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ABSTRACT: In recent years meshless methods have been developed as alternatives to the well-
known and widely used finite element method. The main objective in developing meshless methods is 
to overcome the difficulty of meshing and remeshing procedure of complex structural elements, which 
is one of the drawbacks of the finite element method. In meshless methods, element definition is no 
longer needed to discretize the problem domain, only nodal points definition and boundary conditions 
of the domain are necessary. This paper presents the concepts behind some prominent meshless 
methods: element-free Galerkin, meshless local Petrov-Galerkin, and finite point method. The 
derivations of these methods for solving 2D elasticity problems will also be presented and applied to a 
case problem. The results will then be compared with the ones obtained by finite element method and 
exact solutions. 

KEYWORDS: Finite Element Method, meshless, Element-Free Galerkin, Meshless Local Petrov-
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1. INTRODUCTION 

Finite element method has been widely-known and well-accepted to be used in many engineering 
applications. However complex engineering problems, usually the ones involving a continuous change 
in the geometry of the problem domain caused by crack propagation or large deformation, cannot be 
solved easily using finite element method, as they require the a lot of “remeshing” procedure to ensure 
that the problem discretization still coincides with the geometry of the real structure as it continuously 
changes. Meshless methods provide alternatives to overcome this problem as they, unlike finite 
element method, do not require the definition of elements to discretize the problem domain.  

To discretize the problem domain, meshless methods require only the definition of nodal points. The 
rediscretization procedure of the problem domain as it continuously changes is done by adding and/or 
moving nodal points only, without the need of redefining elements in each rediscretization. Thus the 
complex “meshing” and “remeshing” procedure is no longer needed, or in some cases significantly 
reduced. 

During recent years, many meshless methods have been proposed and developed. Among them, the  
element-free galerkin [1], meshless local petrov-galerkin [2], and finite point method [3] can be 
considered as the prominent ones. This paper will present the concept and derivation of the three 
aforementioned methods for solving 2D elasticity problems. The results obtained from these methods, 
as they are applied to a test problem, will be compared to the ones obtained by using finite element 
method. 
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2. THEORY OF ELASTICITY 

The governing differential equation required to be satisfied at all points in the domain, Ω, for two 
dimensional problem, homogeneous and isotropic material, is defined as 

 σij,j + Fi = 0, (1) 

where i and j at the index represent the numbers 1 and 2 (or direction x and y in the two dimensional 
domain), σij,j are the stress components corresponding with the displacement field ui, and Fi are the 
body force components acting the direction i at Ω. The boundary conditions of the domain, Γ = Γu U  
Γt , are as follows: 

 ui = iu    at  Γu, (2a) 

 ti  = it     at  Γt, (2b) 

where the surface tractions are defined by ti = σij . nj, where nj are the units normal to the boundary Γ, 
iu  and it  are the prescribed values of the displacements and tractions at the boundary Γu and Γt, 

respectively. Γu symbolizes the essential boundary, Γt symbolizes the non-essential boundary. 

3. MESHLESS METHODS 

Generally meshless methods, to keep its local character, use a local approximation to represent the 
values of the unknown variables at some random nodal points with the trial function. Next, the most 
widely used local approximation for meshless methods, the moving least-squares approximation, will 
be discussed. It will be followed then by the concepts and derivations of the three aforementioned 
meshless methods for solving 2D elasticity problems. 

3.1. MOVING LEAST-SQUARES (MLS) APPROXIMATION  

In meshless methods, spatial discretization can be obtained by using MLS approximation which does 
not require the definition of elements, but uses nodal “selection” procedure instead. This 
approximation is introduced by Lancaster and Salkauskas [4]. Thus, MLS approximation is very 
suitable to form the shape function used in the meshless methods. At the domain Ω, the MLS 
approximation function (trial function), uh(x), for the displacement function u(x) is expressed by the 
vector of the polynomial basis function, pT(x), and the vector of coefficients, a(x), as follows 

 uh(x) = ∑
=

m

j 1
pj(x) aj(x) = pT(x) a(x), (3) 

where pj(x) is the monomial at the spatial coordinate xT = ⎣x, y⎦, and m is the number of monomial in 
the basis function. The general form of the basis function with the degree s on two dimensional can be 
expressed by pT(x) = ⎣1,…., xs, xs-1 y,….., xys-1, ys⎦. The term “moving” is used due to the 
dependability of coefficient a to the variable x, whereas the weight function wI(x) = w(x - xI) is 
defined for every different evaluation point x at the domain. 

Considering that the coefficient a in Equation 3 does not have a physical meaning, the approximation 
of displacement field values needs to be modified by stating coefficient a as d.o.f. at nodal u, so that 
an equation similar to that of the interpolation function used in the finite element method can be 
obtained as 
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 uh(x) = φT(x) . û = ∑
=

n

I 1
φI(x) ûI ;        uh(xI) ≡ uI ≠ ûI (4) 

where φI(x) denotes the shape function from the MLS approximation, where φI(x) = 0 if the weight 
function wI(x) = 0, and n is the number of nodes around the evaluation point x, only in the areas where 
wI(x) > 0 (also known as the domain of definition of the point x). The support of a weight function 
(also known as the domain of influence of a node) refers to the subdomain where the value of the 
weight function is not equal to zero. The illustration of the MLS approximation’s shape function can 
be seen in Figure 1. It is important to understand that ûI is not the real nodal values of the unknown 
trial function uh(x), instead it represents the fictitious nodal values. The difference between uI dan ûI 
on one dimensional problems can be described in Figure 2. 

 

 

 

 

     Figure 1. Illustration of the shape function            Figure 2. The difference between 
                 used in meshless methods[5]                    uI dan ûI displacement[2] 

3.2. ELEMENT-FREE GALERKIN (EFG) 

EFG is first introduced by Belytschko et al. [1]. Although the definition of elements is no longer 
needed in EFG method, this method still cannot be considered as “truly meshless” because it requires 
the use of a background cell in the problem domain to execute the numerical integration procedure 
(Figure 3). The weak form of the governing equations are satisfied globally in this method. Thus, the 
numerical integration is done in the whole domain. This procedure requires a lot of quadrature points 
to be defined and placed in each of the background cells. 

In EFG, the displacement field ui acts as a trial function, and the virtual displacement field δvi serves 
as a test function. Multiplying the test function to the both sides of the governing equation, followed 
by integrating on the domain Ω will give 

 ∫
Ω

(σij, j + Fi) δvi dΩ  = 0. (5) 

By applying differentiation by parts, Gauss divergence theorem, and noting that ti = σij.nj (where ti = 0 
at Γ, except at the boundary Γt where ti = it ), the following is obtained 

 ∫
Γt

it δvi dΓ + ∫
Ω

Fi δvi  dΩ  – ∫
Ω

σij δvi, j dΩ  = 0 (6) 

x1 x2

⎯u Iû Iu

uh(x) 

x 
Boundary node 

xIShape

Domain of influence 
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The shape function of the MLS approximation does not have the Kronecker delta property, thus φI(xJ) 
≠ δIJ, where φI(xJ) is the shape function of the nodal I evaluated on the nodal point xJ, and δIJ is the 
Kronecker delta (where δIJ = 1 if I = J, and δIJ = 0 if I ≠ J). Due to this property, the trial function does 
not satisfy the essential boundary conditions, ui = iu  at Γu. In EFG the Lagrange multiplier is 
introduced to overcome this problem, giving the equation 

 ∫
Ω

σijδvi, j dΩ  –∫
Ω

Fiδvi dΩ  – ∫
Γt

it δvi dΓ  – ∫
Γu

(ui – iu )δλi dΓ  – ∫
Γu

λiδvi dΓ = 0, (7) 

where λi and δλi are the Lagrange multiplier and variation of Lagrange multiplier, respectively. 

 

 

 

 

 

 

 

                   (a)                                                                                   (b)  

Figure 3. Numerical integration area (a) using the background cell over the 
 entire problem domain in EFG[6], and (b) over the local subdomain in MLPG[6] 

3.3. MESHLESS LOCAL PETROV-GALERKIN (MLPG)  

The weak form on MLPG are not satisfied globally on the entire problem domain Ω, but it is done in 
the local subdomain (leading to the term Local Symmetric Weak Form) which resides entirely inside 
the global domain Ω, thus the MLPG can be considered as “truly meshless” (Figure 3). Moreover, the 
essential boundary conditions (ui = iu  pada Γu) also cannot be satisfied directly in this method using 
the MLS approximation. MLPG solves this problem by introducing the use of a penalty function. 
MLPG is first introduced by Atluri et al. [2]. 

By multiplying the test function to both sides of the local weak form of the governing equations given 
in Equation 1 and the boundary conditions given in Equation 2 and introducing the penalty method, 
the following is obtained 

 ∫Ω te
I

(σij,j + bi) vi dΩ  –  α∫Γ su
I

(ui  –⎯ iu ) vi dΓ  = 0, (8) 

where su
IΓ  is the intersection of Γu with the boundary te

IΩ∂ , ui and vi are the trial function and the 
test function respectively, and α is the penalty function. Using the differentiation by parts and the 
Gauss divergence theorem, and taking into account the non-essential boundary conditions, the 
following local symmetric weak form is obtained : 

= Integration Area  

= Integration Area (Local subdomain)

= Problem Domain 

Mapping 
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 ∫ Ω∂ te
I

σij vi, j dΩ  + α∫Γ su
I

ui vi dΓ  – ∫Γ su
I

ti vi dΓ = ∫Γst
I

it vi dΓ  + α∫Γ su
I

iu vi dΓ  + ∫Ω te
I

Fi vi dΩ , (9) 

where ti = σij.nj , and st
IΓ  is the intersection of Γt and boundary te

IΩ∂ .  

3.4. FINITE POINT (FP)  

Finite point method, proposed by Onate et al. [3], uses the the point collocation scheme to eliminate 
the integral appearing in the general weighted residual form.  

 

 

 

 

 

 

Figure 4.  Collocation points where the governing differential equations 
are satisfied in Finite Point Method [6] 

Weighted residual method is a common procedure to solve the governing differential equation 
numerically, where the displacement function u is approximated by a trial function uh giving 

 ( ) ( ) 0
t

h h h
II i i I i i i i

u

W A u F d W B u t d W u u d
Ω Γ Γ

+ Ω+ − Γ+ − Γ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦∫ ∫ ∫ , (10) 

where , , dan II IW W W  denote the weight functions corresponding with Equation 1 and the boundary 
conditions in Equation 2 respectively. Point collocation is then used to eliminates the integral 

appearing in Equation 10 and the weight function is set to II IW W W= = ( )Ix xδ= − , with the Dirac 
delta component as follows  

 ( )
0,

1,
I

I
I

x x
x x

x x
δ

≠
− =

=

⎧
⎨
⎩

 (11) 

The discrete equations in finite point method is obtained by substituting the approximation function of 
the displacement, uh, to the governing differential equation stated in Equation 1 and boundary 
conditions in Equation 2, combined with the application of point collocation procedure. The discrete 
equations are given as 

  [ A ( )h
iu  + Fi ]p = 0       at Ω,       p = 1, 2,. . . Nr ,  (12a) 

 [ ( )h
iu  ]s  = iu       at Γu ,       s = 1, 2,. . . Nu , (12b) 

 [ B ( )h
iu  - it  ]r = 0       at Γt ,       r = 1, 2,. . . Nt ,  (12c)  

= Collocation Points
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where Nr  is the number of nodal points on the domain Ω, except the ones at the boundary Γu and Γt, 
while Nu  and Nt  are the numbers of nodal points at the boundary Γu and Γt respectively. A and B 
symbolizes the differential operator to define the governing differential equations need to be satisfied 
at Ω dan Γt  respectively, where A ( )h

iu  = σij, j and B ( )h
iu  = σij nj [7]. 

4. TEST PROBLEM AND DISCUSSION 

Consider an infinite plate with a central hole. The hole is a circle defined by x2 + y2 ≤ a2, where a is the 
radius of the circle. The plate is subjected to a uniform tension, σ = 1, in the x direction, as shown in 
Figure 5a. The exact solutions for stresses, given by Timoshenko et al. [8], are 

 ( ) { }2 4

2 4

3 3
, 1 cos 2 cos 4 cos 4

2 2x

a a
x y

r r
σ θ θ θ= − + + , (13a) 

 ( ) { }2 4

2 4

1 3
, cos 2 cos 4 cos 4

2 2y

a a
x y

r r
σ θ θ θ=− − + ,    (13b) 

 ( ) { }2 4

2 4

1 3
, cos 2 sin 4 cos 4

2 2xy

a a
x y

r r
σ θ θ θ= − + + , (13c) 

where (r, θ) are the polar coordinates and θ is measured from the positive x axis counterclockwise. 
                

 
      
 
 
 
 
 
 
 
                        

Figure 5. (a) Infinite plate with a center hole, and (b) its upper right part, 
with the traction at the outer boundary [9] 

 
Due to symmetry, only a part of the upper right quadrant of the plate is modeled, as shown in Figure 
5b. Symmetry conditions are imposed on the left (ux = 0, ty = 0) and bottom (uy = 0, tx = 0) edges, and 
the inner boundary at a = 1 is traction free. The non-essential boundary conditions given by the exact 
solution in Equation 13 are imposed on the right and top edges. 

This test problem has been evaluated previously by using each of the three aforementioned meshless 
methods. Belytschko et al. [1], Atluri et al. [9], Onate et al. [7] evaluated the test problem using the 
EFG method, MLPG method, and FP method, respectively. Here, the results are presented and 
compared. The variable to be compared is the normal stress in the horizontal direction along the line 
x=0. The results from the three meshless methods will then be compared by the ones obtained by using 
the finite element method. The finite element method analysis is done by SAP2000 [10] program. The 
plotted stress results are presented in Figure 6. 
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(c) (d) 

Figure 6.  The plotted stress results from the plate with a center hole obtained by using 
(a) EFG method [1] (b) MLPG method [9] (c) FP method [7], and (d) Finite Element Method [5] 

As seen in Figure 6, all methods used yield relatively good results compared to the exact solutions 
given in Equation 13. Results from EFG and MLPG methods also show the convergence property. In 
the results obtained by using finite element method, it can be seen that the plot is not as smooth as the 
ones obtained by using the meshless method. This is due to the fact that the shape function obtained 
from the MLS approximation itself is already smooth in geometry as shown in Figure 1, and its shape 
function derivatives also have smooth and continuous character although the basis function used may 
only be a linear one. The approximation function used in meshless methods also allows any points in 
the domain to be approximated by using more number of nodes than the unknown variables due to its 
least squares property. The finite element method used in SAP2000 uses the bi-linear basis function in 
its interpolation scheme. Due to its linear interpolation feature, the smoothness of the plotted results 
relies strongly on the number of nodes used. Table 1 provides a closer look at the numerical values 
obtained from the plotted results shown in Figure 6. 

Table 1. σx at x = 0 for the plate with a center hole [5] 

Method used y = 1 y = 2 y = 3 y = 4 y = 5 
Finite Element Method (54 nodes) 2.78 1.25 1.1 1 0.93 
Element-free Galerkin (54 nodes) 2.63 1.21 1.06 1.01 0.97 
Meshless Local Petrov-Galerkin (54 nodes) 2.96 1.22 1.05 1.02 1.01 
Finite point (60 nodes) 2.75 1.24 1.13 1 0.91 
Exact solution 3 1.23 1.07 1.04 1.02 
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5. CONCLUSIONS 

Each meshless method has its own specific character and feature, but all of them emphasizes on the 
unnecessity to define elements in the discretization of the problem domain. EFG method, being the 
first well published meshless method, is not truly meshless in a sense that it still requires a background 
cell to evaluate the weak form.  MLPG does not require a background cell and evaluates the weak 
form over intersecting local sub-domains, therefore it is “truly meshless”. FP method has the 
advantage over the other methods since absolutely no integration scheme is needed in the weak form 
evaluation due to the use of point collocation scheme, but it has been considered that by using point 
collocation scheme, more nodes are required to achieve the same degree of correctness.  

The test problem shows that meshless methods have the advantage over the finite element method due 
to the smoothness of the shape function and shape function derivatives used, aside from its obvious 
advantage that absolutely no elements need to be defined in the problem domain discretization. With 
the advantages and room for improvement, meshless methods deserve more research and attention as 
an alternative to the widely-known finite element method. 
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