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Problem Discussion

What we observe?

Downscaled annual maximum temperatures, zit , for grid cells
i = 1, . . . , 2856 covering all Tasmania, during year t = 1, . . . , 49
(1961 to 2009).

What we do?

Developing a three stage Bayesian spatial hierarchical model,
following Schliep E. and Dan Cooley’s (2010) model. The spatial
structure is depicted by means of the random effect which is
modelled using conditional autoregressive (CAR).
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Problem Discussion

Aim of study

Constructing a return level map of weather extremes .

p-Year Return Level

is an expected value to be exceeded once every 1/p years with
probability p. In other words, a p-quantile that associated
with return period 1/p.

can be find simply by inverted the following equation;

P(Z ≥ z) = exp

{
−

(
1 + ξ

x − µ

σ

)−1/ξ
}

= p

For p = 0.01, return level has 1% chance of being exceeded
during return period of 1/p = 100 years.
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Stage 1 of 3

Data level

Assume zit follows GEV distribution

P(Zit ≤ z |µi , σi , ξi ) = exp

[
−

(
1 + ξi

z − µi

σi

)−1/ξi
]

provided
(
1 + ξi

z−µi
σi

)
> 0 for each i , where µi , σi and ξi are

unknown location, scale and shape parameters at grid cell i .
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Stage 2 of 3

Process level

Let θ = (µ, log(σ), ξ)

Assume θ follows Normal distribution

θ ∼ N

(
Xβ + U,

1

τ2

)
where

X is a 2856× 3 matrix of covariates (latitude and longitude)

β is a 3× 3 matrix of regression coefficients

U is a 2856× 3 matrix of random effect

τ 2 is a fixed precision matrix

U is modelled spatially using conditional autoregressive model
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Conditional autoregressive model for random effects U

Assume random effect U is a Gaussian Markov random field
(GMRF) that satisfies conditional independence assumptions.

Ui |uj , j 6= i ∼ N

∑
j

bijuj , t
2
i

 , i = 1, . . . , n

where

bij is a spatial dependence parameter, i.e. bij =
wij

wi+
and wi+ =

P
j wij .

wij = 1 if node i and j share the same boundary, and wij = 0 otherwise.

t2
i is conditional precision; set t2

i = T2

wi+
.
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Conditional autoregressive model for random effects U

The setup suggests a joint multivariate normal distribution for
U = (U1, . . . ,Un) with mean 0 and precision Q = (Dw −W )
where Dw is diagonal with (Dw )ii = wi+

But, (Dw −W )1 = 0, i.e. Σ−1
U is singular so that ΣU does

not exist

Replacing each element in W with
wij

wi+
would restrict each

row sum to one, (Dw −W ) would not be singular and ΣU

does exist. This is often referred to as an intrinsically
autoregressive (IAR) model [Banerjee et al., 2004]
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Stage 3 of 3

Parameter level

The hyperparameters are β and T

Choose conjugate priors for the two hyperparameters, i.e.

a normal distribution for β priors, β ∼ N(β0, κ
−1)

a Wishart prior with 3 d.f. for precision matrix T
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MCMC implementation

Using hybrid Monte Carlo; combining Metropolis and Gibbs
sampler algorithms

Metropolis algorithm used for generating GEV parameters
posterior distribution

π(θ|z) = π(z |θ)π(θ)

where θ represents µ, σ and ξ.

Gibbs sampler employed for generating posterior distributions
for U, β and T

U|θ, β ∼ NC

(
τ2(θ − Xβ),T + τ2

)
β|θ, U ∼ NC

(
τ2(θ − U) + κβ0, τ

2 + κ
)

T |β, U ∼ W−1(Ψ, 3 + k),whereΨ = UTWU + T0, k = 2856
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Metropolis Algorithm

1 Start with MLE estimates of corresponding parameters θ(0).
Set k = 1

2 Generate a proposal θ∗ from proposal distribution as follow

µ∗ = µ(k−1) + scale · rt(1, 2)
σ∗ = σ(k−1) + scale · (runif− 0.5)
ξ∗ = ξ(k−1) + scale · rt(1, 5)

3 Set θ(k) = θ∗ with probability

α = min

{
1,

π(θ∗)

π(θ(k−1))

}
Otherwise set θ(k) = θ(k−1)

4 Set k = k + 1 and return to 2.
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Prior and posterior GEV parameters

µmle σmle ξmle

µ posterior

20 25 30 35

σ posterior

1.0 1.5 2.0 2.5

ξ posterior 

−0.2 −0.1 0.0 0.1
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Diagnostic plots for GEV parameters at one grid cell
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Cumulative and AR plots for β
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Cumulative and AR plots for β
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Cumulative and AR plots for T
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Cumulative and AR plots for T
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Maps of U-posterior
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Return level maps
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Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Conclusion

We used a hierarchical model with three stages.

The spatial patterns are not directly modeled from the data
but through parameters of the assume data distribution.

Conjugate priors were chosen for hyperparameters to ease the
computation.

Bayesian inference was carried out by hybrid MCMC, and
following canonical parameterization of Rue and Held
[Rue and Held, 2005].

Determination of τ2; a fixed precision matrix for GEV
parameters, considerably affects the rate of convergence.

Other variables that greatly improved the produced chains are
the choice of proposal distribution for Metropolis algorithm
and the jump of for proposed parameters; too small or too big
jump results in slower convergence and higher autocorrelation.



Problem Discussion The Three Stages Model Implementation Simulation Results Conclusion and Future Works

Future Works

Estimate the best proposal distribution for Metropolis
algorithm using an MCMC algorithm; MCMC within MCMC.

Model the weather extremes based on observed data, and
compare it to that of downscaled data.

Develop a joint distribution of temperature and wind extremes
as multivariate spatial hierarchical model, possibly using
copulas.
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