Automatic Classification of Sunspot Groups for Space Weather Analysis

Adipranata, Rudy and Satiabudhi, Gregorius and Setiahadi, Bambang (2013) Automatic Classification of Sunspot Groups for Space Weather Analysis. International Journal of Multimedia and Ubiquitous Engineering, 8 (3). pp. 41-54. ISSN 1975-0080

PDF (Full Text)
Download (708Kb) | Preview


    The sun is the unlimited energy source for life on the earth. However, besides as the energy source, the sun also gives disruptions to the universe around the earth and also to the life on the earth. Sources of the disruptions from the sun are flares and Coronal Mass Ejection/CME. Both of those disruptions in general come from group of sunspots. With the growing of dependency of human life with modern technology, either facility on the surface of the earth or in universe around the earth, the disruptions from the sun should be anticipated. In order to know the complexity level of sunspot groups and their activity, Modified-Zurich sunspot classification is used. Image of sunspots can be taken using the Michelson Doppler Imager instrument (MDI) Continuum / SOHO (Solar and Heliospheric Observatory). This research was conducted on the automatic classification of sunspot group that can be used to analyze the space weather conditions and provide information to the public. There are two stages to classify sunspot groups namely feature extraction and pattern recognition. For feature extraction, we used digital image processing to get features of sunspot group, and for pattern recognition, we used artificial neural network. We compared 3 methods of artificial neural networks to get the best result of classification namely backpropagation, probabilistic and combination between self-organizing map and k-nearest neighbor. Among three of them, probabilistic neural network gave the best classification result.

    Item Type: Article
    Uncontrolled Keywords: Sunspot groups classification, artificial neural network, pattern recognition
    Subjects: Q Science > QA Mathematics > QA76 Computer software
    Divisions: Faculty of Industrial Technology > Informatics Engineering Department
    Depositing User: Admin
    Date Deposited: 07 Jun 2013 17:50
    Last Modified: 17 May 2018 11:52
    URI: http://repository.petra.ac.id/id/eprint/15994

    Actions (login required)

    View Item