
Design and Development of Website Validator using

XHTML 1.0 Strict Standard

Ibnu Gunawan

Informatics Department

Petra Christian University

Surabaya, Indonesia

Ibnu@petra.ac.id

Yohanes Edwin

Informatics Department

Petra Christian University

Surabaya, Indonesia

M26407106@petra.ac.id

Arlinah Imam Rahardjo

Informatics Department

Petra Christian University

Surabaya, Indonesia

Arlinah@petra.ac.id

Based on research done by w3.org[1] there are five reasons

why we must validate our web site : Validation as a debugging

tool, Validation as a future-proof quality check, Validation eases

maintenance, Validation helps teach good practices, Validation is

a sign of professionalism. Therefore, we need an application that

can help web designer create a good website with a valid HTML

element and CSS.

This paper will show how to design and develop that

application. Validation system process begins with lexical

analysis, parsing, and then analysis of the tokens. Tokens being

analyzed are elements and attributes. These tokens are checked

for compliance with the Document Type Definition (DTD)

Standard. In addition to the tokens, this application checks web

page structures too. This application can also perform CSS

validation in a web page. Moreover, the user can directly correct

an invalid web page, thus shortens correction time. This

application was created using Microsoft Visual Basic .NET 2008

as a programming framework and Microsoft SQL Server 2008

Express as a database.

Based on application testing, it can be concluded that the

application can find errors either to validate HTML code or CSS

validation. This application can also improve the web page

complying with DTD XHTML 1.0 Strict Standard.

Keywords-component; Markup Validation, HTML, CSS, DTD,

XHTML 1.0 Strict, Website Validator.

I. INTRODUCTION

Based on question that asked by w3.org to the web
community in 2009 [1] there are some reason how we must
validate our website, like:
1. Validation as a debugging tool

While contemporary Web browsers do an increasingly
good job of parsing even the worst HTML “tag soup”,
some errors are not always caught gracefully. Very often,
different software on different platforms will not handle
errors in a similar fashion, making it extremely difficult to
apply style or layout consistently.

Using standard, interoperable markup and style
sheets, on the other hand, offers a much greater chance of
having one's page handled consistently across platforms
and user-agents. Indeed, most developers creating rich

Web applications know that reliable scripting needs the
document to be parsed by User-Agents without any
unexpected error, and will make sure that their markup and
CSS is validated before creating a rich interactive layer.

When surveyed, a large majority of Web professionals
will state that validation errors is the first thing they will
check whenever they run into a Web styling or scripting
bug.

2. Validation as a future-proof quality check

Checking that a page “displays fine” in several
contemporary browsers may be a reasonable insurance that
the page will “work” today, but it does not guarantee that
it will work tomorrow.

In the past, many authors who relied on the quirks of
Netscape 1.1 suddenly found their pages appeared totally
blank in Netscape 2.0. Whilst Internet Explorer initially set
out to be bug-compatible with Netscape, it too has moved
towards standards compliance in later releases.

Validation is one of the simplest ways to check
whether a page is built in accordance with Web standards,
and provides one of the most reliable guarantees that
future Web platforms will handle it as designed.

3. Validation eases maintenance

It is reasonable to consider that standards such as
HTML and CSS are a form of “coding style” which is
globally agreed upon. Creating Web pages or applications
according to a widely accepted coding style makes them
easier to maintain, even if the maintenance and evolution
is performed by someone else.

4. Validation helps teach good practices
Many professionals have been authoring the Web with

HTML and CSS for years and know these technologies by
heart. Beginners and students, on the other hands, will find
automated checking tools invaluable in spotting mistakes.
Some teachers also stress that automated validation tests
are a good introduction to broader, more complex quality
concepts such as accessibility.

5. Validation is a sign of professionalism

As of today, there is little or no certification for Web
professionals, and only few universities teach Web
technologies, leaving most Web-smiths to learn by
themselves, with varied success. Seasoned, able
professionals will take pride in creating Web content using
semantic and well-formed markup, separation of style and
content, etc. Validation can then be used as a quick check
to determine whether the code is the clean work of a
seasoned HTML author, or quickly hacked-together tag
soup.

Because the importance of this validation process, we build a
web validator that not only can do the validation but can fix the
source code too.

II. BACKGROUND

In order to validate website, our validator used xhtml 1.0

strict standard and there are 3 processes involved, begin with

lexical analysis, continued with parsing, and then finished by

token analysis. The following detailed explanation of what is

it xhtml 1.0 strict standard, css, lexical analysis and parsing.

A. XHTML 1.0 Strict

December 1998 saw the publication of a W3C Working
Draft entitled Reformulating HTML in XML. This introduced
Voyager, the codename for a new markup language based on
HTML 4, but adhering to the stricter syntax rules of XML. By
February 1999 the name of the specification had changed to
XHTML 1.0: The Extensible HyperText Markup Language, and
in January 2000 it was officially adopted as a W3C
Recommendation[2]. There are three formal DTDs for
XHTML 1.0, corresponding to the three different versions of
HTML 4.01:

1. XHTML 1.0 Strict
The XML equivalent to strict HTML 4.01, and

includes elements and attributes that have not been
marked deprecated in the HTML 4.01 specification. As
of May 25 2011, XHTML 1.0 Strict is the document
type used for the homepage of the website of the
World Wide Web Consortium.

2. XHTML 1.0 Transitional
The XML equivalent of HTML 4.01 Transitional, and

includes the presentational elements (such as center,

font and strike) excluded from the strict version.
3. XHTML 1.0 Frameset

The XML equivalent of HTML 4.01 Frameset, and
allows for the definition of frameset documents—a
common Web feature in the late 1990s.

B. CSS (Cascading Style Sheets)

Cascading Style Sheets (CSS) is a style sheet language

used to describe the presentation semantics (the look and

formatting) of a document written in a markup language. It’s

most common application is to style web pages written in

HTML and XHTML, but the language can also be applied to

any kind of XML document, including plain XML, SVG and

XUL.

CSS is designed primarily to enable the separation of

document content (written in HTML or a similar markup

language) from document presentation, including elements

such as the layout, colors, and fonts[3]. This separation can

improve content accessibility, provide more flexibility and

control in the specification of presentation characteristics,

enable multiple pages to share formatting, and reduce

complexity and repetition in the structural content (such as by

allowing for table less web design).

CSS can also allow the same markup page to be presented

in different styles for different rendering methods, such as on-

screen, in print, by voice (when read out by a speech-based

browser or screen reader) and on Braille-based, tactile devices.

While the author of a document typically links that document

to a CSS style sheet, readers can use a different style sheet,

perhaps one on their own computer, to override the one the

author has specified.

C. Lexical Analysis

Lexical analysis or scanning is the process where the

stream of characters making up the source program is read

from left-to-right and grouped into tokens. Tokens are

sequences of characters with a collective meaning. There are

usually only a small number of tokens for a programming

language: constants (integer, double, char, string, etc.),

operators (arithmetic, relational, logical), punctuation, and

reserved words [4].

Figure1. Lexical Analyzer diagrams

The lexical analyzer takes a source program as input, and

produces a stream of tokens as output. The lexical analyzer

might recognize particular instances of tokens such as:
3 or 255 for an integer constant token

"Fred" or "Wilma" for a string constant token

numTickets or queue for a variable token

Such specific instances are called lexemes. A lexeme is the

actual character sequence forming a token; the token is the

general class that a lexeme belongs to. Some tokens have

exactly one lexeme (e.g., the > character); for others, there are

many lexemes (e.g., integer constants).

D. Parsing

Parsing is a process that analyzes a token or a few

sequences to determine the grammatical structure of a

programming language [5]. Parsing is a process of converting

a text into a tree. This tree will be processed further.

Parsing the first stage of the process is lexical analysis,

where an input is converted into meaningful tokens. This

token is then stored in a tree. The next stage is the stage

syntactic analysis, namely the examination stage of the token

to the standard expression. The last stage is the semantic

parsing; here the code will be generated into a result.

III. SYSTEM DESIGN

Our Web site validator will follow 3 main sequence as a
system. Begin with input (tahap sistem input), continued by
processing (tahap pemrosesan validasi) and last one is output
(tahap sistem output). Figure 2 show the system flowchart as a
whole.

Figure 2. Whole web site validator system

To condense the explanation, we will explain all this process
using a flowchart begins with input system.

A. System input flowchart

Input system in this application comes from the Internet

URL appears in an input box. Applications will first check the

validity of the URL. If the input is really a URL then the

application will take the source code from the URLs that are

inputted and wrote it in a Text Box. Then the user chooses to

perform validation of HTML or CSS validation. After that, the

text in the Text Box was put into a string variable that will be

processed at a later stage. The flowchart shown in figure 3.

B. System Process flowchart

Figure 4 show main process flowchart. Input is entered in

this system is the text that comes from a Text Box. While the

output of this system is the result of checking against text that

has been validated. Text is entered in this system will be read

from top to finish. Any errors found are stored in a variable

which will be output from these systems.

If we choose XHTML validation (flowchart is on Figure

6.) then this sequence is executing by computer:

Figure 3. Input system flowchart

 Lexical Analysis Process XHTML

 Token Parsing

 Token Examination

Whereas if the selected CSS validation (flowchart shown on

Figure 5), then the processes that occur in this system will be:

 CSS Validation using W3C CSS Validation Web

Service

 Making Process Validation results in the form of

XML files

 The process of reading an XML file results

Figure 4. Main system process flowchart

Figure 5. CSS process flowchart

Figure 6. XHTML validation process flowchart.

After we show the main process flowchart followed by 2 sub

main flowchart i.e. CSS validation and XHTML validation,

It’s good to show the detail of css validation and xhtml

validation. We begin by xhtml validation, xhtml validation

consist of 3 processes:

 Lexical analysis

The first step taken in the Lexical Analysis is the

process of reading the text in the Text Box that has

been opened. This process will take tokens that will

be used for XHTML validation system. Text is stored

into a string variable. This string variable will flow in

through the Lexical Analysis process until the entire

text is read out. When the process find the token, then

the results will be checked its validity in the

examination process token validation

Lexical Analysis of this process begins with

finding the DTD used by the XHTML file. DTD that

is used should be a DTD XHTML 1.0 Strict, if not a

DTD XHTML 1.0 Strict, and then the inspection

process was not continued. If the HTML file being

examined does have a DTD XHTML 1.0 Strict, then

the process Lexical Analysis will seek the position of

the characters '<', where the characters '<' is the

opening character of the tag that is on an XHTML

file.

 After finding the characters '<', then the process

Lexical Analysis will proceed by finding the position

of the character '>'. The character '>' is a cover of a

character element in the XHTML file. If the process

did not find the character '>' after '<' then the system

will log the error and continue the process of Lexical

Analysis. At the time of switching line, the system

also will record the current line is checked, so when

the process found an error it can be seen also the fault

line.

 Token Parsing

This parsing process is a second process that is

used in determining the validity of an XHTML file.

This process is done after the program to get tokens

from the Lexical Analysis.

Inputs for this process are the tags that Lexical

Analysis obtained from the process before. The tags

are available will be included in a stack. Tags that are

in the stack will be inspected at the next process. Tag

storage is limited only to HTML elements only, while

for comments or strings that are not preceded by the

character '<' will not be examined. This process

flowchart show on figure 7

Figure 7. Token Parsing Process flowchart

 Token inspection

This inspection process is the last of the three

programs to validate the XHTML file. This process is

done right after the process of parsing and generating

elements have been incorporated into the stack.

This inspection process through several stages.

The first thing to do are carried out basic checks, like

checking a large / small letters, checking what

elements are allowed to be used in DTD XHTML 1.0

Strict, and also cover for each element that has been

opened. After the basic checks, the system will do

further investigation, further investigation is done by

examining the sequence element to conform to the

rules of a correct XHTML, for example, only have

one html element, and also whether, after the html

element is found then the next element is checked is

the head element or not.

If, this process produce an errors then the error

message will be stored in a variable. An error

message is displayed when the program is completed

through the checking process.

Now the time for detail of three CSS validation process,

and because all of the three process is simple enough so we

will show all three CSS validation sub main process in

flowchart on Figure 8, and 9.

Figure 8. CSS Validation

Figure 9. Taken XML standard

C. System Output

The system output is the last system that performed on this
program. Once the file is XHTML / CSS has been checked in
the previous system, the result of an error message will be
displayed on this system. This message will be displayed in a
Text Box so the user can see immediately that there are errors
in the XHTML file are validated.

Error messages are displayed on the Text Box contains
errors and line where the error is located. In addition, for the
inspection of XHTML, if the remaining elements in the stack,
then the element will be considered a fault as well because it
has not closed / unopened. If the previous inspection there was
no error message, then the system will write the XHTML file
that is checked is valid according to DTD XHTML 1.0 Strict.

IV. SYSTEM IMPLEMENTATION AND TESTING

We implement the system using VB programming

language. NET applications that have been integrated with

Microsoft Visual Studio 2008. This application is made

using VB programming language. NET because the source

code in VB. NET can be better understood by the layman.

In addition, the Microsoft Visual Studio 2008 is also

equipped with facilities to design GUI (Graphical User

Interface) which is easy to use to use and also the facility to

use Microsoft SQL Express database.

A. Libraries and Headers used

In making the application of this Thesis is used

namespace (a collection of classes that have been rolled

into one) that has been provided by Microsoft Visual

Studio 2008. Namespace - namespace used for the

manufacture of these applications include:

 System.IO, used to read the source code of a

website, writes the source code of the website into a

text file, and also provide reports final results of the

validity of a website.

 System.Text, used to store the entire HTML code

that has been obtained from the internet which is then

used for the validation process.

 System.Text.RegularExpressions, used to

search a text within the HTML code making it easier

for validation.

 System.Net, used to make the connection to the

internet and also make requests to a website.

 System.Xml, used to create, write, and read an

XML file.

 System.Data.SqlClient, is used to connect to

Microsoft SQL Server Express and also the use of

Data Adapter / Command Builder of SQL Server.

B. System Testing

Application validation testing was conducted to determine

the validity of the application when compared to similar

applications that already exist. Tests to be performed include:

 Validation testing websites with XHTML 1.0 Strict

DTD.

 CSS validation testing on the website.

 Testing results of repair of the wrong web page.

 The first test, validation on web pages using similar

applications.

 The second test, validation on web pages using

similar applications.

 The third test, checking the results of improvements

on the website page by using the application validator

of the W3C (World Wide Consortium.

We have been captured some of the testing screen and shown

in figure 10 to 12.

Figure 10. XHTML valid testing

Figure 11. XHTML non valid testing

Figure 12. Repairing code ability testing

 And table 1 show the accuracy of repairing ability from our

web validator application (aplikasi skripsi) compare to w3c

validator itself and an open source application on

www.mousehuntgame.com for a case study

TABLE 1. ACCURACY COMPARISON

V. CONCLUSIONS

From the Design and Development of Website Validator using

XHTML 1.0 Strict Standard we can obtain several conclusions

as follows:

1. The more complete the database owned by an

application of the more complete validation of all

errors that can be recorded.

2. According to table 1, For detecting error, Our

Application is more accurate than Open Source

validator . For fixing error, Our Application is more

better than W3C Validator.

REFERENCES

[1] Théreaux Olivier, “Valid sites work better(?),” w3c blog, January 2009.

[2] XHTML 1.0: The Extensible HyperText Markup Language, W3C
Recommendation 26 January 2000". World Wide Web Consortium.
2000-01-26. Retrieved 2008-07-19.

[3] What is CSS?". World Wide Web Consortium. Retrieved December
2010.

[4] Johnson Maggie and Zelenski Julie, “lexical analysis handout for
cs143,” Stanford University, Summer 2008.

[5] Yulia, “Perancangan dan pembuatan sistem validasi XHTML 1.0,”
Paper presented at Konferensi Nasional Sistem dan Informatika 2008,
Bali, Indonesia.

 Aplikasi

Skripsi

W3C

Validator

Open

Source

Before 63 Error 74 Error 59 Error

after 5 Error 7 Error 3 Error

