 Term Frequency - Inverse Document Frequency
	2.5 Weight of Word / Term
	2.6 Jaccard Coefficient

	3. APPLICATION DESIGN
	4. APPLICATION INTERFACES
	5. TESTING
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

