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Abstract— A novel approximation procedure based on hybrid 

neuro-fuzzy (NF), called Takagi-Sugeno multi-real-input multi-

binary-output (TS-MIMO) neuro-fuzzy network, is proposed to 

control the bi-state actuator arrays. This efficient procedure is 

used in static force mechanism of 2D-rigid body manipulator. 

The proposed NF model employed off-line neuro-mechanism 

using Levenberg-Marquardt algorithm (LMA) and Takagi-

Sugeno model as inference system in fuzzy systems. Additional 

hill climbing method as optimal searched procedure improved 

the minimum error in the learning computation. Simulation 

results are provided not only to demonstrate the efficiency of the 

NF model in activating the bi-state in arrays, but also to explain 

how to find the minimum number of actuators that should be put 

in the rigid body system. These first results will lead the NF 

mechanism as a universal force control for bi-state actuator 

arrays. 

Keywords: NF type TS-MIMO procedure, general 

approximator, bi-state actuator arrays, one-DOF manipulator, 

force control fashion 

I.  INTRODUCTION  

Binary manipulators have been used in several applications 
and played significant roles, especially in robotics and 
biomechanics applications [1,2,3,13]. These bi-state 
manipulators are particular kind of discrete device, in which the 
states flip between two possible values, such as activated-not 
activated, open-closed or contracted-relaxed (e.g. pneumatics, 
dielectric elastomer actuators, shape memory alloy). Because 
of the states condition, binary manipulators have several 
potential benefits compared to continuous manipulator systems, 
for example: they are relatively inexpensive and lightweight; 
minimal support devices because they can be operated without 
extensive feedback control. In contrast with the advantages, 
they have problem in actuating the binary states, especially 
when the manipulators have a massive number of actuators.  

Concerning the control strategy, some previous works has 
been done related to discrete-actuated manipulators control. For 
instance, from the mid 1990s, Chirikjian [1,4] proposed a 
variety of efficient algorithms for trajectory tracking 
approximation of binary manipulators. In these algorithms, the 
manipulators are actuated by binary actuators that placed in a 
serial-parallel configuration with position control approach. 
They also introduced the new concept of discretely actuated 
manipulators called an extended Ebert-Uphoff algorithm [2,3], 

which considering the full position-orientation of inverse 
kinematics problem rather than the pure position problem. This 
algorithm gives many influences to researchers, such as 
constructing hyper-redundant manipulators based on 
mathematical model and controlling the desired position-
orientation of end-effector. 

 In contrast with position control fashion, not many 
researchers try to control binary manipulators in force control 
fashion. This is because the complexities of force control 
model increase exponentially proportional to the number of 
actuator arrays. For instance, Yang et.al [13] proposed some 
online mechanisms based on Brute Force procedure for force 
control mechanism. This approach requires too many 
calculations for real-time manipulator control.  

Regarding the force problem in binary manipulator 
systems, we propose a new procedure of hybrid neuro-fuzzy 
networks (NF) to approximate bi-state (1 and 0 values) of the 
actuator arrays. This configuration is an off-line model and 
proposes very fast learning mechanism (compared to Brute 
Force procedure) for dealing with the huge input datasets 
which enter to the network. Moreover, an NF is already well-
known as one of universal approximator’s tools in 
computational intelligence field (CI) that combines the learning 
ability from neural network and rule-based interpretation from 
fuzzy systems. Because of this reason, an NF is widely 
exploited to discover optimal parameters from the learning 
mechanism efficiently. In addition, an NF is also known as an 
adaptive network, because this network consists of nodes and 
directional relations in which the nodes are connected. Most of 
the nodes are adaptive, which denote their outputs depend on 
the parameters concerning to these nodes, and the learning rule 
indicates how these parameters should be updated to minimize 
the error performance. According to Palit et.al [5-9], the NF 
mechanism has been proved as an efficient approximator in 
engineering applications, such as time series forecasting, 
pattern recognition, and for modeling and control. In addition, 
they clarified that the fuzzy if-then rules on NF tries to fit the 
non-linear relation between input-output pairs that represented 
in large array datasets (as data training) and in the meantime 
learning mechanism updates the parameters until minimum 
error is fulfilled. For validation purposes, they use a large 
number of new datasets as data testing to verify the training 
network performance.  



Furthermore, we explore a simple 2D-rigid body system as 
manipulator. This manipulator is actuated by binary force 
actuators in parallel configuration and has one DOF which 
rotates respect to the reference frame. For control scheme, we 
recommend an NF with Levenberg-Marquardt algorithm 
(LMA) and hill climbing method (HC) as learning and 
optimization procedures respectively. Moreover, both inputs 
and outputs of the NF are generated from forward static force 
problem which mean: given the rotate angle of the rigid body 
(fixed) and all combination of the states of actuators (    ) that 
defines which of the actuators are active, we calculate the 
resultant vector of forces (R) and moments (M) from 
equilibrium equations in the array fashion. Using the reverse 
way, we exploit the result of R and M from forward static force 
equations as inputs of the NF whereas the goal of reverse 
problem is     , denotes as binary output prediction on the 
networks.  

As results, this proposed method has two main objectives: 
First, designing the NF mechanism with off-line learning and 
flexible input output arrays. This purpose is important for 
designing the general control mechanism with flexible number 
of inputs and outputs. Second, proposing additional search 
algorithm method to discover the optimized parameters of the 
network. For determining these two goals, we validate the 
control mechanism with standard error performance and 
several number of data tests.  

For more details, the explanation of the rigid body system 
with pure rotation and its mathematic equations are described 
in Section II, whereas TS type MIMO neuro-fuzzy network, 
including its training algorithm and simple optimization 
parameters are explained in Section III. Thereafter, the 
simulation experiments and results are shown in Section IV. 
Finally, brief concluding remarks are presented in Section V. 

II. EQUILIBRIUM EQUATIONS OF RIGID BODY SYSTEMS 

For designing a force control of rigid body, we must 

recognize the term of equilibrium condition. The rigid body is 

said to be in equilibrium if the sum of forces and moments 

acting on it, about any arbitrary point O are equivalent to zero. 

For instance, if rigid body manipulator is in plane, we need to 

derive at least two equilibrium equations in order to find three 

variables (2 forces and 1 moment, all in vector arrays). Let us 

consider a rigid body manipulators with parallel configuration 

in Fig.1. A set of binary force actuators are acting at upper 

position   ̅ and the lower position    
̅̅ ̅, whereas            , 

n is the number of actuators. Both positions here are respect to 

reference O(0,0). If array of forces actuated the binary 

actuators, then the manipulator will rotate with angle  . The 

new position of   ̅will become    
̅̅ ̅̅  while the position of    

̅̅ ̅ is 

always fix after rotation. Hereafter, the individual force   ̅ 

which is produced by actuators, has vector direction of    
̅̅ ̅̅  

and    
̅̅ ̅ . Additionally, we define ∑  ̅ or  ̅    as the resultant 

force of n actuators, corresponding to  ̅       ̅    
̅̅̅    

  ̅ , and ∑  ̅     
̅̅ ̅̅  as equivalent to the summing of each 

moments ∑  
̅̅ ̅    

̅̅ ̅̅    
̅̅ ̅̅      

̅̅̅̅ . The term   
̅̅̅̅  is an 

individual moment, derived from cross product between force 

and related upper position, with respect to the reference O 

(0,0). Henceforward, (2.1) and (2.2) show  ̅ and  ̅ as the total 

force and moment should be given to keep the rigid body in 

the equilibrium position: 

 ̅   ∑  ̅     (2.1) 

 ̅   ∑  ̅     
̅̅ ̅̅     (2.2) 

More details, these steps below explain how to calculate all 

forces and moments of a rigid body system based on (2.1) and 

(2.2) as shown below: 

   
̅̅ ̅̅̅    

̅̅̅̅    ̅   
̅̅̅̅  [

     
    

]     (2.3) 

  
̅̅̅̅  

    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅

‖    ̅̅ ̅̅ ̅̅     ̅̅ ̅̅ ‖
       (2.4) 

 

In general, if the system rotate with angle  , then the new 

upper position    
̅̅ ̅̅̅ is determined easily by multiplying rotation 

matrix   
̅̅̅̅  with   ̅. After Eq. 2.3, we calculate the unit vector 

of forces   
̅̅̅̅  in Eq. 2.) as well. Hereafter, the individual force 

  ̅ is also established by multiplying the each combination of 

the state vector     
̅̅ ̅̅ ̅  (in total =    combinations for every 

pose) with the constant force amplitude      and unit vector 

  
̅̅̅̅  correspondingly (2.5) as follows 

  ̅           
̅̅ ̅̅ ̅   

̅̅̅̅         (2.5) 

Hence, the force reaction   ̅ with two components in X and Y 

axis are recognized by taking the opposite value of   ̅ 

summation (2.6). Finally, the moments  ̅  is calculated by 

summing all individual moments(in opposite direction) that 

produced by cross product between forces and upper position 

after rotation (2.7). 

 ̅  {
  
̅̅ ̅

  
̅̅̅̅ }     ∑  ̅         (2.6) 

 ̅    ∑(  ̅     
̅̅ ̅̅̅)         (2.7) 

 

 

Figure 1.  Four-bit actuator arrays in planar (pure rotation) 

In order to find the minimum actuators that should be put 

on rigid body system, like describe in Fig.1, we propose 

equivalent systems of 4, 8, 12 actuators (also known as 4-bit, 



8-bit and 12-bit actuators) in which they minimize error 

testing prediction. This means, we do not need to put more 

than 20 actuators to control the states of actuators from any 

dataset inputs, if 8-bit or 12-bit can fulfill the error 

requirement, such as the average error prediction not more 

than 10% (this approach reduces time computing and cost). 

For this reason, we need to build input-output arrays of several 

equivalent force systems and by applying NF to these arrays 

we can compare the error performances. 

Now we describe briefly about equivalent force systems. 

Two systems of forces are said equivalent if the sum of forces 

and moments acting on them, about any arbitrary point are 

equal (equivalent, because they would have the same effect on 

a rigid body, according to Newton’s law). 

In addition, for calculating the performance error of these 

three equivalent systems, we used data test from equivalent 

force system of 15-bit. For more details, we exploit equations 

from (2.8a) until (2.10c) to show how to make equivalent 

force system from 4-bit, as based actuators, and the 8-bit, 12-

bit and 15-bit are the equivalent force systems. In practice, we 

define a point   , where the resultant moment in this point is 

equal to zero. In this case, we find out the position of actuators 

and determined the point    that gives the total moment   , 

which is done by experiments (this experiment is done by 

choosing the centre of mass as a point    from n-bit system). 

As results, forces and moments of these four equivalent 

systems can be seen in Table 1. 

   
 ̅̅ ̅̅ ̅    ̅̅̅̅  (  ̅    )   ,   (2.8a) 

where n = no. of based actuator (n=4)   

   
 ̅̅ ̅̅ ̅    ̅̅ ̅  (  ̅    )                  (2.8b) 

    ̅̅ ̅    ̅    ̅̅ ̅  (    ),                    (2.8c) 

    
 ̅̅ ̅̅    ̅̅ ̅  (    )  (2.8d) 

  
 ̅̅ ̅̅      ̅̅ ̅  (    )   (2.8e) 

By control the force amplitude so the equivalent force 

becomes: 

   ̅̅ ̅    ̅̅ ̅     ̅̅ ̅̅ ̅     ̅̅ ̅̅ ̅   (2.9) 

Then we can state equivalent moments as: 

  
 ̅̅ ̅̅      ̅̅ ̅  (    )   (2.10a) 

    
  ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅  (    )  (2.10b) 

  
  ̅̅ ̅̅ ̅       ̅̅ ̅̅ ̅  (    )  (2.10c) 

The results of equivalent force systems of 4-bit, 8-bit. 12-

bit and 15-bit that calculated on equations (2.8 – 2.10) must be 

shown the similarity. The similarity of the forces and moment 

can be seen on Table I. 

TABLE I.  TABLE COMPARISON OF EQUIVALENT OF FORCE SYSTEMS 

WITH     ,      
    

               
: 

N-bit 

Actuators 

Range 

Force    

Range 

Force     

Range 

Moment    

4 0 to 15.515 0 to -36.589 0 to 401.96 

8 0 to 15.544 0 to -36.648 0 to 399.79 

12 0 to 15.513 0 to -36.642 0 to 400.17 

15 0 to 15.538 0 to -36.677 0 to 402.82 

 

III. NEURO-FUZZY PROCEDURES 

In the field of computational intelligence, neuro-fuzzy 
refers to combinations of artificial neural networks and fuzzy 
logic. This idea was proposed first by J. S. R. Jang [11]. 
Recently, this hybrid approach have received many attention 
from researchers whose dealing with non-linear control 
applications [8-9]. Moreover, neuro-fuzzy model is a hybrid 
intelligent system which combines the human-like reasoning 
style of fuzzy systems with the learning ability of neural 
networks. The main advantages of neuro-fuzzy system are: it 
interprets IF-THEN rules from input-output relations and it is 
an efficient universal-approximator. These are the main 
motivation for us to develop a control scheme of binary 
manipulator. In case of rigid body manipulator, the relation 
between inputs (forces and moments) and outputs (state of the 
actuators) in neuro-fuzzy model is explicitly shown in Fig. 2. 
Three normalized inputs (minimum value = 0 and maximum 
value = 1) and n binary outputs denote as input-output 
arrangement. Next, more explanation about the procedure of 
the fuzzy structure will be explained in Section 3.1 along with 
the learning procedure which is explored in Section 3.2. 
Additionally, the strategy to convert the real value of outputs 
fuzzy into binary value by using average threshold strategy can 
be seen in Section 3.3. 

A. Fuzzy logic system: Takagi-Sugeno type MIMO 

Neuro-fuzzy model as shown in Fig. 2 below is based on 
Gaussian membership functions (GMFs). It uses Takagi-
Sugeno (TS) model (note: compare to Mamdani model and 
Pedrycs model, both linguistic fuzzy models that are focused 
on interpretability, a TS model is a precise fuzzy model that 
focused on accuracy and it has strongly connection between 
input and output).  Moreover, a TS model is easy to interpret, 
and its outputs obtained from the networks are crisp outputs, 
means directly compatible to the actuator’s states. 

 

 

Figure 2.  Takagi-Sugeno-type MIMO ( with  input real and output binary) 
feedforward Neuro-Fuzzy network, no. input = 3, no. output = n-bit actuators, 

no. membership function = M, training method: LMA 

As shown in Fig.2, the Gaussian nodes    
  to   

  calculate 

the degree of membership of the numerical input values in the 

antecedent (IF part) fuzzy sets. The product nodes (×) 

represent the antecedent conjunction operator and the output 

of this node is the corresponding degree of fulfillment   , with 

l = 1, 2,…, M, representing the number of membership rules. 



After this, the division symbol (/), together with summation 

(+), join to make the normalized degree of fulfillment (   ⁄ ) 

of the corresponding rule. Then, the multiplication of    ⁄  

with the corresponding TS rule consequent    
  (THEN part) is 

used as input to the last summation part (+) at the crisp output 

value       which is directly compatible with the bi-state of the 

actuator arrays. 

Furthermore, fuzzy model type TS-MIMO,  with Gaussian 

membership functions (GMFs),  product inference rule, and a 

weighted average defuzzifier can be defined as three layers 

feedforward network, as explained in (3.1a-3.1c) below: (see 

[5] for details). 

   ∏   
 (  )

 
       

 (  )     ( (
     

 

  
 )

 

)  (3.1a) 

  
     

     
       

       
     (3.1b) 

      ∑   
     

         (3.1c) 

where      ⁄ , and   ∑    
      

and       is the output binary state of the j actuators(output 

prediction).   

The corresponding     rule from the above fuzzy logic 

system (FLS) can be written as 

1 31 3

0 1 31 3

:   is  AND ... AND  is  

... .

l l l

l l l l
j j jj

R IF x x THENG G

x xy W W W   
   (3.2) 

where,     with i = 1, 2, 3; are the 3 inputs,     with j = 1, 2, 

…, n; are its n outputs, and   
  with i = 1, 2, 3 and l = 1, 2, …, n 

are the Gaussian membership functions of form (3.1) with the 

corresponding mean and variance parameters   
  and l

i  

respectively and with l
jy  as the output consequent of the thl

rule. It must be remembered that the Gaussian membership 

functions 
l
iG  actually represent linguistic terms such as low, 

medium, high, very high, etc. The rules as written in (3.2) are 

known as Takagi-Sugeno rules. 

Because of the neural network procedure (neuro) is 

implemented to the Takagi-Sugeno model, this figure 

represents a Takagi-Sugeno-type of MIMO (multi real-input 

multi binary-output) neuro-fuzzy network, where instead of 

the connection weights and the biases in neural network, we 

have here the mean 
l
ic and also the variance l

i  parameters of 

Gaussian membership functions, along with the rules 

consequent l

ij

l

oj WW ,  parameters, as the equivalent adjustable 

parameters of the network. If all these parameters of NF 

network are properly selected by training mechanism, then the 

FLS can correctly approximate any nonlinear systems based 

on given data of inputs (forces, moments)-outputs(state of the 

actuators) pairs.  

B. Levenberg Marquardt Algorithm (LMA) procedures 

More detail of LMA equation, will be explained below. If a 

function  wV  is to be minimized with respect to the 

parameter vector w (these parameters are to be updated in 

training algorithm) using Newton’s method [12], the updated 

parameter vector   and     are defined as: 

    wVwVw 
12    (3.3a) 

    wkwkw 1    (3.3b) 

In equation (3.3a),  wV2 is defined as the Hessian matrix 

and  wV  is the gradient of  wV . If the function  wV  is 

taken to be a SSE function as follows: 

   wewV
N

r
r




1

25.0 ,          (3.4) 

then the gradient of  wV  and the Hessian  wV2  are 

generally defined as: 

     wewJwV T     (3.5a) 
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where, the Jacobian matrix  wJ  is as follows: 
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 (3.5c) 

 

From (3.5c), the dimension of the Jacobian matrix is 

    , where   is the number of training samples and    is 

the number of adjustable parameters in the network. For the 

Gauss-Newton method, the second term in (3.5b) is assumed to 

be zero. Therefore, the updated equations according to (3.3a) 

will be: 

        wewJwJwJw TT 
1

  3.6a) 

Now let us see the Levenberg-Marquardt’s modifications of 

the Gauss-Newton method: 

        wewJIwJwJw TT 
1

  (3.6b) 

where, I is the      identity matrix, and the parameter  
 

is multiplied or divided by some gain/factor whenever the 

iteration step increases or decreases the value of  wV .  

Here, the updated version of (3.3a), can be seen on (3.6c) as 

follows: 

            wewJIwJwJkwkw TT 
1

1 
  
(3.6c) 

It is important to know that for large  , the algorithm 

becomes the steepest descent algorithm with step size 1/  , 

and for small  , it becomes the Gauss-Newton method. 

Furthermore, Xiaosong et.al [10] also proposed to add 

modified error index (MEI) term in order to improve training 

convergence. The corresponding gradient with MEI can now be 

defined by using a Jacobian matrix as: 

         avg
T

new ewewewJwSSE    (3.7) 



where  we  is the column vector of errors, avge  is the 

average training error of each column, while   is a constant 

factor, 1  has to be chosen appropriately. 

Now, the computation of Jacobian matrix can be performed 

as follows. The gradient  l

jWV 0  can be written as: 

       
jj

ll

j

l

j dfbzWSWV  // 00
 (3.8) 

where, jf  and jd  are respectively the actual output and 

desired output of the Takagi-Sugeno type MIMO neuro-fuzzy 

network. Now, by comparing (3.8) to (3.5a), where the gradient 

 wV is expressed as the transpose of the Jacobian matrix 

multiplied with the network's error vector, i.e. 

     wewJwV T     (3.9) 

the corresponding Jacobian matrix for the parameter l
jW0
 of 

the NF network can be written as: 

      TlTl
j

Tl
j bzWJWJ / 00   (3.10) 

where prediction error of NF network is written as: 

 jjj dfe      (3.11) 

If the normalized prediction error on NF network is 

considered, then instead of equations (3.10), the corresponding 

Jacobian will be as follows: 

      TlTl

j

Tl

j zWJWJ  00
   (3.12) 

This is because the normalized prediction error of the 

MIMO-NF network is 

    bdfnormalizede jjj /   (3.13) 

Similarly, Jacobian matrix itself for the parameter l
ijW  of the 

NF network can be written as: 

       Ti
lTl

ij
Tl

ij xbzWJWJ  /   (3.14) 

Also, by considering normalized prediction error from 

(3.11), equations (3.14) then become: 

      Ti

lTl

ij

Tl

ij xzWJWJ 
  (3.15) 

Now, the Jacobian matrix computation of the remaining 

parameters 
l
ic and l

i  are performed by defining the terms 

eqvD
 
and eqve  as 

 mmeqveqv eDeDeDeDD  2211
 (3.16) 

Where,  l

j jj
D fy   and  j j je f d   with j = 1, 2, .., m 

and the term 
eqve  is such that it contributes the same amount of 

sum squared error that can be obtained jointly by all the errors 

je  from the MIMO network. Therefore,  

 222
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p
m

ppp
eqv eeee     (3.17) 

Where, p = 1, 2, …, n; corresponding to n as number of 

training samples/data.  

Now, by considering normalized equivalent error in (3.13), 

taking into account the equation (3.9), the transposed Jacobian 

matrix for the parameters 
l
ic  and 

l

i  can be computed as:  

         Tl
i

l
ii

l
eqv

Tl
i

Tl
i cxzDcJcJ





 

2
2 /  (3.18) 

         Tl
i

l
ii

l
eqv

Tl
i

Tl
i cxzDJJ





 

32
2  /  (3.19) 

The above procedure describes actually layer by layer 

computation of Jacobian matrices for various parameters of 

neuro-fuzzy network (see [8] for details). Again, after finish 

all the Jacobian computation, back to the equation (3.6c) for 

updating the parameters. This updating procedure stops after 

achieving the maximum iteration or the minimum error, with 

setting parameters: maximum iterations = 500, momentum 

constant = 0.005, oscillation control   WF = 0.5%, constant 

factor   = 0.0007.  

In addition to LMA procedure, we proposed a simple 

optimization procedure in order to find the tuning parameters 

on neuro-fuzzy systems, known as randomized Hill Climbing 

procedure (HC). This procedure is a local search algorithm 

and tries to find the best local minimum from huge stochastic 

procedure, by permitting the best training parameters that 

minimize the error function (RMSE) and neglecting the others. 

The results of using HC can be shown latter in Table III. 

  

The following steps of HC are carried out: 

a. Run the loop: No. membership function form 2-15 (M) 

b. Run the loop: No. experiment of each initial parameters 

= 100  

c. Run the loop: No. of iteration, each experiment has 

iteration from 50 to 500 

d. Calculate training output and find the suitable prediction 

model     ̂ 

e. Save the parameters after step d completed. If the next 

iteration produce better result, replace the old 

parameters, otherwise the new parameters are neglected. 

f. Determine the forces and moments prediction and 

calculate the prediction performance error 

g. Early stopping criteria[6]: Terminate the program if 

criteria are satisfy in step f 

h. Repeat again step a if needed and save the best 

parameters (time computing in 2 weeks). 

IV. EXPERIMENT PROCEDURES AND RESULTS 

By using neuro-fuzzy network that shown in Fig.2, we 

propose two experiments for modeling and testing the rigid 

body manipulator as follows: 

1. Input forces and moments from fix angle      

There are 3 equivalent actuator model (4-bit, 8-bit and 12-

bit actuators) and testing data taken from equivalent 15 

actuators. The results of this experiment are shown in 

Table II and Fig.3 . 

2. Input forces and moments from variety angle   (10, 20, 

30, 40, 50, 60, 70).  

In this experiment, a rigid body system with 12 actuators 

is used to generate input-output arrays for training data.  

Testing data is taken from 12 actuators systems with 

different angle   (17, 25, 35, 45). Detail explanation and 

results are clarified in Table III and Fig.4 to Fig 6. 

 



TABLE II.  1ST
 EXPERIMENT WITH 4-BIT, 8-BIT AND 12-BIT 

PERFORMANCES (AFTER 2 WEEKS LEARNING) 

Descriptions 4-bit 

Actuators 

8-bit 

Actuators 

12-bit 

Actuators 

RMSE RX 1.6862 1.2726 0.8440 

RMSE RY 4.2326 2.5840 2.0005 

RMSE MR 34.9179 27.3226 20.0735 

% Error RX 17.20 13.99 9.19 

% Error RY 24.30 13.17 9.84 

% Error MR 15.51 12.56 8.78 

 Procedure for 1
st
 experiment according to Fig.2 can be 

explained with several steps: 

a. Derive the equilibrium equations (2.1 to 2.7) using 4-bit, 

8-bit and 12-bit actuator  system with  alpha=20 deg and 

put the result in input output arrays      
   
̅̅̅̅      

̅̅̅̅    ̅     
̅̅ ̅̅ ̅̅  ] 

b. Calculate training output of the state actuators     ̂ 

c. Generate testing data from equivalent system 15-bit with 

50 data set. 

d. Determine binary prediction      ̂
 
   

e. Calculate again forces and moments model using      ̂
 
 

(for validation) 

f. Determine performance error 

g. Repeat step a to f using search method (Hill Climbing) 

for finding the best parameter that give minimum error in 

two weeks. 

 

 

Figure 3.  Moment model and  testing with single      deg and actuators = 

4-bit, 8-bit, 12-bit with data testing  15-bit 

Moreover, Fig.3 demonstrates the performance of the neuro-

fuzzy model using 3 inputs with orientation angle 20 (deg). 

The dashed lines are the validation of forces and moments of 

the model when 50 sets of testing data from equivalent system 

15 actuators (black-solid lines) are entered the trained model 

of 4-bit, 8-bit and 12-bit. Furthermore, Table II shows the 

performance results after 2 weeks learning time. We can see 

that 12-bit model can bring the performance RMSE down to 

10%, as error minimum required.   

 

 

 

TABLE III.  2ND
 EXPERIMENTS, 12-BIT PERFORMANCES 

No. Actuators = 12, Optimized Parameters  

Alpha learning = 10,20,30,40,50,60,70, with 100 data testing 

from alpha 17, 25, 35, 45 

Description 
Learning  

after 1 weeks 

Learning  

after 2 weeks 

RMSE RX 1.7455 1.3499 

RMSE RY 2.6064 2.2929 

RMSE MR 22.8522 17.0078 

% Error RX 13.96 11.69 

% Error RY 12.47 10.77 

% Error MR 12.74 9.84 

 

Procedure for 2
nd

 experiment according to Fig.2 is similar with 
the first experiment but we used several learning orientation 
angle. Here, 12-bit actuators are chosen as the optimized 
number of actuator arrays. The result of 1 week and 2 weeks 
computing time can be seen on Table III as well as some 
figures on the validation using 100 data test from the 12-bit 
with angle 17, 25, 35, 45 (25 data from each angle).   

 

Figure 4.  Force X-axis  validation of the neuro-fuzzy 12-bit model, using 

data testing 12-bit from angle α (17, 25, 35, 45) after 2 weeks learning 

 

Figure 5.  Force Y-axis  validation of the neuro-fuzzy 12-bit model, using 

data testing 12-bit from angle α (17, 25, 35, 45) after 2 weeks learning 



 

Figure 6.  Moments  validation of the neuro-fuzzy 12-bit model,  using data 

testing 12-bit from angle α (17, 25, 35, 45) after 2 weeks learning 

Table III shows the performance result of the input model 
of 12-bit with alpha from 10, 20, 30, 40, 50, 60 and 70, with its 
testing data from 12-bit with alpha 17, 25, 35, and 45. In 
addition, Figs. 4-6 illustrate the performance of the neuro-fuzzy 
model using 3 inputs and 12-bit outputs of forces and moments, 
to keep the rigid body in equilibrium position, when 100 sets of 
testing data(random testing) are entered the NF 12-bit model. 
The results of the model validation feature error average 
validation RMSE around 13% after 1 week computation and 
RMSE around 10% after 2 weeks computation. These results 
give the improve of using randomized Hill Climbing  in the 
learning computation. 

V. CONCLUSION 

In this paper, a neuro-fuzzy network type TS MIMO have 
been presented for prediction the states of the actuators with the 
input networks are forces and moments of rigid body 
manipulator (parallel configuration, in 2D) that already known 
before. It has been demonstrated that neuro-fuzzy network and 
trained with Levenberg-Marquardt algorithm, is very efficient 
to find performance error around 10% in off-line learning and 
with around hundred testing data.  The neuro-fuzzy model also 
proposed the number of actuators = 12 as the minimum 
actuators that should be put in the rigid body system. From our 
first results, it can be inferred that this model has flexibility to 
test the trained model with any orientation inputs. 

For the next issue, we would like to use the efficient NF to 
more complex geometry of binary manipulators such as robot 

manipulator with bi-state actuator arrays for rehabilitation 
purpose.  

Instead of neuro-fuzzy, other approximator method, such as 
recurrent neural network (RNN) can be used in these problems. 
Theoretically, the biologically inspired solution, such as RNN 
method can bring the performance error less than neuro-fuzzy, 
although it uses a huge computation time. 
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