
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 9, Number 22 (2014) pp. 15395-15406
© Research India Publications
http://www.ripublication.com

Paper Code:

Java Characters Recognition using Evolutionary
Neural Network and Combination of Chi2 and

Backpropagation Neural Network

GregoriusSatiaBudhi1* and Rudy Adipranata1

1 Informatics Department, Industrial Technology Faculty, Petra Christian University,
Surabaya, Indonesia.

*E-mail: gregorius@petra.ac.id

Abstract

Javanese language is the language used by the people on the island of Java

and it has its own form of letters called Java characters. Recognition of Java
characters is quite difficult because it consist of basic characters, numbers,
complementary characters, and so on. In this research we developed a system
to recognize Java characters and compared two methods of neural network
namely evolutionary neural network and combination of Chi2 and
backpropagation neural network. Input for the system is a digital image of Java
characters. Before entering into the neural network, the digital image is
processed by reducing noise, segmentation and thinning and feature extraction.
From experimental result, evolutionary neural network has 60% average
recognition accuracy, while combination of Chi2 and backpropagation network
has 70% average recognition accuracy.

Keywords: Java characters recognition, Evolutionary neural network, Back-
propagation neural network, Chi2.

Introduction

Javanese language is the language used by the people on the island of Java and it
has its own form of letters called Java characters. Recognition of Java characters is
quite difficult because it consist of basic characters, numbers, complementary
characters, and so on. Several researches for recognition of Java characters have been
made. Recognition using fuzzy logic with input of a 15x15 pixel of Java character
image which will be recognized as one of the 20 basic Java characters (carakan
characters) is done in [1]. The research was conducted by using MATLAB Toolbox.

15396 Gregorius Satia Budhi and Rudy Adipranata

The researcher noted that the results are satisfactory. Another research conducted by
[2], also perform basic Java character recognition using backpropagation neural
network. Implementation is also done using MATLAB toolbox. Accuracy of the
recognition results is approximately 61%. Budhi and Rudy [3] also have done
research comparing bidirectional associative memory, counterpropagation and
evolutionary neural network for Java character recognition. Their results showed that
the evolutionary neural network has a higher accuracy than the other two methods.

In this research we developed a system to recognize Java characters not only
basic Java characters, but also numbers and sandhangan characters. We used
evolutionary neural network for recognition and also we wanted to improve the
accuracy of backpropagation neural network results by combine it with Chi2. We
compared both results to determine which one better for Java character recognition.
After being recognized, the Java characters will be converted to Hanacaraka font.

Input for system is a digital image of Java characters. The digital image will be
processed to reduce its noise. Later, to get the character, segmentation and thinning
process is done on digital image. After that, we do feature extraction to get the feature
of each Java characters. The feature will become input for the neural network.

Java Characters

Java characters are differs from the commonly used Latin characters. Java
characters have different shape and structure with the Latin characters. Carakan
characters is the core of Java characters consisting of 20 syllables called
Dentawyanjana, can be seen in Figure 1 [4].

Figure 1. Basic characters (Carakan)

For numbers in Java characters can be seen in Figure 2 [4].

Figure 2. Numbers

Java Characters Recognition using Evolutionary Neural Network 15397

Sandhangan character is commonly used as complementary character, vowel or
consonant that are commonly used in everyday language. Sandhangan can be seen in
Figure 3 [4].

Sandhangan name Java character Description

Wulu Vowel i
Suku

Vowel u

Taling

Vowel é

Pepet

Vowel ê

Talingtarung

Vowel o

Figure 3.Sandhangan characters

Skeletonizing

Skeletonizing or thinning is the process to get rid of the extra pixels and produces
images that are more modest. The purpose of skeletonizing is made simpler image so
that the image can be analyzed further in the way of its shape and suitability. Problem
encountered in conducting thinning is how to determine the pixels are redundant. If
we cannot determine it, the thinning process is more likely to an erosion process
where erosion can cause a region is deleted. Skeleton should remain intact and have
some basic properties such as [5]:
• Must consist of several thin regions, with a width of 1 pixel.
• Pixels that form the skeleton should be near the middle are of the cross section of

the region.
• Skeletal pixel must be connected to each other to form several regions that are

equal to the number of region in original image.

The basic idea is to determine whether a pixel can be removed just by looking at

the 8 neighbors of the pixel. There are two terms that are used to determine whether a
pixel can be removed or not. The first requirement is as follows:
• A pixel can be removed only if it has more than one and less than 7 neighbors.
• A pixel can be removed only if it has a counting index equal to one.
• A pixel can be removed only if at least one of its neighbors that are in the direction

of 1, 3, or 5 is the pixel that indicates the background.
• A pixel can be removed only if one of its neighbors that are in the direction of 3, 5,

or 7 is the pixel that indicates the background.

The second requirement is approximately the same as the first but different

requirements on the last two steps [5]:
• A pixel can be removed only if at least one of its neighbors that are in the direction

of 7, 1, or 3 is the pixel that indicates the background.
• A pixel can be removed only if one of its neighbors that are in the direction of 1, 5,

or 7 is the pixel that indicates the background.

15398 Gregorius Satia Budhi and Rudy Adipranata

Evolutionary Neural Network

Evolutionary neural network (ENN) is a combination of a neural network with
evolutionary algorithm. Although the neural network can be used to solve various
kinds of problems, it still has some limitations. A common limitation is usually
associated with network training. Backpropagation learning algorithms are often used
as flexible and easy to implement had serious drawbacks, which cannot guarantee that
the optimal solution is given. Another difficulty is related to selecting the optimal
network topology for the neural network. Network architecture that is appropriate for
certain cases more often chosen from heuristic methods, and neural network topology
design is still an art than a technique. This shortcoming can be addressed using
evolutionary algorithm.

Evolutionary algorithm refers to a probabilistic adaptation algorithm inspired
from natural evolution. This method follows the statistical search strategies in a
population of individuals, each representing a possible solution to the problem.
Evolutionary algorithm divides into three main forms, namely: evolution strategies,
genetic algorithms, and evolutionary programming [6].

In this research, the evolutionary algorithm used is the genetic algorithm. Genetic
algorithm is an effective optimization technique that could help both the optimization
of weight and selecting the network topology. In order to use genetic algorithm, first a
problem must be represented as a chromosome. For example, when we want to look
for a set of optimal weight of a multilayer feed forward neural network, the first step
in solving this problem is the system should make the process of encoding of the
network into a chromosome, can be seen in Figure 4.

Figure 4. Encoding a network into a chromosome

The second step is to define the fitness function to evaluate the performance of
the chromosome. This function must be calculated given the performance of the
neural network. We can implement a simple function from squared errors. To evaluate

Java Characters Recognition using Evolutionary Neural Network 15399

the fitness of the chromosomes, each chromosome weight is given to each link in the
network. Training of examples collections are then presented to the network, and the
number of squared errors is calculated. Small squared errors indicate that the
chromosome is more fit than the other. In other words, genetic algorithm seeks to find
a set amount of weight that has the smallest squared errors.

The third step is to choose the genetic operators, namely crossover and mutation.
Crossover operator requires two parent chromosomes and creates a child with genetic
material from both of its parent. Each gene of the child chromosome is represented by
the corresponding genes of randomly selected parent. Mutation operator randomly
selects a gene and replaces it with a random result between -1 to 1. By doing so, the
system is ready to apply genetic algorithms. However, users still need to define the
number of population, the number of networks with different weights, the probability
of crossover and mutation as well as the number of generation [7]. Crossover and
mutation process can be seen in Figure 5 and Figure 6.

Figure 5. Crossover operation

15400 Gregorius Satia Budhi and Rudy Adipranata

Figure 6. Mutation operation
Backpropagation

Backpropagation neural network is a neural network that uses a multilayer feed-
forward architecture and trained using backpropagation algorithm. This method is
widely used to solve many problems such as pattern recognition, classification and
generalization [8].
Stages of backpropagation training algorithm are as follows [9]:
Feed-forward phase (7 steps):
0: Initialize weight (random value between 0-1) and the learning rate α
1: While the stop condition is not met, do step 2-13
2: Perform steps 3-13 as the desired number of training
3: For each hidden layer and output layer do steps 4-13
4: Calculate the input of each node in the hidden layer using equation 1

 1
_ *

n

j i ij
i

z in x w

 (1)

5: Calculate the output of each node in the hidden layer activation function using
equations 2 and 3

 (_)j jz f z in
(2)

)exp(1
1)(1 x

xf

(3)

6: Calculate the input of each node in the output layer using equation 4

 1
_ *

n

k j jk
j

y in z w

(4)

7: Calculate the output at each node in the output layer using equation 5

 (_)k ky f y in (5)

 Error-backpropagation phase (6 steps):
8: Calculate the error of each node in the output layer with the deactivation function

using equations 6 and 7
 ()* '(_)k k k kt y f y in (6)
)](1)[()(11

'
1 xfxfxf (7)

9: Calculate the change in weights in each output node in each layer using equation 8

Java Characters Recognition using Evolutionary Neural Network 15401

 *jk kw (8)
10: Calculate the error of each node in the hidden layer to deactivate the function

using the equation 9

 1
(*)* '(_)

n

j k jk k
k

w f z in

(9)

11: Calculate the change in weight on each node in each hidden layer using equation 10

 *ij jw (10)
12: Update the weights at each node in the output layer using equation 11

 () ()jk jk jkw new w old w (11)
13: Update the weights on each node in each hidden layer using equation 12

() ()ij ij ijw new w old w (12)
Chi2

Chi2 algorithm [10] is an algorithm that uses the χ2 statistic to discretize numeric
valued attributes. Therefore, this algorithm is quite effective if used in the selection of
the important features of a group of numerical attributes. By using the features that
are relevant, then this algorithm can speed up the training process and improve the
prediction accuracy of classification algorithms in general. And as addition, there are
many classification algorithms that require and work better on discrete training data.

In use, the Chi2 algorithm is divided into two phases. The first phase begins with
the high enough significance value, e.g 0.5, on all attributes for discretization. The
process of merging the data will continue for χ2 value does not exceed the specified
value of significance (0.5, yielding a value 0.455 with degree of freedom equal to 1).
This phase will be repeated by reducing the value of significance, until the number of
inconsistent data in the discretization exceeds the specified limits. The equation to
calculate the value of χ2 can be seen at equation 13.

 (13)

k = number of classification,
Aij = number of pattern at interval - i, classification - j,
Ri = number of pattern at interval - i = ,
Cj = number of pattern at interval - j = ,
N = total number of pattern = ,
Eij = the pattern expected from Aij= , if or equal to 0, Eij

shouldchange to 0.1.

The second phase is the optimization stage of the first phase. The most visible

difference is the calculation of inconsistency. In second phase, calculation is done
after all the attributes through the merger process. While in the first phase,
inconsistent value is calculated at the end of each attribute discretization process. The
second phase will be repeated until there are no values of attributes can be discretized
or combined. Inconsistency occurs when there are several samples that all of its

15402 Gregorius Satia Budhi and Rudy Adipranata

attributes have the same value, but, they belong to different groups.

System Design and Implementation

Input for the system is a Java characters digital image in JPEG, PNG or bitmap
format. We do several digital image processing, namely grayscaling, highboost filtering,
low-pass filtering, and thresholding. Highboost filtering and low-pass filtering is used
to reduce digital image noise. Thresholding is used to convert grayscale image to
binary image.

Then the digital image is segmented and skeletonized to get each Java
character. After that, feature extraction is done using ICZ-ZCZ method [11]. The all
steps for those processes can be seen in Figure 5.

Figure 5. Digital image processing and feature extraction

For each input image, segmentation is done to get all the Java characters that are

in the picture. Then we do resizing into 40x40 pixels for each Java characters. Before
doing feature extraction, we skeletonized to eliminate the line thickness of character.
For feature extraction, we used ICZ-ZCZ method. ICZ (Image Centroid and Zone) –
ZCZ (Zone Centroid and Zone) is zoning type feature extraction that utilizing centroid
of the image or centroid of the zone. In this research, each image is divided into 20
zones (4 * 5) so that we got 20 output values for ICZ and 20 output values for ZCZ
value. This 40 output values from ICZ-ZCZ will become input neurons for neural
network.

For evolutionary neural network (ENN), the input layer consists of 40 neurons
corresponding to the number of outputs from ICZ-ZCZ, but for backpropagation
neural network (BPNN), before entering into the input layer, the data from ICZ-ZCZ
will be processed using the Chi2. The results of Chi2 are 60 values, combined with
the 40 initial values, will be the input neurons for BPNN.

Output layer for both of ENN and BPNN consist of 31 neurons. Those 31
neurons are in accordance with the number of Java character used in this research.
Each neuron has a value of 0 or 1. For the first character, then the first neuron is 1,
while other neurons are 0. For the second character, then the second neuron is 1,
whereas other neurons are 1, etc. The number of neuron in other layer is 60 neurons
for both of ENN and BPNN.Interface for our system can be seen in Figure 6 and
Figure 7.

Java Characters Recognition using Evolutionary Neural Network 15403

Figure 6. System interface for recognition

Figure 7. System interface for neural network training

Result and Discussion

To gettheresultsofthecomparison,weperformexperimentusingthesampledatathat
has been trained before and the sample data that hasn't been trained before. The
number of sample data for training is 15 samples for each character (total 31 Java
characters). And for testing we also use 15 sample data for each Java characters. We
perform two kinds of experiments in which the first experiments conducted training
and testing for all types of Java character, while in the second experiment conducted
training and testing for each type of Java character (basic, number and sandhangan).
In Figure 8 can be seen one example of our sample.

15404 Gregorius Satia Budhi and Rudy Adipranata

Figure 8. Example of sample data

For evolutionary neuralnetwork method, we use the followingparameters: number
of neuron for each layer: 60, crossover probability: 100%, mutation probability: 50%,
maximum population: 50, maximum epoch: 10 million and error limit: 0.1. The
experimental result can be seen in Table 1.

Table 1. The recognition accuracy for all type of Java characters using ENN

Number of layer Data type Recognition accuracy (%)
1 layer Training data 93.33
 Testing data 48.83
2 layer Training data 92.21
 Testing data 60.23

This experimental result in Table 1 is done using all type of Java characters,
while the experimental result for each type of Java characters (basic / carakan,
numbers and sandhangan) can be seen in Table 2.

Table 2. The recognition accuracy for each type of Java characters using ENN

Java characters type Number of layer Data type Recognition
accuracy (%)

Basic character/carakan 1 layer Training data 96.73
 Testing data 45.38
 2 layer Training data 95.21
 Testing data 49.72
Numbers 1 layer Training data 98.54
 Testing data 54.25
 2 layer Training data 97.62
 Testing data 60.10
Sandhangan 1 layer Training data 92.30
 Testing data 60.52
 2 layer Training data 88.46
 Testing data 53.87

From experimental results, it can be seen that average recognition accuracy of

evolutionary neural network is about 93% for data that has been trained before and
60% for testing data.

Experiment using combination Chi2 and BPNN is done using parameters: one
hidden layer, number of neuron in hidden layer: 60, maximum epoch: 1000, learning
rate: 0.1, initial input neuron: 40, combined with Chi2 algorithm to become 100 input
neurons, output neuron: 31. Experimental result for all Java characters can be seen in
Table 3.

Table 3. Recognition accuracy for all Java characters type using Chi2 and BPNN

Java Characters Recognition using Evolutionary Neural Network 15405

Data type Recognition accuracy (%)
Training data 95.25
Testing data 70.50

For experiment using each of Java character type can be seen in Table 4.

Table 4. Recognition accuracy for each Java characters type using Chi2 and BPNN

Java characters type Data type Recognition accuracy (%)
Basic character /carakan Training data 97.84
 Testing data 62.68
Numbers Training data 98.26
 Testing data 76.69
Sandhangan Training data 99.37
 Testing data 81.42

The overall comparison between ENN and combination of Chi2 and BPNN can
be seen in Table 5.

Table 5. Overall comparison

Java characters type Data type Recognition accuracy (%)
ENN 1 layer ENN 2 layers Chi2 and BPNN

All characters type Training data 93.33 92.21 95.25
 Testing data 48.83 60.23 70.50
Basic character/carakan Training data 96.73 95.21 97.84
 Testing data 45.38 49.72 62.68
Numbers Training data 98.54 97.62 98.26
 Testing data 54.25 60.10 76.69
Sandhangan Training data 92.30 88.46 99.37
 Testing data 60.52 63.87 81.42

From experimental result in Table 5, it can be seen that average recognition

accuracy of Chi2 and BPNN is greater than ENN. The average recognition accuracy
of Chi2 and BPNN using data has been trained before is 95% and 70% for data hasn’t
been trained before. This accuracy is affected by some Java characters that similar one
to each other. Their features extracted may be recognized as same character.

Conclusion

In this research, we have developed Java character recognition system and
compare the use of evolutionary neural network and combination of Chi2 and
backpropagation neural network. From experimental result, combination of Chi2 and
backpropagation neural network could perform better accuracy than evolutionary
neural network for Java characters recognition. Its recognition accuracy could reach
95% for data has been trained before and 70% for data hasn’t been trained before. For
future research could be focused using another method for segmentation and feature

15406 Gregorius Satia Budhi and Rudy Adipranata

extraction that can differentiate similar Java characters in order to increase
recognition accuracy.

Acknowledgement

This research was funded by Research Competitive Grant DIPA-PT Coordination
of PrivateHigher Education Region VII, East Java, Indonesia
(20/SP2H/PDSTRL_PEN/LPPM-UKP/IV/2014), fiscal year 2014. We also thank
Edwin PrasetioNandra, Danny Setiawan Putra, Eric Yogi Tjandra, Evan Sanjaya,
Jeffry Hartanto, Ricky FajarAdi Edna P., and Christopher H. Imantaka for their help
in doing the system coding.

Reference

[1] Priyatma, J. E. danWahyuningrum, S. E., 2005. Java Character Recognition
Using Fuzzy Logic. SIGMA vol 8, No 1, pp 75-84.

[2] Nurmila, N., Sugiharto, A., danSarwoko, E. A., 2010. Back Propagation Neural
Network Algorithm For Java Character Pattern Recognition,
JurnalMasyarakatInformatikavol 1, no 1, pp 1-10.
(http://ejournal.undip.ac.id/index.php/jmasif/ issue/view/38). Last access: 1
June 2013

[3] Budhi, GregoriusSatia and Rudy Adipranata, 2014. Comparison of Bidirectional
Associative Memory, Counterpropagation and Evolutionary Neural Network for
Java Character Recognition. In Proc. of The 2014 International Conference on
Advanced Informatics: Concepts, Theory and Applications, August 2014.

[4] Daryanto, 1999. KawruhBasaJawaPepak. Apollo, Surabaya.
[5] Parker, J.R., 2010. Algorithm for Image Processing and Computer Vision. New

York: John Wiley and Sons, Inc.
[6] Dewri, R., 2003. Evolutionary Neural Networks: Design Methodologies (http://

ai-depot.com/articles/evolutionary-neural-networks-design-methodologies/1/).
Last access: 30 January 2013.

[7] Negnevitsky, M., 2005. Artificial Intelligence: A Guide to Intelligence Systems
(2nd ed.). New York: Addison Wesley.

[8] Rao, Hayagriva V. and Valluru B. Rao., 1993. C++ Neural Networks And Fuzzy
Logic. New York: Henry Holt and Company.

[9] Fausett, Laurene, 1994. Fundamentals of Neural Networks. New Jersey: Prentice
Hall.

[10] Liu, H. and Setiono, R., 1995. Chi2: Feature Selection and Discretization of
Numeric Attributes. In Proc. of the 7th International Conference on Tools with
Artificial Intelligence, Washington D.C., Nopember, 1995. pp. 388-391

[11] Rajashekararadhya, S.V., Ranjan, Vanaja, 2005. Efficient zone based feature
extraction algorithm for handwritten numeral recognition of four popular South
Indian scripts. Journal of Theoritical and Applied Information Technology
4(12). pp. 1171-1181.

