PROCEEDING
The 3rd International Forum and Conference on Logistics and Supply Chain Management (LSCM) 2013

Discovery Kartika Plaza Hotel, Bali - Indonesia, 27-29 June 2013

Organized by Industrial Engineering Department of:

[Logos of Universitas Kristen Petra and Takming University Taiwan]
The 3rd International Forum and Conference on Logistics and Supply Chain Management (LSCM) 2013

Editors
Siana Halim
I Gede Agus Widyadana
Proceeding

The 3rd International Forum and Conference on Logistics and Supply Chain Management (LSCM) 2013

27-29 June 2013, Bali
http://industri.petra.ac.id/lscm2013

Editors
Siana Halim & I Gede Agus Widyadana
Department of Industrial Engineering
Petra Christian University
Surabaya, Indonesia

Organizers
Petra Christian University – Surabaya – Indonesia
Takming University of Science and Technology – Taipei – Taiwan

Published by
Institute for Research and Community Service
Petra Christian University
Surabaya, Indonesia
MESSAGE FROM THE ORGANIZERS

The 3rd International Forum & Conference on Logistics and Supply Chain Management (LSCM) 2013 will be held by the Industrial Engineering Department, Petra Christian University with Takming University of Science and Technology as an international forum and conference for disseminating to all branches of industries, information on the most recent and relevant research, theories and practices.

Following the earlier LSCM conferences, the LSCM 2013 will be held in Bali (Indonesia) on 27-29 June 2013. The conference will link researchers and practitioners from different branches of Logistics, Supply Chain and Industrial Engineering.

The call for papers has attracted 100 abstracts from more than seven countries. After careful review by the program committee, 59 finals papers will be included in the proceedings.

The programmed has been organized into a set of groups, each representing papers covering the latest developments in their subjects. We are indebted to our authors for their ideas and concepts reflected in their paper. We are honored by our distinguished keynote speakers, for sharing their insights with us. We thank to our reviewers who helped us to select the papers for this conference.

We hope the conference will offer a useful platform for the exchange of ideas and experiences.

Felecia
General Chair

I Gede Agus Widyadana
Organizing Committee Chair
CONFERENCE ORGANISATION

The Conference and Organizing Committee Chairs wish to thank members of the Organizing Committee and Program Committee for the contributions in organizing this Conference.

Organizers
Industrial Engineering Department,
Petra Christian University, Surabaya, Indonesia

Co-organizers
Department of Logistics Management and Graduate Institute of Logistics Management, Takming University of Science and Technology, Taipei, Taiwan

Organizing Committee

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chair</td>
<td>Felecia</td>
<td>Petra Christian University</td>
</tr>
<tr>
<td>Organizing Committee Chair</td>
<td>Jani Rahadjo</td>
<td>Petra Christian University</td>
</tr>
<tr>
<td>Program Committee Chair</td>
<td>I Gede Agus Widyadana</td>
<td>Petra Christian University</td>
</tr>
</tbody>
</table>

Siana Halim
Tanti Octavia
Togar W. Panjaitan
Debora Y.A
Herry C. Pallit
Yenny Bendatu

Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ata Allah Taleizadeh (Iran)</td>
<td>Hyerim Bae (Korea)</td>
</tr>
<tr>
<td>Bernardo Nugroho Yahya (Korea)</td>
<td>I Nyoman Pujawan (Indonesia)</td>
</tr>
<tr>
<td>Budi Santosa (Indonesia)</td>
<td>Kung-Jeng Wang (Taiwan)</td>
</tr>
<tr>
<td>Chao-Hsien Pan (Taiwan)</td>
<td>Leopoldo Eduardo C. B (Mexico)</td>
</tr>
<tr>
<td>Chen-Hsiang Chen (Taiwan)</td>
<td>Liem Ferryanto (USA)</td>
</tr>
<tr>
<td>Chumpol Yuangyi (Thailand)</td>
<td>Luh Putu Wiagustini (Indonesia)</td>
</tr>
<tr>
<td>Daniel Indarto Prajogo (Australia)</td>
<td>Maria Anintyasari (Indonesia)</td>
</tr>
<tr>
<td>Danny Prabowo Soetanto (England)</td>
<td>Nita H. Shah (India)</td>
</tr>
<tr>
<td>Docki Saraswati (Indonesia)</td>
<td>Rika Ampuh Hadiguna (Indonesia)</td>
</tr>
<tr>
<td>Gede Riana (Indonesia)</td>
<td>The Jin Ai (Indonesia)</td>
</tr>
<tr>
<td>Hendry Rahardjo (Sweden)</td>
<td>Yu-Cheng Hsiao (Taiwan)</td>
</tr>
<tr>
<td>Huynh Trung Luong (Thailand)</td>
<td>Yuri Zagoel (Indonesia)</td>
</tr>
</tbody>
</table>
CONFERENCE SCHEDULE

27 June 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.30 – 09.00</td>
<td>Registration</td>
</tr>
<tr>
<td>09.00 – 09.05</td>
<td>Welcoming</td>
</tr>
<tr>
<td>09.05 – 09.15</td>
<td>Opening Speech</td>
</tr>
<tr>
<td>09.15 – 10.45</td>
<td>Keynote Speaker 1 (Kresnayana Yahya, M.Sc)</td>
</tr>
<tr>
<td>10.45 – 11.00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11.00 – 12.30</td>
<td>Keynote Speaker 2 (Prof. Hui Ming Wee)</td>
</tr>
<tr>
<td>12.30 – 13.30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.30 – 15.00</td>
<td>Parallel Session 1</td>
</tr>
<tr>
<td>15.00 – 15.15</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15.00 – 16.30</td>
<td>Parallel Session 2</td>
</tr>
<tr>
<td>18.00 – 21.00</td>
<td>Gala Dinner</td>
</tr>
</tbody>
</table>

28 June 2013

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.00 – 10.30</td>
<td>Keynote Speaker 3 (Prof. Mamun Habib)</td>
</tr>
<tr>
<td>10.30 – 10.45</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10.45 – 11.30</td>
<td>Parallel Session 3</td>
</tr>
<tr>
<td>11.30 – 13.00</td>
<td>Lunch</td>
</tr>
<tr>
<td>13.00 – 14.45</td>
<td>Parallel Session 4</td>
</tr>
<tr>
<td>14.45 – 15.00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15.00 – 16.45</td>
<td>Parallel Session 5</td>
</tr>
</tbody>
</table>

29 June 2013

Conference Tour
<table>
<thead>
<tr>
<th>Conference ID</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCM 7</td>
<td>The Upper and Lower Bounds of Economic Lot-size Scheduling Problem with Batch-shipment Policy</td>
<td>Yu-Cheng Hsiao, Tai-Yueh Lin and Sion-Shan Hu</td>
</tr>
<tr>
<td>LSCM 8</td>
<td>Does Participatory Decision-Making Enhance Work Performance by Inducing Psychological Empowerment? A Case Study of Malaysian CEOs in the Local Banking Industry</td>
<td>Jeniboy Kimpah, Hazril Izwar Ibrahim</td>
</tr>
<tr>
<td>LSCM 12</td>
<td>Total Productive Maintenance through Reliability Centered Maintenance</td>
<td>Felecia, Veronica</td>
</tr>
<tr>
<td>LSCM 13</td>
<td>From Social Relations and Core Resources to Identify Opportunities- Example as a Start-up Company H and Company I</td>
<td>Muh-Lin Tsai and Hsiang-Yun Hsu</td>
</tr>
<tr>
<td>LSCM 14</td>
<td>A Supply Planning Model with Both Stochastic Demand and Inbound Lead Times</td>
<td>Carlies Sitompul, Fran Susanto</td>
</tr>
<tr>
<td>LSCM 16</td>
<td>The Key Factors Analysis for Introducing AEO of Taiwan</td>
<td>Bai-Shen Chen, Tzu-Su Li, Yu-Mei Lo</td>
</tr>
<tr>
<td>LSCM 19</td>
<td>Viral Systems Implementation for Minimizing Mean Tardiness of JobShop Scheduling Problem</td>
<td>Allian Tan, Dedy Suryadi</td>
</tr>
<tr>
<td>LSCM 20</td>
<td>Relationship between Logistics and Economic Development in Indonesia: Analysis of Time Series Data</td>
<td>Mohamad Reza</td>
</tr>
<tr>
<td>LSCM 21</td>
<td>A Study on the Optimal Solution Method to Develop the Economic Ordering Frequency for Joint Replenishment Problem</td>
<td>Wen-Tsung Ho</td>
</tr>
<tr>
<td>LSCM 22</td>
<td>A Two-Stage Genetic Algorithm for the Posters of the MRT Station Vehicle Routing Problem with Time Windows</td>
<td>Yo-Lun Li</td>
</tr>
<tr>
<td>LSCM 24</td>
<td>Developing a Place Marketing Strategy and Management: The Key Driver of Destination Image</td>
<td>Su-Ching Chang, Shu-Hui Chang</td>
</tr>
<tr>
<td>LSCM 25</td>
<td>Economic Impact of Delaying Production Decision in a Global Supply Chain (Abstract)</td>
<td>Snehamay Banerjee, Damodar Y. Golhar</td>
</tr>
<tr>
<td>LSCM 27</td>
<td>Image-based Analysis for Characterization of Chicken Nugget Quality</td>
<td>Chumpol Yuangyai, Piyaphorn Matvises, Udom Janjarassuk</td>
</tr>
<tr>
<td>LSCM 32</td>
<td>Identifying the Sustainable Supply Chain Indicators and their Impacts on Supply Chain Performance by using the DEA - VIKOR method</td>
<td>Arash Asiaei, Rosnah Binti Mohd Yusuff, Ali Haji Vahabzadeh</td>
</tr>
<tr>
<td>LSCM 33</td>
<td>Innovation Growth and Trend in Sustainability Development: A Practice in Malaysia</td>
<td>Ali Haji Vahabzadeha, Rosnah Binti Mohd Yusuff, Arash Asiaei</td>
</tr>
<tr>
<td>LSCM 35</td>
<td>The Consumers Characteristics Analysis of Low Temperature Home Delivery</td>
<td>Shu-Fang Lai, Sing-Chun Wu</td>
</tr>
<tr>
<td>LSCM 39</td>
<td>The Study of Logistics Route Condition Thailand-Malaysia-Singapore</td>
<td>Ritthiwut Puwaphat</td>
</tr>
<tr>
<td>LSCM 44</td>
<td>Academic Supply Chain Management in Bangladeshi Universities</td>
<td>Mohammad Nazrul Islam Bhuiyan, Bishwajit Banik Pathik, Dr. Md. Mamun Habib</td>
</tr>
<tr>
<td>LSCM 48</td>
<td>A Review of Combining Clustering and Classification Methods for Product Development</td>
<td>Chao-Lung Yang, Yardin Heidsyam</td>
</tr>
<tr>
<td>LSCM 49</td>
<td>An Operation Cost Reduction Model of Supply Chain: From Asia to the EU Market</td>
<td>Bai-Sheng Chen and Chi-Chun Chang</td>
</tr>
</tbody>
</table>
Oil Distribution to Northern Thailand through Extended Oil Pipeline under Single Tariff Policy
Natthaporn Buaphut, Nanthi Suthikarnnarunai

A Simplified Ant Colony Optimization Algorithm for the Job Shop Scheduling Problem
Udom Janjarassuk

Garbage Trucks' Routing in Surabaya
Felix Soesanto, Siana Halim Togar W S Panjaitan

A Travel Time Estimation Model for a High Level Picker-to-part System
Jason Chao-Hsien Pan, Ming-Hung Wu

Independence Not Required: Network Reliability in Logistics Transportation Management
Weyming Tina Song, Michael Suai-Ahn Chuang

Fuzzy-Dineserv for Service Quality Improvement: Case Study of Amareto Resto
Ceicalia Tesavrita, Dedy Suryadi, Debora Devina

Maximizing the Utilization of Universiti Utara Malaysia's Executive Development Center through Proper Supply Chain
Engku Muhammad Nazri E. A. Bakar, Masnita Misiran

Carpooling-Based Green Road Transportation Management
Michael Suai-Ahn Chuang

The Effect of Organizational Climate to Support Creativity Process in Creative Industry
Sonja Kristina Senjaya, Roland Silitonga

Two-Echelon Deteriorating Item Supply Chain with Multiple Delivery, Decrease Price and Compensation Policy
Jonas C.P. Yu

An Efficient a Supplier-Buyer Partnership for Hi-Tech Industry
Jonas C.P. Yu

A Hybrid Strategy for Stackelberg-Game Models of Relief Chains in the Pre-disaster and Post-disaster Stage via Simulated Annealing Method
Jonas C.P. Yu

An Empirical Study on Fishing Industry Supply Chain
Sanjida Binte Islam, Dr. Md. Maman Habib

Agent-based Negotiation Modeling in the Palm Oil Supply Chain
Syarif Hidayat, Marimin

Sequential Decision Making in a Supply Chain with Customer Return and Buyback Policies
Chi-Yang Tsai and Pei-Hsian Peng

Modeling the Competitiveness of Indonesian Palm Oil Industry: A Conceptual Model Using Hierarchical Multi-Level System Approach
Roland YH Silitonga, Senator Nur Bahagia, Tota Simatupang, Joko Siswanto

Study of Critical Supplychain Issues of Medium Scale Autocomponents Manufacturers in India
A. Aakash Vishnu Haran, C.S.Narayanan and Bati Nitin Vihnesh

Three Dimensional Blended Value Requirements for Sustainable E-Business Modelling: A Study of a Commercial Bank in Bangladesh
Mohammed Dewan, Nasrin Biswas

Choosing Bio Ethanol Fermentation Process Combination with Two-levels Factorial Design
Debora Anne Yang Aysia, Togar Panjaitan and Christianto Wibisono

The Role of Integrated Customer Relationship Management and Social Capital on Customer Relationship Management Success
Mohammed Alamgir, Mohammed Quaddus

Supply Chain Readiness, Response and Recovery for Supply Chain Resilience to Vulnerabilities: A Study on Ready-Made Garment Industry of Bangladesh
Md. Maruf Hossan Chowdhury, Mohammed Naim A Dewan, Md. Nuruzzaman, Mohammed A. Quaddus

Achieving Competitiveness through Analysing Supply Chain: A Test of Political Stakeholder's Action in Readymade Garment (RMG) Industry of Bangladesh
Md Nuruzzaman, Md. Maruf Hossan Chowdhury, Mohammed A. Quaddus, Ananda Jeeva
<table>
<thead>
<tr>
<th>LSCM 94</th>
<th>Measuring Success of ERP Implementation Using IPINEDO and Its Effects</th>
<th>253</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCM 100</td>
<td>Vendor-Buyer Deteriorating Inventory Model with Progressive Interest</td>
<td>257</td>
</tr>
<tr>
<td>LSCM 102</td>
<td>Decision Analysis on Choosing the Right Site Location of Learning Facility using AHP</td>
<td>261</td>
</tr>
<tr>
<td>LSCM 103</td>
<td>Profiling Application of Advanced Manufacturing Technology (AMT) in Indonesian SMEs</td>
<td>265</td>
</tr>
<tr>
<td>LSCM 105</td>
<td>Optimizing Pricing, Shipment and Production-Inventory Policies in a Three Stages Supply Chain</td>
<td>273</td>
</tr>
<tr>
<td>LSCM 106</td>
<td>Vendor Managed Inventory Systems with backordering for Instantaneous Deteriorating Items</td>
<td>283</td>
</tr>
<tr>
<td>LSCM 109</td>
<td>Teams' Efficiency in Chinese Professional Baseball League: Evidence from Non-economic View Point and Simar and Wilson Approach</td>
<td>303</td>
</tr>
<tr>
<td>LSCM 110</td>
<td>Owner's Commitment to the Planning and Controlling Processes to Improve Performance in Small and Medium Manufacturing Companies</td>
<td>305</td>
</tr>
<tr>
<td>LSCM 111</td>
<td>The Influences of ERP Implementations to SCM in Increasing the Performance of East Java Manufacturing Companies from the Accounting/Financial Manager Perception</td>
<td>311</td>
</tr>
<tr>
<td>LSCM 112</td>
<td>Developing of Variable Review Periods with Order Crossover</td>
<td>319</td>
</tr>
<tr>
<td>LSCM 113</td>
<td>The Importance of Supply Chain Management on Financial Optimization</td>
<td>323</td>
</tr>
<tr>
<td>LSCM 114</td>
<td>Indian Automobile Industry - A Sustainable Green Supply Chain Perspective</td>
<td>331</td>
</tr>
<tr>
<td>LSCM 115</td>
<td>Implementing Strategic Project Management for Achieving Organizational Goals</td>
<td>339</td>
</tr>
<tr>
<td>LSCM 121</td>
<td>Significance of Blended Value Process and Business Process in Sustainable E-Business Modeling</td>
<td>349</td>
</tr>
<tr>
<td>LSCM 122</td>
<td>Dairy Supply Chain: A Vensim based Conceptual Model</td>
<td>359</td>
</tr>
<tr>
<td>LSCM 123</td>
<td>Sustainable Livestock Farming for Improving Socio-Economic Condition</td>
<td>365</td>
</tr>
</tbody>
</table>
Garbage Trucks' Routing in Surabaya

Felix Soesanto, Siana Halim, Togar Panjaitan
Industrial Engineering Department, Petra Christian University
Jl. Siwalankerto 121-131 Surabaya
Email: halim@petra.ac.id, togar@petra.ac.id

Abstract: Garbage is produced daily in Surabaya. This work aims to find the effective garbage-collecting route in order to free Surabaya from garbage pile. Several factors needed to be examined are existing garbage collecting system and transportation time by traffic condition. Using this information, a model of Vehicle Routing Problem is developed. The model is called Time-dependent Vehicle Routing Problem with Multiple Trips and Intermediate Facility (TDVRPMTIF). Routes are applied to 70 trucks for 97 Temporary Dumping Site (TPS) in Surabaya, which consists of 19 locations in Central Surabaya, 15 locations in West Surabaya, 15 locations in North Surabaya, 36 locations in East Surabaya, and 12 locations in South Surabaya. The completion of garbage collection route TDVRPMTIF is using sequential insertion algorithm in 3 variants working time, 8-hours, 9-hours and 10-hours. These 3 variants working time do not produce less total routes assigned to the truck. This indicates Surabaya’s garbage collection have insufficient quantity of trucks to complete the problem. Several alternatives are proposed to solve the problem. First alternative is maintaining 8-hours working time and adding 11 trucks to complete the task. Second choice is adjusting the working time to 9 hours with the addition of 7 trucks. The third one is optimizing the existing 70 trucks with 10-hours working time.

Keywords: Vehicle Routing Problem, multiple trips, intermediate facility, time-dependent, sequential insertion algorithm.

Introduction

Vehicle Routing Problem (VRP) is a classical problem, which was proposed, by Dantzig and Ramser in 1959 [1]. It is an important problem in the fields of transportation, distribution and logistics. Many methods have been developed for searching good solutions, in terms of finding global minimum for the cost function. From the several variations of the vehicle routing problem, we are interested in the time dependent vehicle routing problem, which was developed at the first time by Malandraki and Daskin [6]. Since the exact solution of this problem is complicated, there are many heuristic solutions offered to break through that difficulty. Toth and Vigo [8] gave a good summary of problem formulations, variants, exact and heuristics solutions of the vehicle routing problem.

Some applications of the VRP are given by Tung and Pinnoi [9], which modeled the VRP for waste collection in Hanoi; Fitria et al. [4], which applied the VRP with multiple trips and intermediate facility to schedule the garbage truck route in Bandung; Priyandari et al. [7] applied the VRP to schedule the fertilizer distribution in Karanganyar. In this work we follow the Fitria et al. [4], with additional time-dependent in the formulated problem.

Many heuristics approach were proposed to solve the variants of that method. Khanh et al.[5] proposed a tabu search for time dependent VRPMT with time window. Donati et al. [2] proposed time dependent VRP with a multi ant colony system. Here, we follow Dullaert [3] using the insertion method for solving this problem.

The Condition of Garbage Collected Procedure in Surabaya

Surabaya is divided into 5 regions, namely Central East, West, South, and North. Garbage collection in Surabaya is not only done by the government, but also by the private sector. Government manages garbage collection in 158 Temporary Dumping Site (TPS) across Surabaya. There are 3 types of garbage collection system, using armroll 14 m³, armroll 8 m³, and dumping. In this paper, we are focusing on TPS that using roll arm14 m³.

Garbage collection with roll arm is quite simple. Container placed in TPS then filled trash from garbage carts. Replacement containers are made every day, and some done 2 times daily depending on whether the container has been filled. In some TPS, The garbage collections are not routine every day but depend on reports from the TPS. If the container is filled with garbage, TPS will communicate to the station/depot and the truck will be sent to TPS. Only full container has to be taken out and replaced with an empty container and the garbage will take to the
landfill. Then the truck will go to next location for next garbage collection. This activities running until the end of working hours and the truck back to the station.

Based on waste transportation system that already done by Landscape and Sanitation Department Surabaya, it can be said that the first route is the route the truck done Station to TPS, then TPS to waste disposal site/landfill (TPA), TPA to TPS, and to end the route TPA-Station.

Garbage collection model is different from the normal models Vehicle Routing Problem. In this model after garbage collection is done, the waste must be collected in advance on TPA dismantled before the truck back to the base, whereas in normal VRP truck models directly back to the base when it has passed all the assigned location. Model developed in this study is the Vehicle Routing Problem with Intermediate Facility. Coupled with the possibilities of multiple trips that are occurred in 1 day and a time-dependent on time, then the final model of garbage collection in Surabaya is the Time-Dependent Vehicle Routing Problem with Multiple Trips and Intermediate Facilities.

Methods

TDVRPMITF model is a model of transport in accordance with the waste collection system Surabaya and used in this study. Some notations which have been established like a base truck station, TPS as a customer, as an Intermediate Landfill Facility, trucks as vehicles, and implemented within the time limit T. Notation used in the model of waste transport in Surabaya.

Trucks as a base station (0)

TPS as a customer (Loc = 1, 2, 3, ..., n)

TPA as Intermediate Facility (inf)

Working hours as T

Characteristics Model

Objective function (Z) from Surabaya city waste transport models is to minimize the total time and the use of trucks to transport garbage from polling stations to the landfill, which is formulated as follows.

\[Z = \min (\Sigma \text{total_time}) \]

Where, total_time is the time required by each truck to complete the assigned route. Total of variable time containing some kind of time which is formulated as follows.

\[\text{total_time} = \Sigma \text{CompletionTime} + \text{TPA-Station} \]

Completion Time is the time to complete a task, including leave and come back, or the so-called round-trip (PP). Completion Time consists of Pickup Time, Loading Time, delivery time, and Unloading Time. Pickup Time is the time it takes to go to the polls. Loading Time is the time required to lower the empty container to the polls and raise container that is full to the top of the truck. Delivery time is the time it takes to transport the waste from the polling stations to the landfill. Unloading Time is the time required to lower the load on landfill waste. In addition to the above fourth time, Completion time also coupled with Estimation Time which is the time it takes to pass the vulnerable road congestion depends on the intended route.

Notation and Mathematical Model

Notation and mathematical models were developed according to this model notation and mathematical models in the journal Truck Route Determination Waste Collection and Transportation in Bandung by Fitria et al.[4]

Notation

- \(i \): location index
- \(r \): route index
- \(X \): rotation index
- \(K \): position index
- \(NR \): number of route
- \(NX[r] \): number of rotation in route \(r \)
- \(NL[r,x] \): number of positions in the rotation \(r, x \)
- \(L[r,x,k] \): location in route \(r, \) rotation, \(x \) position, \(k \)
- \(a[r,x,k] \): arrival time in \(k \) position \(x \) rotation \(r \) route
- \(d[r,x,k] \): arrival time route \(r, \) rotation, \(x \) position, \(k \)
- \(V_t \): Speed to pass congestion-prone roads at \(t \)
- \(\mu \): average velocity at time \(t \)
- \(\sigma_t \): Standard deviation at time \(t \)
- \(r[L[r,x,k],L[r,x,m]] \): The travel time between route \(r, \) rotation, \(x \) position, \(k \) and position \(m \)
- \(CT[r] \): Time to accomplish route \(r \)
- \(L \): Loading time
- \(h \): Unloading time
- \(T \): length of the planning horizon
- \(NV \): The number of vehicles
Some restrictions are used for the completion of the model:

\[L r, x, 1 = 0, r = 1, \ldots, NR; x = 1 \]
(4)

\[L r, x, NL r, x - 1 = i, \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r, i = \inf \]
(5)

\[L r, x - 1, NL r, x - 1 = i, \]
\[r = 1, \ldots, NR; x = 2, \ldots, NX r, i = \inf \]
(6)

\[L = r, x, 1 = i \]
\[r = 1, \ldots, NR; x = 2, \ldots, NX r, i = \inf \]
(7)

\[L r, x, NL r, x = i \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r ; i = 0 \]
(8)

\[L r, x, k = i \text{with} \ L r, x, k \neq L r, x, m \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r ; k = 2, \ldots, NL \]
\[r = 1, \ldots, n \]
(9)

\[\delta r, x, k = 0 \]
\[r = 1, \ldots, NR; x = 1; k = 1 \]
(10)

\[\delta r, x, k = a r, x, k + s \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r ; k = 2, \ldots, NL \]
\[r = 1, \ldots, n \]
(11)

\[\delta r, x, k = a r, x, k + h \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r ; k = 2, \ldots, NL \]
\[r = 1, \ldots, n \]
(12)

\[V_t \sim N(\mu_t, \sigma_t) \]
(13)

\[\mu_t^1 t_1 = 08.00 - 09.00 \]
\[\mu_t = \mu_t^2 t_2 = 09.00 - 13.00(14) \]
\[\mu_t^3 t_3 = 13.00 - 16.00 \]
\[\sigma_t^1 t_1 = 08.00 - 09.00 \]
\[\sigma_t = \sigma_t^2 t_2 = 09.00 - 13.00(15) \]
\[\sigma_t^3 t_3 = 13.00 - 16.00 \]
(14)

\[e[t L r, x, k , L r, x, m] \]
\[r = 1, \ldots, NR; x = 1, \ldots, NX r ; k = 2, \ldots, NL \]
\[r = 1, \ldots, n \]
(17)

\[CT r \leq PH \]
\[CT r = \sum_{x=1}^{NX r-2} \sum_{k=1}^{NL r, x-1} L r, x, k , L r, x, k + 1 + \sum_{k=1}^{NL r, x-1} e[t L r, x, k , L r, x, m] + s + h \]
(18)

\[NV = NT \]
\[TCT = \sum_{r=1}^{NR} CT r \]
(19)

\[CT r \leq PH \]
\[CT r = \sum_{x=1}^{NX r-2} \sum_{k=1}^{NL r, x-1} L r, x, k , L r, x, k + 1 + \sum_{k=1}^{NL r, x-1} e[t L r, x, k , L r, x, m] + s + h \]
(20)

Equation (4) ensures the vehicle departs from Station first time. Equation (5) guarantees for unloading vehicles visiting the landfill. Equation (6) ensures the vehicle to the landfill after ritasi. Equation (7) ensures the vehicle departs from the landfill to the next ritasi on one day. Equation (8) ensures route ends at the station. Equation (9) ensures the TPS is only visited once. Equation (10) shows the truck set off for the first time from the station at time 0. Equation (11) shows the departure of the truck at a site is the sum of the time of arrival of the truck at the location of the loading time. Equation (12) applies only to the landfill showing the departure time of TPA is the sum of the time the truck arrived at the landfill with the unloading time. Equation (13) shows that the speed of the truck as it passes through the normal berditribusi prone to congestion depends on the average speed (μ_t) and standard deviation (σ_t) at time t. Equation (14) shows the variation of the average velocity (μ_t) is there. Equation (15) shows the variation of standard deviation (σ_t) is there. Equation (16) shows that the estimated time to pass the vulnerable road congestion is the quotient of the distance between the location of the velocity at time t. Equation (17) shows the time of arrival of the truck at a given location is the sum of the time of departure at the previous location of the travel time and travel time for congestion-prone roads. Inequality (18) shows the completion time is between the hours of employment. Equation (19) shows the elements for the completion time of a route, the travel time between locations, travel time for road prone to congestion, time of loading, and unloading time. Equation (20) to determine the number of trucks that being used. Equation (21) determines the total completion time.

Surabaya city garbage truck routes are determined based on the new time to cover the distance to the base instead of the previous location which is 1 truck is responsible for a specific location. Division of routes based on the lead time required to get to a location is not optimal. For example look at the Tanjung Sari and Sukowati. The time it takes to the TPS Tanjung Sari would be minimal if taken from the depot/station rather than taken from the landfill. The second to the early lead rotation TPS Tanjung Sari starts from waste landfill. Therefore, the basis for determining that the new garbage trucks converted to travel time to get results quicker route.

This model also uses the principle of the time-dependent variation lies in the travel time to a TPS based congestion-prone roads are impassable. The time to complete one route called Completion Time. Completion Time consists of Pickup Time, Loading Time, Unloading Time, deliverytime, and Estimation Time. Completion Time will vary depending on Estimation Time, which is the travel time of the truck through the streets prone to congestion. Congestion-prone roads are taken into account there are 3, Margomulyo, Tandes-Dupak highway, and A. Yani.
Each TPS passed different congestion-prone roads. Time truck up in road congestion prone \(t \) in question will make the truck travel time varies as reflected in Estimation Time.

Here are the steps in determining the route of work trucks:

Step 1
Enter the distance TPS-TPA, TPA-TPS, and Station-TPS. Based on the three kinds of distances, distances obtained TPA-Margomulyo, Margomulyo-Ahmad Yani, Margomulyo-TPS, TPS Ahmad Yani, and Toll-TPS. The distances will be used in determining the best route depending on the location of polling stations and roads as well as the hours passed.

Step 2
Make the initial, \(R = [0] \), which means the truck start of the station.

Step 3
Choosing the best TPS is based on the distance to the station. TPS has the closest distance to the station will be assigned the first time. For example, the selected TPS is TPS Tanjung Sari (26). Existing routes modified to be \(R = [0 \ 26 \ \text{inf}] \). These means the truck start of Station (0) heading to the polls Tanjung Sari (26), and then transport the waste to landfill (inf). If a location has been assigned, the site will be deleted.

Step 4
Calculate travel time (total_time) for the assigned route by considering time-dependent. Then t check, adjust Estimation Time with t to obtain the travel time.

Step 5
Check whether another location if one is assigned, the time will exceed the working hours. If not, then the other locations will be assigned based on step 6. If the time exceeds hours of work, will do step 7.

Step 6
Choose the best location based on the distance to the landfill. If a location has been assigned, the site will be deleted. TPS is selected will be processed with Sequential Insertion method to get the best order in the next polling place. Sequential

<table>
<thead>
<tr>
<th>Table 2. Route example</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Table 3. Each comparison of working time

<table>
<thead>
<tr>
<th>Working time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Hours</td>
</tr>
<tr>
<td>8 hours</td>
</tr>
<tr>
<td>9 hours</td>
</tr>
<tr>
<td>10 hours</td>
</tr>
</tbody>
</table>

Insertion principle of the method is described in the next paragraph. Return to step 5.

Step 7
Trucks will be returning to the station. Routes will be modified to be \(R = [0 \ \text{... \ inf \ 0}] \). Next create another route for trucks to repeat step 2 until all locations have been assigned.

Sequential Insertion working step method:

Step 1
Getting the initial route and location will be placed. Illustrations can be seen in Figure 1.

Step 2
The new location can be placed in 2 alternative venues, in one location after Depo/station before or after the location 1. Location and TPA is a unity because after taking the garbage trucks in one location, the truck should go to the landfill to dispose of garbage in the container. After taking out the trash, the new truck can go to the next location.

Step 3
The existence of two alternative placements made there are 2 alternative routes, namely R1 = Station - 2 - TPA - 1 - Landfill Station and R2 = Station - 1 – TPA - 2 - TPA - Station.

Step 4
The alternative route is calculated total_waktu by considering time-dependent and compared. If R1 is better, then the selected R1. If R2 is better, then the selected R2.

Step 5
Routes that have been selected will be the initial route for the next iteration. If the heading should run into more than one line, the run-over should be flushed left.

Results and Discussion

After entering all the data into the program,
to read routes are Depo/Station - Location 1 - TPA - Location 2 - TPA - Area 3 - Depo. Route always starts and ends at the depo. After hauling trash in one location, the truck will go directly to the landfill.

Because the determination of the 8-hour working time using the Sequential Insertion provide service that exceeds the number of available truck capacity, the necessary adjustments to the hours of work trucks. Adjustments made to working hours 9 hours and 10 hours. Initial conditions that TPA-Depo travel time does not include the specified working hours and there is tolerance time 1 hour after working hours to facilitate the time the truck back from the landfill to remain valid Depo.

The final result was 81 for the 8-hour working time, 77 working hours service for 9 hours, and 70 routes to 10 hours working time. The numbers of routes that can be caused by many landfill sites are so far from the polling stations and adjacent to the depot. Options for the truck transportation of municipal solid waste Surabaya has 3 alternative working hours depend on the number of trucks available. If the time to maintain current employment, and Sanitation Department should increase the number of trucks available. When choosing to change work hours, counseling should be done in order to know the truck driver hours of work assigned to them. The addition of salary does not happen because the current truck driver has 24 hours standby.

Conclusion

Based on the analysis and the results of past studies, it can be concluded basis for determining the change of location to the effective time of the assignment does not affect the reduction in truck. This shows the actual transport of Surabaya city garbage truck fleet shortages within hours to perform the available work.

Some alternatives are given to resolve the issue. The first alternative is to maintain the working hours for 8 hours and add 11 trucks transporting waste to complete the route. The second alternative is to adjust working hours to 9 hours with the addition of smaller trucks with 7 trucks. The third alternative is to use existing truck with working hours of 10 hours.

Acknowledgment

Researchers would like to thank Landscape and Sanitation Department Surabaya and the reviewers who have made this a better paper.

References