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Abstract: To compare signals, we first model them as nonparametric regression setup, we then wish to 
test either those signals are significantly the same against they are significantly different. To perform a 
test, first we need to measure the distance between two nonparametric regression and use this distance 
as test statistic for testing the null hypothesis. Typically, the distribution of test statistic under the 
hypothesis null is not known. This problem can be handled by deriving the asymptotic approximation for 
unknown distribution that holds for sample size infinitely. However, this approach practically cannot be 
applied in signal, since the structure of the data is frequently too complicated. We then used bootstrap 
tests, we move from our original data to the bootstrap world of pseudo data vector or resample. We 
apply this method to image processing for detecting defect on the texture. We model the images as 2D 
Gasser-Mueller Kernel Density with rotational-ellipsoidal support function, to estimate the regression 
function. Moreover, we let the errors correlated in their neighborhoods. We use standardized the 
modification of the Mallows distance between these two estimates, to test the hypothesis and construct 
spatial bootstrap to get the distribution of the test statistic. The spatial bootstrap is needed to preserve 
the bound of a pixel to its neighborhood. 
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Introduction 
 

Comparing signals have been studied for a long time and applied in many disciplined of science. In this 

study we applied the comparing signal for modeling defect on the texture, especially the pattern defect 

on the texture. The idea of detecting defect on the texture`s pattern is the same as we compare the not 

defected “signal” or series of the texture to the defected one.  

 

We first model those signals as nonparametric regression setup, we then wish to test either those 

signals are significantly the same against they are significantly different. To perform a test, first we need 

to measure the distance between two nonparametric regression and use this distance as test statistic 

for testing the null hypothesis. 

  

 

 

 



Methods 

 

Hypotheses Analysis 

To compare those signals, we first model them as the following nonparametric regression setup, for 

simplicity we assume that the size of the image is  by . 

 

  

                                                                                                                       (1) 

  

where the  are independent with mean zero and finite variance, 

 and uniformly bounded fourth moments  .  

For sake of simplicity, we only consider the case of equidistant  on a compact set, say [0,1]. (Detail of 

nonparametric regression can be seen in [4]). The hypotheses analysis in this work is the extended 

version of the hypothesis analysis for comparing signal and images, developed by Franke and Halim 

[3,4]. Instead of doing in one dimensional setting, we now work for two dimensional one. 

  

We wish to test either those signals are significantly the same against they are significantly different, 

i.e., 

  against 

for some  

 

Kernel Smoothing 

To model an image as a regression, first, we consider an equidistant grid of pixels 

                                                                         (2) 

in the unit square  and a function  to be estimated from data, i.e.. the gray 

levels of the image as follows: 

               (3) 

Where the noise is part of a stationary random field , with zero-mean and finite 

variance.  
 
We use the Gasser-Muerller-type kernel to estimate . For that purpose we decompose  into 

squares    

such that  is the mid point of  then estimate  using: 

                                                                                                                (4) 

where   is a given kernel function and for the bandwidth vector , the rescaled 

kernel is  

 
Statistical Properties of Smoothers 



We assume that the design points are generated by a positive, Lipschitz continuous density function f, 
and the following conditions on the kernel  
(K1)  has support (-1,1) 
(K2)  is Lipschitz continuous 

(K3)  

(K4)  

 
To simplify notation, we write the index in the following way,  such that, (4) can be written as 
    
Let , is strictly stationary random field on the integer lattice with  
and autocovariances  
 
Mean Square Error of Gasser-Mueller Estimators 

Suppose , i.e. the bandwidth matrix is diagonal then, the bias is 

                             (5) 

and the variance will be  

                                                                                     (6) 

where the constant  and  depend only on the kernel 

. is twice continuously differentiable, .  Let  denote the 

spectral density of the random field , i.e., the Fourier transform of the autocovariances, we have 

. (Franke et al.[5]) 

 
 
Selecting the smoothing parameter 
 
The performance of the estimate depends crucially on the bandwidth of . We 
consider the problem of selecting an optimal global bandwidth  such that mean integrated square 

error 

 

is asymptotically minimized. is a weight function with support 
 and , which we employ, for sake of simplicity, to avoid boundary effects. 

 
Asymptotic mean square error (amse)  is minimized for  given by 

 

                                              (7) 

 

The asymptotic mean integrated square error (mise) is minimized for  given by 

 



                  (8) 

 

Where  

 
Estimating the second derivative of  

 

                  (9) 

 

where ;  

Plugging the derivative estimate into the integrands, we get the estimate of . 

 

Performing Test 

To perform a test, first we need to measure the distance between  and  and use this 
distance as test statistic for testing the null hypothesis.Following, Haerdle and Mammen [7], we use 
standardized -distance between these two estimates, i.e. 
 

                                                       (10) 

 
The modification of the Mallows distance (Haerdle and Mammen[9]) 

 
                         (11) 

 
Convergence in this distance is equivalent to weak convergence. 
 
Testing withBootstrap 
We have to decide either those signals are significantly the same (i.e., there is no defect present on a 
surface) against they are significantly different (i.e., the defect presents on a surface). Typically, a test is 
performed by calculating some function  of the data and comparing it with some bound , chosen 
as the  quantile of the distribution of  under the hypothesis . If , we accept  
as compatible with the data, otherwise we reject it in favor of . is the prescribed probability of an 
error of the first kind, i.e., under the , we have . Now, constructing the test 
becomes a problem of determining . However, the distribution of test statistic  under is not 
known. The classical approach to handle this problem is by deriving the asymptotic approximation for 
unknown distribution that holds for sample size . However, this approach practically cannot be 
applied in signal and image analysis, since the structure of the data is frequently too complicated. 
 
We then used bootstrap tests, we move from our original data to the bootstrap world of pseudo data 
vector or resample . The resample  may be artificially generated from the original data and has a 
similar random structure as  itself. Then, we consider the test statistic  calculated from the 



bootstrap data  and determine the -quantile of its distribution:  
where  denotes the conditional probability given the data  (Franke and Halim [4]) 
 
The -quantile  can be computed numerically using Monte Carlo simulation as follows 
1. generate a realization  of the bootstrap data and then calculate  

repeat for  
2. order  such that  

3. set , where  denotes the largest integer . 

 
The applicability of the bootstrap data  depends on the way the bootstrap data  are generated as 
well as the test statistic  considered. To construct the  for the image, first, we estimated the 
residual as follow 

                                                                                          (12) 

centering the residual by their sample mean, we achieve 

    

                                                                                                  (13) 

 
We, then construct out bootstrap samples by 
 

                                                                                                         (14) 

 

where  are the centering residual.  

 

For the construction of ; we constructed using spatial bootstrap to preserved the bound of a 

pixel to its neighborhood. First, we compute the spatial covariance matrix of  and  and generated 

both bootstrap residual of them based on that bound. 
 

The spatial covariance of  and , is computed between a pair of  and  respectively located at 

points separated by the distance . The covariance function can be written as a product of a variance 

parameter,  times a positive definite correlation function , i.e., . 

 
Denote  the basic parameter of the correlation function and name it the range parameter. Some of the 
correlation functions will have an extra parameter , the smoothness parameter.  denotes the 
modified Bessel function of the third kind of order kappa. In the equations below the functions are valid 
for and , unless stated otherwise (Diggle and Ribeiro [1]).  
Cauchy 

 

Generalized 
Cauchy ,  

Circular Let ,  

Then, the circular model is given by 

 

 



Cubic 
 if , 0 otherwise 

Gaussian 
 

Exponential  
Matern 

 

Spherical 
 if , 0 otherwise 

 
In this work we chose the correlation  as Gaussian model. 
 
Now, the bootstrap test statistics can be constructed as follows (Franke and Halim [3,4]). 

                                                               (15a) 

                                       (15b) 

           (15c) 

                       (15d) 

          (15e) 

 
Under the hypothesis  we use two forms of the test statistics based on (15b) or (15d)with the 
bootstrap samples. From now on, we call them as  and   respectively, and we set 
 

             (16) 

                        (17) 

 
Using one of these two functions then we can set the   or  and 

deduce either the hypothesis is rejected (the defect presents in the image) or failed to reject (no defect 
presents in the image).  
 
Result and Discussion 
 
Some examples of pattern`s defect detection are given in Figure 1. 
 

   
Figure 1. Some examples of pattern`s defect detection 



 
 

Conclusion and Remark 
 
So far, the methods presented here can handle pattern defect detection. However, there are some 
limitations that these methods cannot overcome, and therefore should be handled for the future work, 
i.e., capturing many types of defect on a single texture; capturing many defects on several location of 
large texture. 
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