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ABSTRACT 

During the last two decades, a large variety of mesh-free methods have been introduced as 
alternatives to the conventional finite element method (FEM).  However, the acceptance in 
professional practices seems to be slow due to their implementation complexities.  Recently, a 
convenient implementation of the element-free Galerkin method using Kriging interpolation (KI), 
which can be viewed as an enhancement of the FEM, was proposed.  This method is subsequently 
referred to as Kriging-based FEM (K-FEM).  In this method, field variables are approximated by 
“element-by-element” piecewise KI.  Layers of finite elements around each element are adopted as 
its domain of influence (DOI).  The distinctive advantage of the proposed method is its inheritance 
of the computational procedure of the FEM.  Any existing FE code can be easily extended to K-
FEM; thus, it has a higher chance to be accepted in the practice.  This paper presents overview of 
the K-FEM.  The formulation of KI and the concept of layered-element DOI are reviewed.  The 
two-dimensional elastostatics problem is unitized as a vehicle to convey the concepts.  Several 
examples are presented to demonstrate the reliability of the K-FEM.   

Key words:  finite element, Kriging interpolation, element-free Galerkin method 

 

1. Introduction 

The finite element method (FEM) is at present very widely used as a numerical method to solve various kinds of 
problems in engineering and science.  The power and versatility of FEM have been tested for several decades of 
real engineering practices.  One important issue in the FEM is mesh generation.  Users often prefer to use the 
simplest elements, namely three-node triangular elements for two dimensional problems and four-node 
tetrahedral elements for three-dimensional problems, as they can be easily or even automatically generated and 
are more amenable to adaptive procedure.  Nevertheless, it is well-known that these elements often give 
solutions of poor accuracy, in particular for the gradients of field variables such as stresses or stress resultants in 
solid and structural mechanics.   

 

Motivated by the desire to eliminate the need for a mesh in numerical analysis, in the last two decades a large 
variety of mesh-free (or meshless) methods have been proposed as alternatives to the FEM [1-4].  Among 
countless proposed mesh-free methods, the methods having the same basic formulation as the FEM, i.e. those 
using global weak forms (the element-free Galerkin method (EFGM) [5] and its variants) were of the author’s 
interest.  Even though this class of methods were claimed to be “element free” or “mesh-free”, actually elements 
or background cells are still needed for geometric modeling and numerical integration.  Another disadvantage of 
the EFGM and its variants is that the computational procedures are difficult to incorporate in existing general 
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purpose FEM codes.  Due to these inconveniences, these methods do not seem to find wide acceptance in real 
engineering practices.   

 

In order to eliminate the aforementioned disadvantages, Plengkhom and Kanok-Nukulchai [6] proposed some 
modifications to the EFGM with moving Kriging interpolation (KI) [7].  The problem domain is subdivided into 
elements like in the conventional FEM.  The KI is constructed for each element using a set of nodes in a domain 
of influence (DOI) composed of several layers of elements (the DOI is in the form of polygon for 2D problems).  
Combining the KI of all elements, the global field variable is thus approximated by piecewise KI.  For evaluating 
the integration in the Galerkin weak form, the elements are employed as integration cells.  This modified method 
can be viewed as an enhancement of the FEM using Kriging shape functions.  Thus, this method was 
subsequently referred to as Kriging-based FEM (K-FEM) [8].   

 

The K-FEM retains the advantages of mesh-free methods as follows [6]:  1) any requirement for high order 
shape functions can be easily fulfilled without any change to the element structure, 2) the field variables and 
their derivatives can be obtained with remarkable accuracy and global smoothness.  A distinctive advantage of 
the K-FEM over other mesh-free methods is that it inherits the computational procedure of FEM so that existing 
general-purpose FE programs can be easily extended to include this new concept.  Thus, the K-FEM has a higher 
change to be accepted in practices.  The current research and development is the extension and application of the 
K-FEM to different problems in engineering, such as Timoshenko beam [9], general plate and shell structures [8, 
10] and multi-scale mechanics [11].   

 

This paper presents overview of the K-FEM.  The formulation of KI and the concept of layered-element DOI are 
reviewed.  The two-dimensional elastostatics problem is unitized as a vehicle to convey the concepts.  Several 
examples are presented to demonstrate the reliability of the K-FEM.   

 
2. Kriging Interpolation in the K-FEM 

Named after Danie G. Krige, a South African mining engineer, Kriging is a well-known geostatistical technique 
for spatial data interpolation in geology and mining (e.g., see [12], [13]).  Using this interpolation, every 
unknown value at a point can be interpolated from known values at scattered points in its specified 
neighborhood.   

 

Formulation 

Consider a continuous field variable u(x) defined in a domain Ω.  The domain is represented by a set of properly 
scattered nodes xi, i=1, 2, …, N, where N is the total number of nodes in the whole domain.  Given N field 

values, u(x1), …, u(xN), the problem of interest is to obtain an estimate value of u at a point .   0 ∈Ωx

 

The Kriging estimated value uh(x0) is a linear combination of u(x1), …, u(xn), i.e. 

h
0 1

( ) ( )n
i ii

u uλ
=

=∑x x  (1) 

where λi’s are termed as (Kriging) weights and n is the number of nodes surrounding point x0 inside a sub-

domain .  This sub-domain is referred to as DOI in this paper.  Considering individual function 

values, u(x
0Ω ⊆Ωx

1), …, u(xn), as the realizations of random variables U(x1), …, U(xn), Eq. (1) can be written as 
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h
0 1

( ) ( )n
i ii

U Uλ
=

=∑x x  (2) 

The Kriging weights are determined by requiring that the estimator Uh(x0) is unbiased, i.e.  

h
0 0E ( ) ( )U U⎡ ⎤− =⎣ ⎦x x 0

0

 (3) 

and by minimizing the variance of estimation error, h
0var ( ) ( )U U⎡ ⎤−⎣ ⎦x x .    Using the method of Lagrange 

for constraint optimization problems, the requirements of minimum variance and unbiased estimator lead to the 
following Kriging equation system: 

0( )+ =Rλ Pμ r x  (4a) 

T
0( )=P λ p x  (4b) 

in which  

11 1

1

( ) ... ( )
... ... ...
( ) ... ( )

n

n n

C C

C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

h h
R

h h n n

 ;      ; (4c) 
1 1 1

1

( ) ... ( )
... ... ...
( ) ... ( )

m

n m

p p

p p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x x
P

x x

[ ]T1 ... nλ λ=λ  ;      [ ]T1 ... mμ μ=μ  (4d) 

[ ]T0 10 20 0( ) ( ) ( ) ... ( )nC C C=r x h h h  ;      [ ]T0 1 0 0( ) ( ) ... ( )mp p=p x x x  (4e) 

R is n  matrix of covariance between U(x) at nodes xn× 1, …, xn;  P is n m×  matrix of polynomial values at 
the nodes;  λ is  vector of Kriging weights;  μ is 1n× 1m×  vector of Lagrange multipliers;  r(x0) is 1n×  
vector of covariance between the nodes and the node of interest, x0; and p(x0) is  vector of polynomial 

basis at x

1m×

0.  In Eqs. (4c) and (4e), ( ) cov ( ), ( )ij i jC U U⎡ ⎤= ⎣ ⎦h x x  .  Kriging weights λ can be obtained by 

solving the Kriging equations, Eqs. (4a) and (4b).   

 

The expression for the estimated value uh given by Eq. (1) can be rewritten in matrix form, 

h T
0( )u =x λ d  (5) 

where [ ]T1( ) ... ( )nu u=d x x  is  vector of nodal values.  Since the point x1n× 0 is an arbitrary point in the 

DOI, the symbol x0 can be replaced by symbol x.  Thus, using the usual finite element terminology, Eq. (5) can 
be expressed as 

h
1

( ) ( ) ( )n
i ii

u N
=

= = ∑x N x d x u  (6) 

in which N(x)= λT(x).   

 

Two key properties of Kriging shape functions that make them suitable for FEM are the Kronecker delta (or 
interpolation) property and the consistency property ([6], [7]).  Due to the former property KI exactly passes 
through the nodal values.  The consequence of the latter property is that if the basis includes all constants and 
linear terms, the Kriging shape functions are able to reproduce a linear polynomial exactly. 
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Figure 1.  Domain of influence for element el with one, two and three layers of elements [6] 

 

Layered-Element Domain of Influence 

Let us consider a 2D domain meshed with triangular elements, such as illustrated in Fig. 1.  For each element, KI 
is constructed based upon a set of nodes in a polygonal DOI encompassing a predetermined number of layers of 
elements.  The KI function over the element is given by Eq. (6).  By combining the KI of all elements in the 
domain, the global field variable is approximated by piecewise KI.  This way of approximation is very similar 
with the approximation in the conventional FEM.   

 

It is worthy to note that it is also possible to use quadrilateral elements to implement the concept of layered-
element DOI.  Mesh with triangular elements is a good choice owing to its flexibility in representing complex 
geometry and its ease to be automatically generated.   

 

Within each element the interpolation function is naturally continuous.  However, along the element edges 
between two adjacent elements the function is not continuous because the KI for the edge of each neighboring 
element is constructed using different set of nodes.  Therefore, the present method is nonconforming.  The issue 
of non-conformity and its effects on the convergence of the solutions obtained from the K-FEM were addressed 
in [14].   

 

The number of layers for each element must cover a minimum number of nodes in such a way that the system of 
Kriging equations, Eqs. (4a) and (4b), can be solved.  If an m-order polynomial basis is employed, the DOI is 
required to cover a number of nodes, n, that is equal or greater than the number of terms in the basis function [6].  
Basically, it can be shown that the minimum number of layers for different polynomial bases is listed in Table 1.  
As the number of layers increases, the computational cost is higher.  Thus the use of minimum number of layers 
for each polynomial basis is recommended.   

 

Polynomial Basis and Correlation Function 

Constructing Kriging shape functions in Eq. (6) requires a polynomial basis function and a model of covariance 
function.  For the basis function, besides complete polynomial bases, it is also possible to use incomplete 
polynomial bases such as bi-linear, bi-quadratic and bi-cubic bases [10].   
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Table 1.  Minimum number of layers for various basis functions 

Basis Minimum number of layers 
Linear 1 
Quadratic, Bi-linear 2 
Cubic, Bi-quadratic 3 
Quartic, Bi-cubic 4 

 

Covariance between a pair of random variables U(x) and U(x+h) can be expressed in terms of correlation 

coefficient function or shortly, correlation function, i.e. 2( ) ( ) /Cρ σ=h h , where [ ]2 var ( )Uσ = x .  

According to Gu [7], σ2 has no effect on the final results and can be taken equals to 1.  One of the widely used 
correlation model in the area of computational mechanics is the Gaussian correlation function ([6]-[11], [14]), 
viz. 

2( ) ( ) exp( ( / ) )h hρ ρ θ= = −h d  (7) 

where θ>0 is the correlation parameter, h = h , i.e. the Euclidean distance between points x and x+h, and d is 

a scale factor to normalize the distance.  In this study, d is taken to be the largest distance between any pair of 
nodes in the DOI.  Besides the Gaussian, we recently introduced the quartic spline (QS) correlation function ([8]-
[10], [14]) as follows: 

2 3 41 6( / ) 8( / ) 3( / )      for 0 / 1  
( ) ( )

0                                                        for / 1
h d h d h d h d

h
h d

θ θ θ θ
ρ ρ

θ
⎧ − + − ≤

= = ⎨
>⎩

h
≤

 (8) 

Our studies showed that with this correlation function, Kriging shape functions are not very sensitive to the 
change in parameter θ.  Moreover, the convergence characteristics of the K-FEM with the QS correlation 
function in many cases were more satisfactory than the Gaussian function.   

 

Figure 2 shows the plot of the Gaussian and QS correlation functions for various values of θ.  It can be seen that 
the parameter θ determines how quickly the correlation falls off; the larger value of θ, the quicker the correlation 
drops.  For the same value of θ, the QS function drops quicker than the Gaussian function.   

 

 

(a) 

 

(b) 

Figure 2.  Correlation functions vs. normalized distance for various values of θ: (a) Gaussian, (b) quartic spline 
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Correlation Parameter 

A proper choice of parameter θ is important as it affects the quality of KI.  In order to obtain reasonable results 
in the K-FEM, Plengkhom and Kanok-Nukulchai [6] suggested a rule of thumb for choosing θ, i.e. θ should be 
selected so that it satisfies the lower bound, 

10
1

1 1 10n a
ii

N − +
=

− ≤ ×∑  (9) 

where a is the order of basis function, and also satisfies the upper bound,  

det( ) 1 10 b−≤ ×R  (10) 

where b is the dimension of problem.  For 2D problem with cubic basis function, for example, a=3 and b=2.   

 

Numerical investigations on the upper and lower bound values of θ ([8], [10]) revealed that the parameter 
bounds vary with respect to the number of nodes in the DOI.  Based on the results of the search for the lower and 
upper bound values of θ satisfying Eqs. (9) and (10), the author proposed explicit parameter functions for 
practical implementation of the K-FEM as follows: 

For the Gaussian correlation parameter, the parameter function is 

low up(1 )f fθ θ= − + θ .8

<
≤

<
≤ ≤

<

,     0 0  (11a) f≤ ≤

where f is a scale factor, θlow  and θup are the lower and upper bound functions as follows: 

low 2

0.08286 0.2386                      for 3 10
-8.364E - 4 0.1204 0.5283 for 10 55

0.02840 2.002                  for 55

n n
n n n

n n
θ

− ≤⎧
⎪= + − ≤⎨
⎪ + >⎩

  (11b) 

up 2

0.34 0.7                               for 3 10
-2.484E-3 +0.3275 0.2771 for 10 55

0.05426 7.237                for 55

n n
n n n

n n
θ

− ≤⎧
⎪= −⎨
⎪ + >⎩

  (11c) 

For the QS correlation parameter, the parameter function can be obtained as 

0.1329 0.3290 for 3 10
1                     for 10

n n
n

θ
− ≤⎧

= ⎨ ≥⎩
  (12) 

 

With these functions, adaptive values of θ can be used now in place of a uniform value of θ.  Here, “adaptive” 
means that the correlation parameters used in an analysis are adjusted to the number of nodes in the DOI of each 
element.  An advantage of the use of adaptive θ from practical viewpoint is that a user of K-FEM program is not 
required to input a value of θ in an analysis since its formulas can be embedded in the program.   

 

Illustration 

To illustrate further the concept of layered-element DOI and Kriging shape function, let consider a square 
domain as shown in Fig. 3.  Using Delaunay triangulation algorithm in MATLAB version 6.5, the domain is 
subdivided into triangular elements of the same sizes (with seven elements on each side).  Suppose that the 
element of interest is one of the triangular element in the center of the square, i.e. Element no.1.  Its DOIs, 
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comprising one up to four element layers, are shown in the figure.  It can be seen that the DOI is not necessary to 
be convex.   

 

 

Figure 3.  Square domain with triangular elements and various layered-element domains of influence 

 

Now suppose we use quadratic basis function (m=6) and three element layers to construct KI over Element no.1.  
In this case the DOI encompasses the nodes in the 1st, 2nd and 3rd layers and the total number of the nodes is 30 
(n=30) as may be illustrated in Fig. 3. Hence it satisfies the requirement .  The plot of Kriging shape 
functions associated with node I, using Gaussian and QS correlation functions, is shown in Fig. 4.  The 
correlation parameters were taken in such a way so that they are in the middle between their lower and upper 
bounds (Eqs. (9) and (10)), i.e. θ=4.2 for the Gaussian and θ=1.5 for the QS. One can observe that the shape 
function with QS correlation function is relatively more flat in the region far from the node under consideration 
(Node I).   

n m≥

 

 

(a) 

 

(b) 

Figure 4.  Kriging shape functions corresponding to node I using: (a) Gaussian correlation function, (b) quartic spline 
correlation function 

 

How the shape functions change if the correlation parameter changes is demonstrated in Fig. 5.  The figure 
shows the plot of the shape functions along line y=57.14 for 3 values of θ’s, i.e., at the lower bound, the 
midpoint, and the upper bound.  It is clear from the plots that the Gaussian shape function is more sensitive to the 
change of θ.  As θ increases, the shape function becomes less oscillating, especially at the region close to the 
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boundary of the DOI.  On the other hand, the QS shape function is not very sensitive to the change of θ.  The 
functions for different values of θ are nearly the same, except in regions close to the boundary of the DOI.  From 
practical point of view, the insensitivity of the shape function to the parameter θ is an advantage since a user of 
the K-FEM does not have to consider which value of θ should be used in the analysis.   

 

(a) (b) 

Figure 5.  Kriging shape functions corresponding to node I along line y=57.14, using: (a) Gaussian correlation 
function, (b) quartic spline correlation function 

 

3. Formulation of the K-FEM for 2D Elastostatics 

The governing equations for 2D elastostatics in Cartesian coordinate system can be written in a weak form as 
follows: 

T T

V V S
dV dV dSδ δ δ= +∫ ∫ ∫ε σ u b u tT   (13) 

where  is the displacement vector;  { }Tu v=u { }T

x y xyε ε γ=ε  is the vector of 2D strain components;  

{ }T

x y xyσ σ τ=σ  is the vector of 2D stress components;  { }T

x yb b=b  is the body force vector;  

{ }T

x yt t=t  is the surface traction force vector;  V is the 3D domain occupied by the solid body and S is the 

surface on which the traction t is applied.   

 

Suppose the domain V is subdivided by a mesh of Nel elements and N nodes.  To obtain an approximate solution 
using the concept of KI with layered-element DOI, for each element e=1, 2, …, Nel the displacement components 
u and v are approximated by the KI as follows: 

1
( , ) ( , )n

i ii
u x y N x y u

=∑  ;    (14) 
1

( , ) ( , )n
i ii

v x y N x y v
=∑

Here, Ni(x, y) denotes Kriging shape function associated with node i;  ui and vi are nodal displacement 
components in the x and y directions, respectively;  n is the number of nodes in the DOI of an element, which 
generally varies from element to element.  In the matrix form, Eq. (14) may be written as 

e e=u N re   (15a) 

where  
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1 2

1 2

0 0
0 0 0

ne

n

N N N
N N

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

N
0

N
  (15b) 

is the shape function matrix and 

{ }T
1 1 2 2

e
n nu v u v u v=r   (15c) 

is the element nodal displacement vector.  The variable index e is written to emphasize that the matrices are 

associated with element e, , and follow the local (elemental) ordering of element e.  Employing the 

small-strain strain-displacement relation and linear stress-strain relation and inserting the element-by-element 
approximation of u, Eq. (15a), into the weak form, Eq. (13), we obtain 

el1 e N≤ ≤

el el elT T T T T T
1 1 1

( )
e e

N N Ne e e e e e e e e e
e e eV V

dV dV dSδ δ δ
= = =

= +∑ ∑ ∑∫ ∫r B EB r r N b r N t
eS∫

0

n yN

 (16) 

In this equation, Be is the element strain-displacement matrix, i.e. 

1, 2, ,

1, 2, ,

1, 1, 2, 2, , ,

0 0
0 0 0

x x n x
e

y y

y x y x n y n x

N N N
N N

N N N N N N

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B   (17) 

Matrix E is the constitutive matrix, which for the case of isotropic material can be expressed in terms of modulus 
elasticity E and Poisson’s ratio ν as follows: 

2

1 0
1 0

1
0 0 (1 ) / 2

E
ν

ν
ν

ν

⎡ ⎤
⎢ ⎥= ⎢ ⎥−
⎢ ⎥−⎣ ⎦

E   (18a) 

in which 

2(1 )
E

E
E ν
⎧

= ⎨ −⎩
  and  

(1 )
ν

ν
ν ν
⎧

= ⎨ −⎩
  

for plane stress

for plane strain
  (18b) 

Ve is the 3D domain of element e and Se is the surface of element e on which the traction t is applied.  Since Eq. 
(16) must be true for any admissible virtual displacement δre, we can write the equilibrium equation for each 
element as follows: 

e e e=k r R   (19a) 

where 

T T
e e

e e e e e e

V A
dV t dA= =∫ ∫k B EB B EB   (19b) 

is the stiffness matrix of element e (the matrix dimension is 2 2n n× );   

T T T
e e e e

e e e e e e e e e e e

V S A s
dV dS t dA t ds= + = +∫ ∫ ∫ ∫R N b N t N b N tT

1

  (19c) 

is the consistent nodal force vector of element e ( 2n× ).  Here, te is the thickness of element e;  Ae is the area 
domain of element e;  se is the edge of element e.   
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In view of global (structural) ordering, the summation in Eq. (16) is equivalent to the finite element assembly 
procedure.  Hence, from Eq. (16) we can obtain the global discretized equilibrium equations 

=Kr R   (20a) 

in which  

el

1

N
e

e=
= ΑK k  ;    ;     (20b) 

el

1

N
e

e=
= Αr r

el

1

N
e

e=
= ΑR R

Here K is the structural stiffness matrix ( 2 2N N× );  r  is the structural nodal displacement vector ( 2 1N × );  

R is the structural nodal force vector ( ), and 2N ×1
el

1

N

e=
Α  denotes the assembly operator.  It should be mentioned 

here that the assembly process for each element involves all nodes in the element’s DOI, not only the nodes 
within the element as in the conventional FEM.   

 

Solving Eq. (20a), one can obtain r and once it is known, one can extract element nodal displacement, re, for 
each element.  Stresses in each element can then be calculated by the use of the following equation: 

e e=σ EB re   (21) 

Matrix Be in this equation is a function of the coordinates and must be evaluated at the locations in the element 
where the stresses are desired.  In the following examples, the stresses are evaluated at the element nodes for 
every element.  Subsequently, at nodes where two or more elements meet the element nodal stresses are 
averaged. 

 

It is worthwhile to note that the interpolation function for calculation of the stresses do not have to be the same 
as that used for constructing the stiffness matrix.  For example, if the KI employed to construct the stiffness 
matrix is Kriging with the options of quadratic basis, two-element-layer DOI, QS correlation function (P2-2-QS), 
the KI in evaluating the stresses may be with the options of cubic basis, three element-layers, Gaussian 
correlation function (P3-3-G).  It is also possible to use the constant-strain- triangle interpolation function for 
calculation of the stresses.  In the following examples, however, the interpolation function for calculation of the 
stresses is taken to be the same as that used for constructing the stiffness matrix.   

 

4. Numerical Tests 

To study the accuracy and convergence of the present K-FEM, two measures of errors are utilized.  The fist one 
is the relative error of displacement norm, defined as 

1 2
app exact T app exact

exact T exact

( ) ( )

( )
V

u

V

dV
r

dV

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫
∫

u u u u

u u
  (22) 

where uapp and uexact are the approximate and the exact displacement vectors, respectively.  The second one is the 
relative error of strain energy norm, defined as 

1 2
app exact T app exact

exact T exact

( ) ( )

( )
V

V

dV
r

dVε

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∫
∫

ε ε E ε ε

ε Eε
  (23) 

Bandung, 17-18 November 2011                                                                                                                                  P a g e  | 10 



 1st INDONESIAN STRUCTURAL ENGINEERING  AND MATERIAL SYMPOSIUM 
 
   Department of Civil Engineering - Parahyangan Catholic University 
 
where εapp and εexact are approximate and exact strain vectors, respectively.  For computing these relative errors, 
the 13-point quadrature rule for triangles (see e.g. [15: p.173]), which can give error figures of four digits 
accuracy, is employed.   

 

The element stiffness matrix, Eq. (19b), is computed using the 6-point quadrature rule for triangles.  The 6-point 
rule is selected because it can give reasonably accurate results (three digits accuracy in most cases) yet 
inexpensive in terms of computational cost.  For computing the nodal force vector, Eq. (19c), the 2-point 
Gaussian quadrature for line integral is used since it results in exact nodal force vector for edge traction force 
with cubic distribution or less.   

 

Abbreviations in the form of P*-*-G* or P*-*-QS, in which the star denotes a number, are adopted in this section 
to designate various options of the K-FEM.  The first part of the abbreviation denotes polynomial basis with the 
order indicated by the number next to letter P; the middle part denotes number of layers; the last part, G* denotes 
the Gaussian correlation function with the adaptive parameter given by Eq. (11a) and with the scale factor f 
indicated by the number next to letter G (in percent); QS denotes the quartic spline correlation function with the 
adaptive parameter given by Eq. (12).  For example, P3-3-G50 means cubic basis, 3 element-layers, Gaussian 
correlation function with mid-value parameter function, i.e. f=0.5.   

 

A Cantilever Plane Stress Beam Example 

A cantilever plane stress beam of one unit thickness subjected to parabolic end shear traction as shown in Fig. 6.  
The analytical solutions for this problem are as follows [16]: 

( ) [3 (2 ) (2 ) (
6 2

P Du y x L x y y
EI

ν= − − − + + − ) ]D   (24a) 

2 2 4 5[ (3 ) 3 ( )( )
6 2

P Dv x L x L x y D
EI

2 ]
4

xνν +
= − + − − +   (24b) 

( )(
2x

P DL x y
I

σ = − − − )  ;    0yσ =  ;    ( )
2xy
Py y D

I
τ = − −   (24c) 

where I=D3/12 .   

 

 

Figure 6.  A cantilever beam subjected to parabolic shear 
stress 

 

Figure 7.  Initial mesh of the cantilever beam 
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To study the convergence of the K-FEM with various options, the beam is modelled with different degrees of 
mesh refinement.  The initial course mesh with 24 nodes (the element characteristic size h=1) is shown in Fig. 7.  
Subsequent meshes are constructed by subdividing the previous element into four smaller elements.  The refined 
meshes considered in this test are meshes with h=0.5 (77 nodes), h=0.25 (273 nodes), and h=0.125 (1025 nodes).  
The K-FEM options used for analyses of the beam and the other following problems are:  P2-2-G80, P2-2-QS, 
P3-3-G80, and P3-3-QS.   

 

Plots of relative error norms for displacement and strain energy and their convergence rates are shown in Figs. 8 
and 9, respectively.  The fastest convergence rate for displacement is achieved for the K-FEM with P2-2-QS (the 
convergence rate R=1.94).  The three other options result in nearly the same rate (around 1.5).  In terms of strain 
energy error norm, all of the K-FEM options converge with nearly the same convergence rate (around 1).  The 
K-FEM with P3-3-G80 is the most accurate one.  It is worthwhile to note that in this problem the K-FEM with 
cubic polynomial basis should theoretically reproduce the exact solutions because the order of the exact solutions 
is three.  However this is not the case here because of inter-element non-conformity of the K-FEM with P3-3.   

 

Figure 8.  Relative errors of displacement norm and 
convergence rates for the beam 

 

Figure 9.  Relative errors of strain energy norm and 
convergence rates for the beam 

 

The contours of the normal stress in x direction, σx, and the shear stress, τx, without averaging process, are 
displayed in Fig. 10 for the mesh with h=0.5 and the K-FEM options P3-3-QS.  These plots demonstrate the 
capability of the K-FEM to produce smooth stress distributions in a relatively course mesh.  The average nodal 
shear stresses of the beam at the mid-span are shown in Fig. 11 for the mesh with h=0.25 and the options P2-2-
QS and P3-3-QS.  The figure demonstrates the accuracy of the method in computing the shear stress, which is 
generally hard to obtain for the standard FEM.  The K-FEM with P3-3-QS is slightly more accurate than that 
with P2-2-QS, particularly at the edges of the beam.   

 

(a) Normal stress, σx

 

(b) Shear stress, τxy

Figure 10.  Un-averaged stress contours for the cantilever beam discretized with 6-by-10 mesh with  P3-3-QS 
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Fig. 11  Average shear stresses at the mid-span of the cantilever beam with mesh of h=0.25 

 

An Infinite Plate with a Hole 

An infinite plane-stress plate with a circular hole of radius a=1 is subjected to a uniform tension Tx=100 at 
infinity [17] (Fig. 12).  The exact stress fields in the plate are given as follows [16]: 

2 4

2 4

3 31 cos 2 cos 4 cos 4
2 2x x

a aT
r r

σ θ θ
⎡ ⎤⎛ ⎞= − + +⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦
θ ⎥   (25a) 

2 4

2 4

1 3cos 2 cos 4 cos 4
2 2y x

a aT
r r

σ θ θ
⎡ ⎤⎛ ⎞= − − −⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦
θ ⎥   (25b) 

2 4

2 4

1 3sin 2 sin 4 sin 4
2 2xy x

a aT
r r

τ θ θ
⎡ ⎤⎛ ⎞= − + +⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦
θ ⎥   (25c) 

where r and θ are the polar coordinates and θ is measured from the positive x-axis counter-clockwise.  Owing to 
symmetry, only the upper right quadrant of the plate, 0 5x≤ ≤  and 0 y 5≤ ≤ , is analyzed.  Zero normal 

displacements are prescribed on the symmetric boundaries and the traction boundary conditions given by the 
exact stress, Eqs. (25a)-(25c), are imposed on the right (x=5) and top (y=5) edges.   

 

The initial course mesh of 42 nodes is shown in Fig. 13.  The element characteristic size for this problem is taken 
as the distance between two nodes at the right or top edge, i.e. h=1.  Subsequently, the mesh is refined by 
subdividing the previous element into four smaller elements.  The refined meshes considered in this test are 
meshes with h=0.5 (141 nodes) and h=0.25 (513 nodes).  In performing the analysis with h=0.25 using Gaussian 
correlation function, the scale factor f=0.79 is used in place of f=0.8 because the use of f=0.8 results in det(R) 
exceeding the upper bound criterion, Eq. (10), for some elements.   

 

The convergences for displacement and strain energy are shown in Figs. 14 and 15, respectively.  The rates of 
convergence of all K-FEM options are nearly equal, for displacement as well as strain energy.  The fastest 
convergence rate in terms of displacement error is achieved by the K-FEM with P3-3-G80 (R=2.60) while the 
fastest one in terms of strain energy error is the K-FEM with P3-3-QS (R=1.37).  Theoretically, the accuracy and 
convergence rate of the K-FEM with cubic basis are higher than those with quadratic basis.  However, this is not 
the case here because of the nonconformity of the K-FEM.   
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The contour of the un-averaged normal stress in x direction, σx, for the plate with mesh of h=0.5 and the option 
P3-3-QS is shown in Fig. 16.  Again, it demonstrates the capability of the present method to produce smooth 
stress distribution even for a rather crude mesh.   

 

 

Figure 12.  An infinite plate with a circular hole 

 

Figure 13.  Initial mesh of the holed plate 

 

 

Figure 14.  Relative errors of displacement norm and 
convergence rates for the holed plate 

 

Figure 15.  Relative errors of strain energy norm and 
convergence rates for the holed plate 

 

 

Figure 16.  Contour of un-averaged σx for the holed plate discretized with 141 nodes, computed using the K-FEM with 
option P3-3-QS 

 

The average nodal stresses σx along x=0 are depicted in Fig. 17 for the mesh with h=0.25 for two options: P2-2-
QS and P3-3-QS.  It can be seen that the K-FEM with P2-2-QS gives a reasonably accurate stress distribution 
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but there are some fluctuations at the region near the peak stress and at the boundary y=5.  The K-FEM with P3-
3-QS captures better the steep stress distribution near the peak stress.   

 

 

Figure 17.  Normal stress in the x-direction along line x=0 of the holed plate with mesh of h=0.25 

 

5. Conclusions 

The fundamentals of the K-FEM and its application to two-dimensional elastostatics have been presented.  The 
basic concepts are applicable to many problems in continuum mechanics.  Besides the commonly-used Gaussian 
correlation function, the QS function is introduced as an alternative for the correlation model.  The advantage of 
the use of the QS is that the shape functions are not very sensitive to the change of the parameter. The numerical 
tests with two benchmark problems in plane-stress/plane-strain problems demonstrate the superior convergence 
and accuracy of the method.   

 

The present method is as simple as the conventional FEM in terms of the formulation and implementation yet it 
is as flexible as mesh-free methods.  The drawback of the present method is that it is non-conforming along 
inter-element boundaries.  However, despite the non-conformity, the numerical examples showed very good 
convergence characteristics.  Future researches may be directed at: (1) extension and application of the K-FEM 
to different problems in engineering, (2) inclusion of adaptive mesh refinement, (3) improvement of the 
computational efficiency in constructing Kriging shape functions.   
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