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An enhancement of the FEM using Kriging interpolation (K-FEM) was recently pro-15
posed. This method offers advantages over the conventional FEM and mesh-free meth-
ods. With Kriging interpolation, the approximated field over an element is influenced17
not only by its own element nodes but also by a set of satellite nodes outside the ele-

ment. This results in incompatibility along interelement boundaries. Consequently, the19
convergence of the solutions is questionable. In this paper, the convergence is investi-
gated through some numerical tests. It is found that the solutions of the K-FEM with21
an appropriate range of parameters converge to the corresponding exact solutions.

Keywords: Finite element; Kriging; convergence.23

1. Introduction

In the past two decades various mesh-free methods have been developed and applied25

to solve problems in continuum mechanics [e.g. Liu (2003); Gu (2005)]. These meth-
ods have drawn the attention of many researchers partly due to their flexibility27

in customizing the approximation function for a desired accuracy. Among all the
mesh-free methods, those using the Galerkin weak form, such as the element-free29

Galerkin method (EFGM) [Belytschko (1994)] and the point interpolation methods
[Liu (2003)], maintain the same basic formulation as the FEM. However, although31

the EFGM and its variants have appeared in many academic articles for more than
a decade, their applications seem to find little acceptance in real practice. This is33

in part due to the inconvenience of their implementation, such as the difficulties in
constructing mesh-free approximations for highly irregular problem domains and in35

handling problems of material discontinuity [Liu (2003)].

∗Doctoral candidate.
†Professor of Structural Engineering.

1



1st Reading

February 2, 2009 16:9 WSPC/IJCM-j050 00178

2 F. T. Wong & W. Kanok-Nukulchai

A very convenient implementation of EFGM was recently proposed [Plengkhom1

and Kanok-Nukulchai (2005)]. Following the work of Gu [2003], Kriging interpo-
lation (KI) was used as the trial function. Since KI passes through the nodes and3

thus possesses the Kronecker delta property, special treatment of boundary con-
ditions is not necessary. For evaluating the integrals in the Galerkin weak form,5

finite elements could conveniently be used as the integration cells. KI was con-
structed for each element by the use of a set of nodes in a domain of influence7

(DOI) composed of several layers of elements. Thus, for 2D problems, the DOI is in
the form of a polygon. With this way of implementation, the EGFM of Plengkhom9

and Kanok-Nukulchai [2005] can be viewed as an FEM with Kriging shape func-
tions. This method is referred to as the Kriging-based FEM (K-FEM) in this11

paper.
The K-FEM retains the advantages of mesh-free methods as follows:13

(1) Any requirement for high order shape functions can be easily fulfilled without
any change to the element structure;15

(2) The field variables and their derivatives can be obtained with remarkable accu-
racy and global smoothness.17

A distinctive advantage of the K-FEM over other mesh-free methods is that it
inherits the computational procedure of the FEM so that existing general purpose19

FE programs can be easily extended to include this new concept. Thus, the K-
FEM has a higher chance to be accepted in practice. The current trend in research21

on the K-FEM is toward extension and application of this new technique to dif-
ferent problems in engineering, such as applications to Reissner–Mindlin (RM)23

plates [Wong and Kanok-Nukulchai (2006a, b)], problems with material discontinu-
ity [Sommanawat and Kanok-Nukulchai (2006)], and adaptive procedure [Mazood25

and Kanok-Nukulchai (2006)].
Dai et al. [2003] pointed out that the method using the standard Galerkin weak27

form with KI is nonconforming (incompatible) and so is the K-FEM. The very
important issue of incompatibility and its effect on the convergence of the K-FEM29

have not been addressed in the previous researches. In this paper we address the
incompatibility in the K-FEM — the reason why the K-FEM is not conforming is31

explained and existing techniques for restoring incompatibility are briefly discussed.
The convergence is scrutinized through some numerical tests in plane-stress and RM33

plate problems. First, the weak patch tests for each problem are performed. Then,
benchmark problems for plane-stress solids and for RM plates are solved. Relative35

error norms of displacement and strain energy are utilized to study the convergence.
The convergence characteristics of the K-FEM with Gaussian and quartic spline37

(QS) correlation functions are assessed and compared.
The present paper is organized as follows. Section 2 briefly reviews the formula-39

tion of KI. Its implementation in plane-stress/plane-strain and RM plate problems
is presented in Sec. 3. In Sec. 4, the incompatibility in the K-FEM is discussed.41
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Numerical studies on the convergence of the K-FEM are presented in Sec. 5, with1

concluding remarks in Sec. 6.

2. Kriging Interpolation3

This section presents a review of the KI formulation in the context of the K-FEM.
A detailed explanation and derivation of Kriging may be found in the geostatistics5

literature [e.g. Olea (1999); Wackernagel (1998)].

2.1. Formulation7

Consider a continuous field variable u(x) defined in a domain Ω. The domain is
represented by a set of properly scattered nodes xi, i = 1, 2, . . . , N , where N is the9

total number of nodes in the whole domain. Given N field values u(x1), . . . , u(xN ),
the problem is to obtain an estimated value of u at a point x0 ∈ Ω.11

The Kriging estimated value uh(x0) is a linear combination of u(x1), . . . , u(xn)
in the form13

uh(x0) =
n∑

i=1

λiu(xi), (1)

where λi’s are termed (Kriging) weights and n is the number of nodes surrounding15

the point x0 inside a subdomain Ωx0 ⊆ Ω. This subdomain is referred to as a
domain of influence (DOI) in this paper. Considering the value of each function17

u(x1), . . . , u(xn) as the realizations of random variables U(x1), . . . , U(xn), Eq. (1)
can be written as19

Uh(x0) =
n∑

i=1

λiU(xi). (2)

The Kriging weights are determined by requiring the estimator Uh(x0) to be unbi-21

ased, i.e.

E[Uh(x0) − U(x0)] = 0, (3)23

and by minimizing the variance of the estimation error, var[Uh(x0)−U(x0)]. Using
the method of Lagrange for constraint optimization problems, the requirements of
minimum variance and unbiased estimator lead to the following Kriging equation
system:

Rλ + Pµ = r(x0),
(4)

PT λ = p(x0),

in which

R =



C(h11) · · · C(h1n)

· · · · · · · · ·
C(hn1) · · · C(hnn)


 , P =



p1(x1) · · · pm(x1)

· · · · · · · · ·
p1(xn) · · · pm(xn)


 , (5)
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λ = [λ1 · · · λn]T , µ = [µ1 · · · µm]T , (6)

r(x0) = [C(h10) C(h20) · · · C(hn0)]T , p(x0) = [p1(x0) . . . pm(x0)]T

(7)

R is an n × n matrix of covariances, C(hij), between two nodal values of U(x)1

evaluated at {xi,xj}; P is an n ×m matrix of polynomial values at the nodes; λ

is an n× 1 vector of Kriging weights; µ is an m× 1 vector of Lagrange multipliers;3

r(x0) is an n× 1 vector of covariance between the nodes and the node of interest,
x0; and p(x0) is an m× 1 vector of polynomial basis at x0. In Eqs. (5) and (7),5

C(hij) = cov[U(xi), U(xj)]. (8)

Solving the Kriging system, Eq. (4), results in Kriging weights, as follows:7

λT = pT (x0)A + rT (x0)B, (9)

where9

A = (PT R−1P)−1PT R−1, B = R−1(I − PA). (10)

Here, A is an m×n matrix, B is an n×n matrix, and I is the n×n identity matrix.11

The expression for the estimated value uh given by Eq. (1) can be rewritten in
matrix form as13

uh(x0) = λTd, (11)

in which d = [u(x1) · · · u(xn)]T is an n × 1 vector of nodal values. Since the15

point x0 is an arbitrary point in the DOI, the symbol x0 will henceforth be replaced
by the symbol x. Thus, using the usual finite element terminology, Eq. (11) can be17

expressed as

uh(x) = N(x)d =
n∑

i=1

Ni(x)ui, (12)
19

in which N(x) = λT (x) is the matrix of shape functions.
Two key properties of Kriging shape functions that make them appropriate to be21

used in the FEM are the Kronecker delta (or interpolation) property and consistency
property [Gu (2003); Plengkhom and Kanok-Nukulchai (2005)]. Due to the former23

property, the KI function passes through all nodal values. The consequence of the
latter property is that if the basis includes all constants and linear terms, the Kriging25

shape functions will be able to reproduce a linear polynomial exactly.

2.2. Polynomial basis and correlation function27

Constructing Kriging shape functions in Eq. (12) requires a polynomial basis func-
tion and a model of covariance function. For the basis function, besides complete29

polynomial bases, it is also possible to use incomplete polynomial bases such as
bilinear, biquadratic, and bicubic bases for interpolation in a 2D domain (for31
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comparison, see Noguchi et al. [2000] for polynomial bases in the context of the1

moving least-squares approximation).
Covariance between a pair of random variables U(x) and U(x + h) can be3

expressed in terms of the correlation coefficient function or, in short, the corre-
lation function, as follows:5

ρ(h) =
C(h)
σ2

, (13)

where ρ(h) is the correlation function, σ2 = var[U(x)], and h is a vector separating7

two points, x and x+h. According to Gu [2003], σ2 has no effect on the final results
and so in this study it is taken as 1. One of the widely used correlation models in9

the area of computational mechanics is the Gaussian correlation function [e.g. Gu
(2003); Dai et al. (2003); Wong and Kanok-Nukulchai (2006a)], viz.11

ρ(h) = ρ(h) = exp

(
−
(
θ
h

d

)2
)
, (14)

where θ > 0 is the correlation parameter, h = ‖h‖, i.e. the Euclidean distance13

between the points x and x+h, and d is a scale factor for normalizing the distance.
In this study, d is taken to be the maximum distance between any pair of nodes15

in the DOI. Besides the Gaussian, we recently introduced the quartic spline (QS)
correlation function [Wong and Kanok-Nukulchai (2006a,b)] as follows:17

ρ(h) =




1 − 6
(
θ
h

d

)2

+ 8
(
θ
h

d

)3

− 3
(
θ
h

d

)4

for 0 ≤ θ
h

d
≤ 1,

0 for θ
h

d
> 1.

(15)

Our study shows that using the QS correlation function, Kriging shape functions19

are not sensitive to the change in the parameter θ.
The proper choice of the parameter θ is very important, because it affects the21

quality of KI. In order to obtain reasonable results in the K-FEM, Plengkhom and
Kanok-Nukulchai [2005] suggested a rule of thumb for choosing θ; namely, θ should23

be selected so that it satisfies the lower bound,∣∣∣∣∣
n∑

i=1

Ni − 1

∣∣∣∣∣ ≤ 1 × 10−10+a, (16)
25

where a is the order of the basis function, and also satisfies the upper bound,

det(R) ≤ 1 × 10−b, (17)27

where b is the dimension of the problem. For a 2D problem with a cubic basis
function, for example, a = 3 and b = 2.29

Numerical investigations on the upper and lower bound values of θ [Wong and
Kanok-Nukulchai (2006a)] revealed that the parameter bounds vary with respect31

to the number of nodes in the DOI. Based on the results of the search for the
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lower and upper bound values of θ satisfying Eqs. (16) and (17), we proposed the1

following explicit parameter functions for practical implementation of the K-FEM
for problems with 2D domains.3

For the Gaussian correlation parameter, the parameter function is

θ = (1 − f)θlow + fθup, 0 ≤ f ≤ 0.8, (18)5

where f is a scale factor, and θlow, and θup, are the lower and upper bound functions:

θlow =




0.08286n− 0.2386 for 3 ≤ n < 10,

−8.364E − 4n2 + 0.1204n− 0.5283 for 10 ≤ n ≤ 55,

0.02840n+ 2.002 for n > 55,

(19)

θup =




0.34n− 0.7 for 3 ≤ n < 10,

−2.484E − 3n2 + 0.3275n− 0.2771 for 10 ≤ n ≤ 55,

0.05426n+ 7.237 for n > 55.

(20)

For the QS correlation parameter, the parameter function is

θ =

{
0.1329n− 0.3290 for 3 ≤ n < 10,

1 for n ≥ 10.
(21)

7

2.3. Layered-element domain of influence

Let us consider a 2D domain mesh using triangular elements, as illustrated in Fig. 1.9
For each element, KI is constructed based upon a set of nodes in a polygonal DOI
encompassing a predetermined number of layers of elements. The KI function over11
the element is given by Eq. (12). By combining the KI of all elements in the domain,
the global field variable is approximated by piecewise KI. This way of approximation13
is very similar to the approximation in the conventional FEM.

It should be mentioned here that it is also possible to use quadrilateral elements15
to implement the concept of a layered-element DOI. Mesh with triangular elements

Fig. 1. Domain of influence for element el with one, two, and three layers of elements [Plengkhom
and Kanok-Nukulchai (2005)].
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Table 1. Minimum number of layers for various basis functions.

Basis Minimum number of layers

Linear 1
Quadratic, bilinear 2
Cubic, biquadratic 3
Quartic, bicubic 4

is chosen in this study, owing to its flexibility in representing complex geometry and1

its ease in being automatically generated.
The number of layers for each element must cover a number of nodes in such a3

way that the Kriging equation system, Eq. (4), is solvable. If an m-order polynomial
basis is employed, the DOI is required to cover a number of nodes, n, that is equal to5

or greater than the number of terms in the basis function, i.e. n ≥ m. Based on our
experience, the minimum number of layers for different polynomial bases is listed in7

Table 1. As the number of layers increases, the computational cost becomes higher.
Thus we recommend the use of a minimum number of layers for each polynomial9

basis.

3. Formulation11

3.1. K-FEM for plane-strain/plane-stress solids

The governing equations for plane-strain/plane-stress problems in the Cartesian13

coordinate system can be written in a weak form, as follows:∫
V

δεT σdV =
∫

V

δuT bdV +
∫

S

δuT tdS, (22)
15

where u = {u v}T is the displacement vector, ε = {εx εy γxy}T is the vector of
2D strain components, σ = {σx σy τxy}T is the vector of 2D stress components,17

b = {bx by}T is the body force vector; t = {tx ty}T is the surface traction force
vector, V is the 3D domain occupied by the solid body, and S is the surface on19

which the traction t is applied.
Suppose that the domain V is subdivided by a mesh of Nel elements and N21

nodes. To obtain an approximate solution using the concept of KI with a layered-
element DOI, for each element e = 1, 2, . . . , Nel the displacement components u and23

v are approximated by KI as follows:

u(x, y) �
n∑

i=1

Ni(x, y)ui, v(x, y) �
n∑

i=1

Ni(x, y)vi (23)
25

Here, Ni(x,y) denotes the Kriging shape function associated with node i; ui and
vi are nodal displacement components in the x and y directions, respectively; and27

n is the number of nodes in the DOI of an element, which generally varies from
element to element. Employing the standard formulation procedure of the FEM29
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[e.g. Cook et al. (2002); Zienkiewicz and Taylor (2000)], we may obtain the equilib-1

rium equation for each element as follows:

kede = fe, (24)3

where the element stiffness matrix (2n× 2n)

ke =
∫

V e

BeT EBedV , (25)
5

the displacement vector (2n× 1)

de = {u1 v1 u2 v2 · · · un vn}T , (26)7

and the consistent nodal force vector of element e(2n× 1)

fe =
∫

V e

NeT bedV +
∫

Se

NeT tedS. (27)
9

Matrix Ne is the Kriging shape function matrix, i.e.

Ne =

[
N1 0 N2 0 · · · Nn 0

0 N1 0 N2 · · · 0 Nn

]
, (28)

11

Be is the element strain-displacement matrix, i.e.

Be =



N1,x 0 N2,x 0 · · · Nn,x 0

0 N1,y 0 N2,y · · · 0 Nn,y

N1,y N1,x N2,y N2,x · · · Nn,y Nn,x


 , (29)

13

and E is the constitutive matrix, which, for the case of isotropic material, can be
expressed in terms of modulus elasticity E and Poisson’s ratio ν as follows:15

E =
Ē

1 − ν̄2




1 ν̄ 0

ν̄ 1 0

0 0 (1 − ν̄)/2


 , (30)

with17

Ē =



E

E

1 − ν2

, ν̄ =



ν for plane stress,
ν

1 − ν
for plane strain.

(31)

V e is the 3D domain of element e and Se is the surface of element e on which the19

traction t is applied.
For a triangular element of thickness h and area Ae, with traction force on edge

se, Eqs. (25) and (27) can be expanded as follows:

ke = h

∫
Ae

BeT EBe, (32)

fe = h

∫
Ae

NeT bedA+, h
∫

se

NeT teds. (33)



1st Reading

February 2, 2009 16:9 WSPC/IJCM-j050 00178

On the Convergence of the Kriging-Based FEM 9

Fig. 2. Positive directions for displacement and rotation components.

3.2. K-FEM for Reissner–Mindlin plates1

Consider a plate of uniform thickness, h, homogeneous, referred to a three-
dimensional Cartesian coordinate system with the x–y plane lying on the middle3

surface of the plate (Fig. 2). Its domain, V , is defined as

V =
{

(x, y, z) ∈ R
3|z ∈

[
−h

2
,
h

2

]
, (x, y) ∈ S ⊂ R

2

}
. (34)

5

Rotation of a normal line has two components, namely ψx and ψy. The positive sign
convention for these rotation components and displacement components is shown in7

Fig. 2. For small displacement and rotation, the displacement field is described by

u3D =



u

v

w


 =




−zψx(x, y)

−zψy(x, y)

w(x, y)


 , (35)

9

where w(x, y) is the deflection of a point initially lying on the reference plane, S, and
ψx(x, y) and ψy(x, y) are the normal line rotation components around its midpoint11

with respect to the –y and x directions, respectively.
The governing equations for static deflection of RM plates under transversal13

load q(x, y) can be written in a weak form as follows:∫
S

δκTDbκdS +
∫

S

δεT
s DsεsdS =

∫
S

δuT pdS. (36)
15

In this equation,

κ = {ψx,x ψy,y ψx,y + ψy,x}T (37)17

is the curvature vector,

εs = {γx z γy z}T (38)19

is the transverse shear vector,

u = {w ψx ψy}T (39)21
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is the vector of three independent field variables for RM plates,1

p = {q 0 0}T (40)

is the surface force vector,3

Db =
Eh3

12(1 − ν2)


 1 ν 0
ν 1 0
0 0 (1 − ν)/2


 (41)

is the elasticity matrix for bending deformation, and5

Ds = Gkh

[
1 0
0 1

]
(42)

is the elasticity matrix for transverse shear deformation. Here,7

G =
E

2(1 + ν)
(43)

is the shear modulus and k is a shear correction factor to account for the parabolic9

z direction variation of transverse shear stress. The accepted value of k for a homo-
geneous plate is k = 5/6 [Cook et al. (2002)].11

Suppose that the domain S is subdivided by a mesh of Nel triangular elements
and N nodes. To obtain an approximate solution using the concept of KI with a
layered-element DOI, for each element e = 1, 2, . . . , Nel the plate field variables are
approximated by KI as follows:

w(x, y) �
n∑

i=1

Ni(x, y)wi,

ψx(x, y) �
n∑

i=1

ηi(x, y)ψxi, ψy(x, y) �
n∑

i=1

ξi(x, y)ψyi. (44)

Here Ni(x, y), ηi(x, y) and ξi(x, y) denote Kriging shape functions associated with
node i for approximating defection and rotation in the y direction, and rotation in13

the x-direction, respectively; and wi, ψxi, and ψyi are nodal deflection, and nodal
rotation in the –y direction, and nodal rotation in the x direction, respectively.15

Shape functions Ni, ηi, and ξi do not have to be the same; they are independent of
each other. In this study, however, they are taken to be the same, i.e.17

ηi(x, y) = ξi(x, y) = Ni(x, y). (45)

Inserting Eq. (44) into the variational equation of RM plates, Eq. (36), leads to the19

following discretized equilibrium equation for each element:

kede = fe, (46)21
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in which the element stiffness matrix (3n× 3n) is1

ke = ke
b + ke

s =
∫

Se

BeT
b DbBe

bdS +
∫

Se

BeT
s DsBe

sdS, (47)

the element nodal displacement vector (3n× 1) is3

de = {w1 ψx1 ψy1 w2 ψx2 ψy2 · · · wn ψx n ψyn}T , (48)

and the element nodal force vector (3n× 1) is5

fe =
∫

Se

NeT pedS. (49)

In Eqs. (47) and (49), matrices Ne, Be
b, and Be

s are defined as follows:

Ne =



N1 0 0 · · · Nn 0 0

0 N1 0 · · · 0 Nn 0

0 0 N1 · · · 0 0 Nn


 , (50)

Be
b =




0 N1,x 0 · · · 0 Nn,x 0

0 0 N1,y · · · 0 0 Nn,y

0 N1,y N1,x · · · 0 Nn,y Nn,x


 , (51)

Be
s =

[
N1,x −N1 0 · · · Nn,x −Nn 0

N1,y 0 −N1 · · · Nn,y 0 −Nn

]
. (52)

3.3. Global discretized equilibrium equation7

The global discretized equilibrium equation,

KD = F, (53)9

can be obtained from the element equilibrium equations — Eq. (24) for plane-
stress/plane-strain problems and Eq. (46) for RM plates — by using the assembly11

procedure, i.e.

K = ANel
e=1k

e, D = ANel
e=1d

e, F = ANel
e=1f

e. (54)13

Here K is the global stiffness matrix, D is the global nodal displacement vector, F
is the global nodal force vector, and ANel

e=1 denotes the assembly operator. It should15

be mentioned here that the assembly process for each element involves all nodes in
the element’s DOI, and not only the nodes within the element as in the conventional17

FEM.

4. Incompatibility in the K-FEM19

As described in Sec. 2, the KI is constructed for each element using a set of
nodes, within and outside the element, in a predetermined layered-element DOI.21

Therefore, within each element the interpolation function is naturally continuous.
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Fig. 3. The domain of influence of element 1 and element 2.

However, along the element edges between two adjacent elements the function is1

not perfectly continuous, because the KI for each of the two neighboring elements
is constructed using a different set of nodes.3

For illustration, we consider element 1 and element 2 in a 2D domain as shown
in Fig. 3 and suppose that we use two element layers as the DOI for each element.5

Polygon A-B-C-D-E-F-G-H-I is the DOI for element 1 and polygon B-C-D-K-F-G-
H-I-J is the DOI for element 2. The KI within element 1 is constructed using the7

12 nodes in the first polygon, while the KI within element 2 is constructed using
the 11 nodes in the second polygon. As a result, the function along the edge LM of9

element 1 is different from the function along the edge LM of element 2. In other
words, the displacement function is not continuous across the common edge LM of11

the two neighboring elements. The foregoing explanation is principally the same as
that presented by Dai et al. [2003] in the context of the EFGM with KI.13

To illustrate further the interelement incompatibility in the K-FEM, we consider
again the domain shown in Fig. 3 and suppose now that the value at node K is 115

and the other nodal values are 0. According to the KI of element 1, the function
along the interface LM is a zero function since the value at node K does not have17

any effect on the KI within element 1. On the contrary, according to element 2,
the function along LM is not a zero function because the shape function associated19

with node K is not 0 between nodes L and M.
Thus it is apparent that the K-FEM does not satisfy the interelement compati-21

bility requirement (nonconforming), except for the K-FEM with a linear basis and
one layer DOI. Is this incompatibility acceptable? It is acceptable if it tends to zero23

as the mesh is repeatedly refined [Cook et al. (2002)]. In other words, the interele-
ment compatibility needs only to be satisfied in the limit as the size of the element25

tends to zero. This is assessed through the weak patch test and convergence studies
in the following section.27
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It should be mentioned here that it is also possible to employ a constrained1

variational equation in the K-FEM to deal with the incompatibility [e.g. Dai et al.
(2003)]. This approach, however, will destroy the key advantage of the K-FEM3

mentioned in Sec. 1, namely its ease of implementation in a general purpose finite
element program. It is for this reason that we do not resort to this approach to deal5

with the incompatibility.
After completion of the present study, we became aware of recent works by7

G. R. Liu’s group on a class of computational methods based on the Galerkin for-
mulation using the so-called generalized gradient smoothing technique [Liu (2008)].9

Examples of the methods in this class are the node-based smoothed point inter-
polation method (NS-PIM, originally called the linearly conforming point inter-11

polation method) [Liu et al. (2005); Zhang et al. (2007)] and the node-based
smoothed radial point interpolation method (NS-RPIM) [Liu et al. (2006); Li et al.13

(2007)]. In these methods, the compatibility of the incompatible node-based inter-
polations was restored by using the stabilized conforming nodal integration pro-15

posed by Chen et al. [2001]. Nevertheless, the methods entail creation of smoothing
domains that are generally different from the original finite element mesh. A tech-17

nique for constructing smoothing domains should be judiciously selected or invented
in order to preserve the simplicity of the K-FEM. It seems that the edge-based19

smoothing technique [Liu (2008) and references therein], in which the smoothing
domains are created based on edges of the elements, is a good choice for imple-21

mentation of the gradient smoothing technique in the K-FEM. This needs further
research.23

5. Numerical Tests

In the following tests, the integrals over each triangular element in the expressions25

for element stiffness matrices, Eqs. (32) and (47), and for nodal force vectors, Eqs.
(33) and (49), were computed using the six-point quadrature rule for triangles [e.g.27

Hughes (1987)]. This rule was selected because it may give results that are reason-
ably accurate yet inexpensive in terms of computational cost. For computing the29

line integral in Eq. (33), the two-point Gaussian quadrature for line integrals was
used, since it can yield an exact nodal force vector for edge traction force with cubic31

distribution or less.
Abbreviations in the form of P*-*-G* or P*-*-QS, in which the asterisk denotes33

a number, are adopted in this section to designate various options of the K-FEM.
The first syllable denotes a polynomial basis with the order indicated by the number35

next to letter P. The middle asterisk denotes the number of layers. The last syllable
denotes the Gaussian correlation function with the adaptive parameter given by37

Eq. (18) and with the scale factor f indicated by the number next to the letter
G (in percent); QS denotes the quartic spline correlation function with the adap-39

tive parameter given by Eq. (21). For example, P3-3-G50 means cubic basis, three
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element layers, Gaussian correlation function with midvalue parameter function,1

i.e. f = 0.5.

5.1. Plane-stress/plane-strain solids3

To study the convergence of the K-FEM for plane-stress/plane-strain solids, two
measures of error were utilized. The fist one is a relative L2 error norm of5

displacement, defined as

ru =

(∫
V

(uapp − uexact)T (uapp − uexact)dV∫
V

(uexact)T uexactdV

)1/2

, (55)
7

where uapp and uexact are approximate and exact displacement vectors, respectively.
The second one is a relative error norm of strain energy, defined as9

rε =

(∫
V

(εapp − εexact)TE(εapp − εexact)dV∫
V

(εexact)T EεexactdV

)1/2

, (56)

where εapp and εexact are approximate and exact strain vectors, respectively. For11

computing these relative errors, the 13-point quadrature rule for triangles was
employed for each element.13

5.1.1. Weak patch test

We patch test is a test on a “patch” of finite elements with states of constant strains15

or constant stresses. Since the K-FEM is nonconforming, it will not pass the patch
test for a patch with a large size of elements. Passing the patch test for a large size of17

elements, however, is not a necessary condition for convergence. The necessary and
sufficient condition for convergence is to pass the patch test in the limit, as the size19

of the elements in the patch tends to zero [Zienkiewicz and Taylor (2000); Razzaque
(1986)], provided that the system of equations is solvable and all integrations are21

exact. This kind of test is referred to as a weak patch test [Zienkiewicz and Taylor
(2000); Cook et al. (2002)].23

The patch used for the weak patch test is shown in Fig. 4(a). It was adapted from
the patch proposed by MacNeal and Harder [1985]. In order to be consistent with25

the displacement field u = 10−3(x+ y/2), v = 10−3(y+ x/2), u = 0.24× 10−3, and
v = 0.12× 10−3 were prescribed at node B. The initial course mesh, which includes27

25 nodes, is shown in Fig. 4(b). We defined the element characteristic size for this
mesh hc = 0.06. Subsequently, mesh refinements were performed by subdividing the29

elements.
The following K-FEM options were used for the weak patch test: P2-2 with31

G0, G50, G80, QS and P3-3 with G0, G50, G80, QS. Displacement error norms of
the K-FEM solutions are plotted against element characteristic sizes in Fig. 5. The33

average convergence rate (R) of each option is also shown in the legend. The figure
indicates that the K-FEM does not pass the test in any mesh but the solutions35
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(a)

(b)

Fig. 4. (a) A patch under constant stresses and (b) its initial mesh for the weak patch test.

converge. For the K-FEM of option P3-3-G0, however, the convergence is doubtful.1

Therefore, we conclude that the K-FEM passes the weak patch test, except for that
with option P3-3-G0. For the K-FEM with Gaussian correlation functions, as the3

parameter θ comes closer to the upper bound values, the convergence rate and
accuracy increase. The K-FEM with the QS is the best in terms of the convergence5

rate (R = 1.45 for P2-2 and R = 1.82 for P3-3).
The strain energy error norms vs. element characteristic sizes are shown in Fig. 6.7

These energy errors are mainly due to “gaps” or “overlaps” along the interface
between two elements, because the roundoff and numerical integration errors are9

negligible. Therefore, in this case the energy error may serve as a measure of the
degree of incompatibility of the K-FEM. The figure shows that the incompatibilities11

of the K-FEM with various options tend to decrease as the mesh is refined. The
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(a) P2-2

(b) P3-3

Fig. 5. Relative error norm of displacement vs. element characteristic size for the patch analyzed
using the K-FEM with: (a) P2-2, (b) P3-3. The number after the code for the K-FEM option in
the legend indicates the average convergence rate.

K-FEM with the QS correlation function is “more compatible” than that with the1

Gaussian.

5.1.2. An infinite plane-stress plate with a hole3

An infinite plane-stress plate with a circular hole of radius a = 1 was subjected
to a uniform tension Tx = 100 at infinity [Tongsuk and Kanok-Nukulchai (2004)]5

[Fig. 7(a)]. In view of the symmetry, only the upper right quadrant of the plate, 0 ≤
x ≤ 5 and 0 ≤ y ≤ 5, was analyzed. Zero normal displacements were prescribed on7

the symmetric boundaries and the exact traction boundary conditions were imposed
on the right (x = 5) and top (y = 5) edges.9

The initial course mesh of 42 nodes is shown in Fig. 7(b). The element charac-
teristic size for this problem is taken as the distance between two nodes at the right11

or top edge, i.e. hc = 1. Subsequently, the mesh was refined by subdividing the
previous element into four smaller elements. The refined meshes considered in this13

test are meshes with hc = 0.5 (141 nodes) and hc = 0.25 (513 nodes). In performing
the analysis with hc = 0.25 using the Gaussian correlation function, the scale factor15
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(a) P2-2

(b) P3-3

Fig. 6. Relative error norms of strain energy vs. element characteristic sizes for the patch analyzed
using the K-FEM with: (a) P2-2, (b) P3-3.

f = 0.79 was used in place of f = 0.8, because the use of f = 0.8 resulted in det(R)1

exceeding the upper bound criterion, Eq. (17), for some elements.
The convergence characteristics for displacement and strain energy are shown in3

Figs. 8(a) and 8(b), respectively. The figures indicate that the rates of convergence
of all K-FEM options are nearly equal, for displacement as well as strain energy.5

The fastest convergence rate in terms of the displacement error is achieved by the K-
FEM with P3-3-G80 (the rate R = 2.60), while the fastest one in terms of the strain7

energy error is the K-FEM with P3-3-QS (R = 1.37). Theoretically, the accuracy
and convergence rate of the K-FEM with a cubic basis higher than those with a9

quadratic basis. However, this is not the case because of the incompatibilities of the
K-FEM.11

5.2. Reissner–Mindlin plates

The convergence of the K-FEM for RM plates was assessed in terms of the relative13

L2 error norm of displacement, viz.

ru =
‖uapp

3D − uexact
3D ‖

‖uexact
3D ‖ , (57)

15
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(a)

(b)

Fig. 7. (a) An infinite plate with a circular hole and (b) the initial mesh of the shaded area.

where uapp
3D and uexact

3D are approximate and exact displacement vectors of the 3D1

solid, respectively. The displacement norm in Eq. (57) was expanded as follows:

‖u3D‖ =
(∫

V

uT
3Du3DdV

)1/2

=
(∫

V

(u2 + v2 + w2)dV
)1/2

. (58)
3
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(a)

(b)

Fig. 8. Relative error norms of (a) displacement and of (b) strain energy and their convergence
rates for the holed plate.

Substituting the u, v, and w in this equation with those stated in Eq. (35) and then1

integrating over the thickness resulted in

‖u3D‖ =
(
h

∫
S

w2dS +
h3

3

∫
S

(ψ2
x + ψ2

y)dS
)1/2

. (59)
3

As in the previous tests, the 13-point quadrature rule for triangles was employed to
evaluate the integrals in this equation for each element.5

5.2.1. Weak patch tests

The same patch and meshes as in the previous patch test (Fig. 4) were used in the7

following tests, except for the loading condition and the thickness. Two conditions
of the patch were considered: constant curvature and constant transverse shear9

strain. The length-to-thickness ratio of the patch was differently specified for each
condition of the tests. Based on the study of the performance of various K-FEM11

options in alleviating shear locking [Wong and Kanok-Nukulchai (2006a, b)], the
following K-FEM options were used for the patch tests: P3-3-G0, P3-3-QS, P4-4-G0,13

and P4-4-QS.
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5.2.1.1. Constant curvature condition1

The boundary of the patch was imposed by the essential boundary conditions as
presented by MacNeal and Harder [1985], i.e.

w =
10−3(x2 + xy + y2)

2
, (60)

ψx =
∂w

∂x
= 10−3

(
x+

y

2

)
, ψy =

∂w

∂y
= 10−3

(x
2

+ y
)
. (61)

These fields lead to the following constant curvatures and moments:

κ = {1 1 1}T × 10−3, M = −
{

10
9

10
9

1
3

}T

× 10−7. (62)
3

Shear strains and shear stresses corresponding to these constant curvatures are zero.
The length-to-thickness ratio of the patch was set to 240 (h = 0.001) in order to5
represent thin plates.

Displacement error norms of the K-FEM solutions are plotted against element7
characteristic sizes in Fig. 9. It can be seen that from the second mesh (hc = 0.03)
until the last mesh (hc = 0.0075) the solutions of the K-FEM converge, except9
for the K-FEM with option P3-3-G0. The solutions for the mesh of hc = 0.06
(25 nodes) are exceptionally accurate, because 16 of the 25 nodes are located at11
the boundary and accordingly imposed by the boundary conditions (60). Thus,
the nodal displacements associated with the 16 boundary nodes are automatically13
exact. In addition, for a cases of a relatively small number of nodes in a domain,
the K-FEM may yield extraordinarily accurate results because the KI is close to15
a polynomial function of higher order than the basis function. We conclude that
the K-FEM with options P3-3-QS, P4-4-G0, and P4-4-QS pass the weak constant17
curvature patch test but the K-FEM with P3-3-G0 does not pass. The K-FEM with

Fig. 9. Relative error norm of displacement vs. element characteristic size for the constant curvature
patch test. The numbers in the legend indicate the average convergence rates from the second mesh
up to the last.
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the QS correlation function has a better convergence characteristic than that with1
G0. This finding is similar to the one regarding the plane-stress condition.

Constant transverse shear-strain condition3

A state of constant transverse shear strains and zero curvatures, i.e.

εs = {1 1}T × 10−6, κ = {0 0 0}T , (63)5

can be obtained, with all equilibrium equations satisfied, only for the extreme case
of thick plates [Batoz and Katili (1992)]. In this test, an extremely thick plate with7

the length-to-thickness ratio 0.0024 (h = 100) was considered. The displacement
fields leading to the constant shear strains, Eq. (62), are as follows:9

w = 10−6x+ y

2
, ψx = −1

2
× 10−6, ψy = −1

2
× 10−6. (64)

The shear forces corresponding to the constant shear strains are11

Q =
{

100
3

100
3

}T

. (65)

The test was performed by imposing nodal values on the boundary according to13
the fields stated by Eq. (63). The error indicator used in this test is the relative L2

error norm of deflection, defined as15

rw =
(∫

S
(wapp − wexact)2dS∫

S
(wexact)2dS

)1/2

. (66)

This indicator was used here instead of the displacement error norm, Eq. (57),17
because the thickness of the plate was extremely large so that if we used Eq. (57),
the norm would be dominated by the rotation errors. We found that these rotation19
errors are relatively constant for different degrees of mesh refinements.

Fig. 10. Relative error norm of deflection vs. element characteristic size for the constant shear
patch test.
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The plot of the relative deflection error norms for the K-FEM with different1
analysis options is shown in Fig. 10. It can be seen that all of the options lead to
converging solutions and therefore they pass the weak constant shear patch test. As3

in the previous test, the accuracy and convergence rate of the K-FEM with QS are
better than those with G0.5

5.2.2. A thin square plate

We considered a hard simply supported square plate of length L = 100 and length-7
to-thickness ratio L/h = 100 under uniform transverse load q = −1 × 10−6. The
modulus of elasticity is E = 2 × 106 and Poisson’s ratio is v = 0.3. To study9
the convergence of the K-FEM solutions, a quadrant of the plate was discretized
with different degrees of mesh refinement: 4 × 4 (hc = 12.5, Fig. 11), 6 × 6 (hc =11
8.33), . . . , 12 × 12 (hc = 4.17). The meshes were automatically generated using
the Delaunay algorithm and thus the triangles had random orientation, such as13
shown in Fig. 11. The K-FEMs with P3-3-QS and P4-4-QS were chosen in this and
subsequent tests because they showed good performance both in the shear locking15
study [Wong and Kanok-Nukulchai (2006a, b)] and in patch tests. In computing
the displacement error norms, Eq. (57), the exact displacement fields according to17
the thick plate theory [Reissman (1988)] were used.

The displacement error norms are plotted against element characteristic sizes19
in Fig. 12. The figure shows excellent convergence characteristics. The results with

Fig. 11. Initial mesh of a quarter of the square plate (4-by-4).
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Fig. 12. Relative error norms of displacement and their convergence rates for the square plate.

option P4-4-QS, as expected, are more accurate than those with P3-3-QS. However,1

the best converge rate is achieved for P3-3-QS with R = 5.54. The reason for this is
that the incompatibilities in the K-FEM with P3-3-QS diminished faster than that3

in the K-FEM with P4-4-QS.

5.2.3. A thick circular plate5

A clamped circular plate of diameter D = 100 and length-to-thickness ratio D/h =
5 was considered. The uniform load intensity and material properties were the7

same as in the previous test (the thin square plate). A quadrant of the plate was
discretized with different degrees of mesh refinement, as shown in Fig. 13. The9

element characteristic size hc was defined as the length of the first line segment on
the x axis (which is one of the edges of the triangle in the center). In computing11

the displacement error norms, the exact solutions based on the thick plate theory
[Reismann (1988)] were used.13

The convergence of the solutions in terms of the displacement error norm is
shown in Fig. 14. The figure indicates that the average convergence rates for P3-15

3-QS and P4-4-QS are nearly equal. The solutions of P3-3-QS are slightly more
accurate that those of P4-4-QS. This fact disagrees with the usual tendency in the17

standard FEM, namely the higher the degree of shape functions, the more accurate
the results. This disagreement occurs because in this problem the incompatibility19

in the K-FEM with P4-4-QS is more severe than that in the K-FEM with P3-3-QS.

6. Conclusions21

The convergence characteristics of the K-FEM with different options have been
studied in the context of plane stress and Reissner–Mindlin plate problems through23

some numerical tests. It was found that the K-FEM with different options passed
the weak patch tests except for the K-FEM with P3-3-G0. For the K-FEM with the25

Gaussian correlation function, the convergence characteristics were better as the
correlation parameters were closer to the upper bound. The K-FEM with the QS27
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(a) Mesh No. 1: 34 nodes, 47 elements, hc = 10

(b) Mesh No. 2: 43 nodes, 62 elements, hc = 8

Fig. 13. Meshes of a quarter of the circular plate [adopted from Kokaew (2003)].
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(c) Mesh No. 3: 76 nodes, 119 elements, hc = 5

(d) Mesh No. 4: 208 nodes, 359 elements, hc = 2.2

Fig. 13. (Continued)
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Fig. 14. Relative error norms of displacement and their convergence rates for the circular plate.

correlation function had better convergence characteristics than that with the Gaus-1

sian as its solutions were not sensitive to the change of the correlation parameter.
The numerical tests with several benchmark problems demonstrated good and reli-3

able convergence characteristics of the K-FEM using QS correlation functions.
Passing the weak patch tests indicates that the incompatibility decreases as the5

mesh is refined. Therefore, the convergence of the K-FEM with appropriate options
is guaranteed. The use of the QS correlation function in a K-FEM for analyses of7

two-dimensional problems is thus recommended. The results of the present study
confirm that the K-FEM is a viable alternative to the conventional FEM and has9

great potential in engineering applications. Future research may be directed at
implementation of the generalized gradient smoothing technique [Liu (2008)] in11

the K-FEM.
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