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Abstract: An enhancement of the finite element method with Kriging shape functions (K-FEM) 
was recently proposed. In this method, the field variables of a boundary value problem are 
approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI). For each 
element, the interpolation function is constructed from a set of nodes within a prescribed domain 
of influence comprising the element and its several layers of neighbouring elements. This paper 
presents a numerical study on the accuracy and convergence of the el-KI in function fitting 
problems.  Several examples of functions in two-dimensional space are employed in this study.  
The results show that very accurate function fittings and excellent convergence can be attained 
by the el-KI..   
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Introduction   
 
The finite element method (FEM) is at present very 
widely used as a numerical method to solve various 
kinds of problems in engineering and science.  The 
power and versatility of FEM have been tested for 
several decades of real engineering practices.  One 
important issue in the FEM is mesh generation.  
Users often prefer to use the simplest elements, 
namely three-node triangular elements for two 
dimensional problems and four-node tetrahedral 
elements for three-dimensional problems, as they 
can be easily or even automatically generated and 
are more amenable to adaptive procedure.  
Nevertheless, it is well-known that these elements 
often give solutions of poor accuracy, in particular for 
the gradients of field variables such as stresses or 
stress resultants in solid and structural mechanics.   
 
Motivated by the desire to eliminate the need for a 
mesh in numerical analysis, in the last two decades a 
large variety of mesh-free (or meshless) methods 
have been proposed as alternatives to the FEM.  
These methods can be categorized, in view of their 
formulation bases, into strong-form based mesh-free 
methods such as a generalized finite difference 
method [1] and the finite point method [2], and into 
weak-form based mesh-free methods.  
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The latter can further be categorized into the 
methods using a global weak form such as the 
element-free Galerkin method (EFGM) [3] and point 
interpolation methods [4, 5] and those using a local 
weak form such as the meshless local Petrov-
Galerkin method [6-9].  The common advantages of 
this new class of methods are: (1) No mesh is 
required for construction of the approximate func-
tion. (2) High order approximate function can be 
easily achieved.  (3) The solutions are usually more 
accurate and smoother than the FEM.  A detailed 
review of the methods is presented in [10-12].   
 
Among countless proposed mesh-free methods, to the 
mesh-free methods having the same basic for-
mulation as the FEM, i.e. those using global weak 
forms (the EFGM and its variants) were of interest.  
Even though this class of methods were claimed to 
be “element free” or “mesh-free”, actually elements or 
background cells are still needed for geometric 
modeling and numerical integration. Another disad-
vantage of the EFGM and its variants is that the 
computational procedures are difficult to incorporate 
in existing general purpose FEM codes.  Due to these 
inconveniences, these methods up to present do not 
find wide acceptance in real engineering practices.   
 
In order to eliminate the aforementioned disad-
vantages, Plengkhom and Kanok-Nukulchai [13] 
proposed some modifications to the EFGM with 
moving Kriging interpolation (KI) [14]. The problem 
domain is subdivided into elements like in the 
conventional FEM. The KI is constructed for each 
element using a set of nodes in a domain of influence 
(DOI) composed of several layers of elements (the 
DOI is in the form of polygon for 2D problems).  
Combining the KI of all elements, the global field 
variable is thus approximated by piecewise KI. For 
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evaluating the integration in the Galerkin weak 
form, the elements are employed as integration cells.  
The modified method can be viewed as an enhance-
ment of the FEM using Kriging shape functions. 
Thus, this method was subsequently referred to as 
Kriging-based FEM (K-FEM) [15].   
 
With K-FEM, highly accurate field variables and 
their gradients can be obtained even using the 
simplest form of elements. Solutions refinements can 
be achieved without any change to the element or 
mesh structure. The formulation and coding are very 
similar to the conventional FEM so that an existing 
general-purpose FE program can be easily extended 
to incorporate the enhanced method.  Thus, the K-
FEM has a higher chance to be accepted in real 
engineering practices.   
 
In the pioneering work of Plengkhom and Kanok-
Nukulchai [13], the K-FEM was applied to solve 1D 
bar and 2D elasticity problems.  Subsequently, it was 
improved through the use of adaptive correlation 
parameters and by introducing the quartic spline 
correlation function and developed for analyses of 
Reissner-Mindlin plates [15, 16].  A drawback of the 
present method is that the interpolation function is 
discontinuous at the inter-element boundaries. In 
spite of this discontinuity the K-FEM, with appro-
priate choice of shape functions, passes weak patch 
tests and therefore the convergence is guaranteed 
[17].  The basic concepts and advances of the K-FEM 
have been recently presented [18, 19].  The current 
development of the K-FEM is the extension and 
application to different problems in engineering.  The 
authors have recently developed the K-FEM for 
analyses of general shell structures [20].   
 
As mentioned above, the manner of approximating 
the field variables in the K-FEM is “element-by-
element” Kriging interpolation (el-KI).  The previous 
papers on the K-FEM presented its developments 
and applications to different problems of solid and 
structural mechanics.  However, direct application of 
the el-KI for approximation of mathematical func-
tions has not been presented.  It is the purpose of 
this paper to present examinations of the accuracy 
and convergence of the el-KI in function fitting 
problems. Several examples of 2D-functions 
(surfaces) are considered.   
 
Kriging Interpolation 
 
Named after Danie G. Krige, a South African mining 
engineer, Kriging is a well-known geostatistical 
technique for spatial data interpolation in geology 
and mining [21, 22].  Using this interpolation, every 
unknown value at a point can be interpolated from 
known values at scattered points in its specified 
neighbourhood.   

Formulation 
 
Consider a continuous field variable u(x) defined in a 
domain Ω. The domain is represented by a set of 
properly scattered nodes xI, I=1, 2, …, N, where N is 
the total number of nodes in the whole domain.  
Given N field values, u(x1), …, u(xN), the problem is 
to obtain an estimate value of u at a point 0 ∈Ωx .   
 
Let us consider a set of nodes xi, i=1, 2, …, n, 
surrounding point x0 inside a sub-domain 0Ω ⊆Ωx .  
Here small letter index is used in place of the capital 
latter to emphasize that the numbering is referred to 
the sub-domain 0Ωx .  The Kriging estimated value 
uh(x0) is a linear combination of u(x1), …, u(xn), i.e. 

h
0 1

( ) ( )n
i ii

u uλ
=

=∑x x  (1) 
where λi’s are the (Kriging) weights and n is the 
number of nodes inside 0Ωx .  This sub-domain is 
referred to as DOI in this paper. Considering 
individual function values, u(x1), …, u(xn), as the 
realization of random variables U(x1), …, U(xn), Eq. 
(1) can be written as 

h
0 1

( ) ( )n
i ii

U Uλ
=

=∑x x  (2) 
 
The Kriging weights are determined by requiring 
that the estimator Uh(x0) is unbiased, i.e. 

h
0 0E ( ) ( ) 0U U⎡ ⎤− =⎣ ⎦x x  (3) 

and minimizing the variance of estimation error, 
h

0 0var ( ) ( )U U⎡ ⎤−⎣ ⎦x x . Using the method of Lagra-
nge for constraint optimization problems, the 
requirements of minimum variance and unbiased 
estimator lead to the following Kriging equation 
system: 
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 (4b) 

[ ]T1 ... nλ λ=λ  ; [ ]T1 ... mµ µ=µ  (4c) 

[ ]T0 10 20 0( ) ( ) ( ) ... ( )nC C C=r x h h h  ;    

[ ]T0 1 0 0( ) ( ) ... ( )mp p=p x x x  (4d) 
Here, R is n n×  matrix of covariance between U(x) 
at nodes x1, …, xn;  P is n m×  matrix of polynomial 
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values at the nodes;  λ is 1n×  vector of Kriging 
weights;  µ is 1m×  vector of Lagrange multipliers;  
r(x0) is 1n×  vector of covariance between the nodes 
and the node under consideration, x0; and p(x0) is 

1m×  vector of polynomial basis at x0.  While in Eqs. 
(4b) and (4d), ( ) cov ( ), ( )ij i jC U U⎡ ⎤= ⎣ ⎦h x x . Kriging 
weights λi can be obtained by solving the Kriging 
equations, Eq. (4a).   
 
The expression for the estimated value uh given by 
Eq. (1) can be rewritten in matrix form, 

h T
0( )u =x λ d  (5) 

where [ ]T1( ) ... ( )nu u=d x x  is 1n×  vector of nodal 
values.  Since the point x0 is an arbitrary point in the 
DOI, x0 can be replaced by x, i.e. the position of any 
point in the DOI.  Thus, using the usual finite 
element terminology, Eq. (5) can be expressed as 

h
1

( ) ( ) ( )n
i ii

u N x u
=

= =∑x N x d  (6) 
in which N(x)= λT(x) is the matrix of shape functions.   
 
Kriging shape functions resulting from Eq. (4a) have 
Kronecker delta (or interpolation) and consistency 
properties [13, 14].  Due to the former, KI passes 
through all the nodes thus requiring no special 
treatment for boundary conditions.  The consequence 
of the latter ensures reproduction of a linear function 
if the polynomial basis includes the constant and 
linear term.   
 
These properties make KI very appropriate to be 
employed as the trial function in a Galerkin method.   
 
Layered-Element Domain of Influence 
 
Consider a 2D domain meshed with triangular 
elements, such as illustrated in Fig. 1. For each 
element, KI is constructed based upon a set of nodes 
in a polygonal DOI encompassing a predetermined 
number of layers of elements. The KI function over 
the element is given by Eq. (6). Combining the KI of 
all elements in the domain, the global field variable 
is thus approximated by el-KI. This way of approxi-
mation is very similar to the approximation in the 
conventional FEM.   
 
The number of layers for each element must cover a 
minimum number of nodes in such a way that the 
Kriging equation, Eq. (4a), can be solved (not 
singular). If an m-order polynomial basis is em-
ployed, the DOI is required to cover a number of 
nodes, n, that is equal or greater than the number of 
terms in the basis function [13].   
 
Within each element the el-KI is naturally conti-
nuous.  However, along the element edges between 

two adjacent elements the function is not continuous 
because the KI for the edge of each neighboring 
element is constructed using different set of nodes.  
Therefore, K-FEM is a nonconforming method. The 
issue of non-conformity and its effects on the 
convergence of the solutions have been addressed by 
the authors in [17]. 
 
 

Element 
el 

One layer Two layers Three layers 
 

 
Figure 1. Domains of influence for element el with one, 
two, and three layers of elements [13] 
 
Polynomial Basis and Correlation Function 
 
Constructing Kriging shape functions in Eq. (6) 
requires a polynomial basis function and a model of 
covariance function. For the basis function, in addi-
tion to complete polynomial bases, it is also possible 
to use incomplete polynomial bases such as bi-linear, 
bi-quadratic and bi-cubic bases.   
 
Covariance between a pair of random variables U(x) 
and U(x+h) can be expressed in terms of coefficient of 
correlation function or shortly, correlation function, 
i.e. 2( ) ( ) /Cρ σ=h h , where [ ]2 var ( )Uσ = x .  Accor-
ding to Gu [14], σ2 has no effect on the final results 
and can be taken equals to 1.  One of the widely used 
correlation model in the area of computational 
mechanics is the Gaussian correlation function [13-
15, 17, 18], viz. 

2( ) ( ) exp( ( / ) )h h dρ ρ θ= = −h  (7) 
where θ>0 is the correlation parameter, h = h , i.e. 
the Euclidean distance between points x and x+h, 
and d is a scale factor to normalize the distance.  In 
this study, d is taken to be the largest distance 
between any pair of nodes in the DOI.  Besides the 
Gaussian, the authors introduced the quartic spline 
(QS) correlation function [15] as follows:   

2 3 41 6( / ) 8( / ) 3( / )      for 0 / 1  
( ) ( )

0                                                        for / 1
h d h d h d h d

h
h d

θ θ θ θ
ρ ρ

θ
⎧ − + − ≤ ≤

= =⎨
>⎩

h  (8) 

 
The authors found that Kriging shape functions with 
this correlation function were not very sensitive to 
the change in parameter θ. Moreover, the conver-
gence characteristics of the K-FEM with the QS in 
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many cases were better than the Gaussian function 
[17].   
 
Correlation Parameter 
 
A proper choice of parameter θ is important as it 
affects the quality of KI. In order to obtain reason-
nable results in the K-FEM, Plengkhom and Kanok-
Nukulchai [13] suggested a rule of thumb for 
choosing θ, i.e. θ should be selected so that it satisfies 
the lower bound, 

10
1

1 1 10n a
ii

N − +
=

− ≤ ×∑  (9) 

where Ni ,i=1, …,n are Kriging shape functions and 
a is the order of basis function, and also satisfies the 
upper bound, 
det( ) 1 10 b−≤ ×R  (10) 
where R is the covariance matrix and b is the 
dimension of the problem. For 2D problem with 
cubic basis function, for example, b=2 and a=3.   
 
Numerical investigations on the upper and lower 
bound values of θ [15] revealed that the parameter 
bounds vary with respect to the number of nodes in 
the DOI.  The authors proposed explicit parameter 
functions for practical implementation of the K-FEM 
as follows [15-18]: 
 
For the Gaussian correlation function, the parameter 
function is 

low up(1 )f fθ θ θ= − + , 0 0.8f≤ ≤   (11a) 
where f is a scale factor, θlow  and θup are the lower 
and upper bound functions as follows: 

low 2

0.08286 0.2386                      for 3 10
-8.364E - 4 0.1204 0.5283 for 10 55
0.02840 2.002                   for 55

n n
n n n

n n
θ

− ≤ <⎧
⎪= + − ≤ ≤⎨
⎪ + >⎩

  (11b) 

up 2

0.34 0.7                              for 3 10
-2.484E-3 +0.3275 0.2771 for 10 55
0.05426 7.237                for 55

n n
n n n

n n
θ

− ≤ <⎧
⎪= − ≤ ≤⎨
⎪ + >⎩

 (11c) 

For the QS correlation function, the parameter func-
tion is 

0.1329 0.3290 for 3 10
1                     for 10

n n
n

θ
− ≤ <⎧

= ⎨ ≥⎩
 (12) 

With these functions, adaptive values of θ can be 
used now in place of a uniform value of θ.  Here, 
“adaptive” means that the correlation parameters 
used in an analysis are adjusted to the number of 
nodes in the DOI of each element.  The advantage of 
the use of adaptive θ from practical viewpoint is that 
a user of K-FEM program is not required to input a 
value of θ in an analysis since the parameter 
functions can be embedded in the program.   
 

Numerical Tests 
 
To study the accuracy and convergence of the el-KI, 
the following functions are considered: 

2 2 1z x y= − − + ,  
2 2{( , ) 1, 0 1, 0 1}x y x y x yΩ = + = ≤ ≤ ≤ ≤  (13) 

2625z x= − ,    
{( , ) 0 25sin 40 , 0 25}x y x yΩ = ≤ ≤ ≤ ≤o  (14) 

2 2100z x y= − −  ,    
2 2{( , ) 100, 0 10, 0 10}x y x y x yΩ = + = ≤ ≤ ≤ ≤  (15) 

 
Here Ω is the domain of the function. The first 
function is a 2D quadratic function, the graph of 
which is a paraboloid above a quarter of the unit 
circle on the x-y plane (Fig 2).  The second and third 
functions are adopted from the widely-used bench-
mark problems for shell structures [23], namely a 
quarter of the cylindrical surface of Scordelis-Lo roof 
(Fig. 3) and a quarter of the hemispherical dome 
(Fig. 4).   
 

 
Figure 2.  Paraboloid surface, the graph of the quadratic 
function, Eq. (13) 

 
 
Figure 3.  Surface of a quarter of the Scordelis-Lo roof, Eq. 
(14) 
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Figure 4.  Surface of a quarter of the hemispherical dome, 
Eq. (15) 
 
To measure the accuracy of the approximation, the 
following relative L2 norm of error is employed, 

2 2( )
h h

h
zr z z d z d

Ω Ω
= − Ω Ω∫ ∫  (16) 

in which Ωh, denotes a domain for a mesh with the 
element characteristic size, h and zh denotes the 
approximation function. The domain Ωh for the mesh 
with the number of elements on each side M=4 are 
shown in Fig. 5 for the paraboloid and hemispherical 
functions and in Fig. 6 for the Scordelis-Lo roof 
function. The meshes are generated automatically 
using Delaunay triangulation in Matlab version 6.5 
[24].  The integration is performed numerically on 
each element using the six-point quadrature rule for 
triangles.   
 

 
 
Figure 5.  Domain for the paraboloid function (R=1) and 
the spherical function (R=10) with the number of elements 
on each side M=4 

 
 
Figure 6. Domain for the Scordelis-Lo roof function with 
M=4 
 
In the following, abbreviations in the form of P*-*-G 
or P*-*-QS, in which the asterisk represents a 
number, are used to designate various options of the 
el-KI.  The first syllable denotes the polynomial basis 
with the order indicated by a number next to letter 
P. The middle asterisk denotes the number of layers.  
The last syllable denotes the Gaussian or QS 
correlation function. The adaptive correlation para-
meters given by Eq. (11a) for the Gaussian function 
and by Eq. (12) for the QS function are employed.  
The scale factor f in Eq. (11a) is taken to be 0.5.   
 
Paraboloid Function 
 
The domain is approximated using meshes with 
different number of elements on each side, i.e. M=2, 
4, 8, 16, and 32.  The options P1-2-G, P1-2-QS, P2-3-
G, and P2-3-QS are considered. The relative L2 norm 
errors are presented in Table 1 and plotted in Fig. 7. 
The average of convergence rates are calculated for 
each option and shown in the legend of Fig. 7.  
 
Table 1.  Relative L2 norm approximation error for the 
paraboloid function 

M P1-2-G P1-2-QS P2-3-G P2-3-QS 
2 1.92E-02 4.15E-02 N.A. N.A. 
4 1.00E-02 1.06E-02 2.87E-16 2.26E-16 
8 3.84E-03 3.48E-03 3.20E-15 2.96E-16 
16 1.14E-03 9.60E-04 2.16E-11 3.10E-16 
32 3.09E-04 2.52E-04 2.55E-10 3.06E-16 

M: the number of line segments on each side 
 
It can be observed that the accuracy and convergence 
rate for the el-KI with Gaussian and QS correlation 
functions are comparable. The Kriging with quadra-
tic basis, as expected, can reproduce the quadratic 
function exactly (for P2-3-QS) or almost exactly (for 
P2-3-G). The el-KI with P2-3-G for M=8, 16, and 32 
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(Table 1) does not yield the relative error of order -16 
probably because the Kriging equation system, Eq. 
4a, is close to singular for a number of elements.   
 

 
 
Figure 7.  Convergence of relative L2 norm approximation 
error for the paraboloid function. The numbers in the 
legend indicate average convergence rates. 
 
Scordelis-Lo Roof and Hemispherical Functions 
 
In order to observe the effects of using different 
number of layers and different basis functions, the 
functions are firstly approximated using the el-KI of 
options P1-1-G, P1-2-G, and P1-3-G, and secondly 
with options P1-3-G, P2-3-G, and P3-3-G. The 
domains are represented by meshes with M=2, 4, 8, 
16, and 32. The relative L2 norm errors for the 
Scordelis-Lo roof function are plotted in Figs. 8a and 
8b, while for the hemisphere function the errors are 
plotted in Figs. 9a and 9b.   
 

 
Figure 8a. Convergence of relative L2 norm approximation 
error for the Scordelis-Lo roof function (using the first series 
of the el-KI options) 
 
The figures show that the accuracy improves quite 
significantly when the number of layers increases 
from one to two, but it practically does not improve 
when the number of layers increases from two to 
three. For the Scordelis-Lo roof function, the 
convergence rates are a little bit faster as the 
number of layers increases. The accuracy and 
convergence rates improve significantly as the 

degree of polynomial basis raises.  However, this is 
not the case for the hemispherical function; the 
accuracy and convergence rates are nearly equal 
although the degree of polynomial basis rises. The 
possible reason for this is that at the circular 
boundary of the hemispherical function, the gradient 
of the function is singular.  Better approximation can 
be achieved by using finer mesh at the region close to 
the circular boundary.   
 

 
Figure 8b. Convergence of relative L2 norm approximation 
error for the Scordelis-Lo roof function (using the second 
series of the el-KI options) 
 

 
Figure 9a. Convergence of relative L2 norm approximation 
error for the hemispherical function (using the first series of 
the el-KI options) 
 

 
Figure 9b. Convergence of relative L2 norm approximation 
error for the hemispherical function (using the second 
series of the el-KI options) 
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Conclusions 
 
The manner of approximation in the K-FEM is 
element-by-element piecewise Kriging interpolation 
(el-KI).  A series of 2D function fittings using the el-
KI have been carried out. The results show that the 
el-KI can give highly accurate function fittings and 
very good convergence characteristics. The accuracy 
is generally higher as the order of polynomial basis 
raises and as the number of layers increases.  
Raising the order of polynomial basis may result in 
significant increase in the convergence rate. For 
functions containing points of singular gradient, 
however, the accuracy and convergence rate may not 
be improved by raising the polynomial order or 
increasing the number of layers.   
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