
The Tenth East Asia-Pacific Conference on Structural Engineering and Construction 
August 3-5, 2006, Bangkok, Thailand 

 
 
 

KRIGING-BASED FINITE ELEMENT METHOD FOR ANALYSES OF REISSNER-
MINDLIN PLATES 

 
 
 

WONG Foek Tjong1 and Worsak KANOK-NUKULCHAI2 
 
 
 

ABSTRACT: A class of finite element method using kriging shape functions is developed to analyze 
Reissner-Mindlin plates. The shape functions are constructed using kriging interpolation (KI) over a 
set of nodes encompassing a number of layers of elements.  In addition to the commonly used gaussian 
correlation function, a quartic spline function is introduced as the correlation function in the KI. The 
appropriate ranges of the kriging correletion parameters, both for the gaussian and quartic spline 
correlation functions, are determined based on the lower and upper bounds proposed by Plengkhom 
and Kanok-Nukulchai. The discretized equations are formulated using the standard displacement-
based finite element procedure on the variational form. The problem domain is discretized using 
triangular elements. A study on a simply supported square plate is carried out to investigate the shear-
locking phenomenon. The study shows that the use of high order basis can alleviate shear locking and 
the locking disappears if bi-cubic basis is used. When there is no shear locking, the results are 
insensitive to the change of the type of correlation function. 
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1 INTRODUCTION 

An enhancement of the finite element method using kriging shape functions (K-FEM) was recently 
proposed [1] as a convenient implementation of the element-free Galerkin method with moving KI [2].  
In the classical FEM, the shape function associated with a node is a hat function tied to the element 
structure.  Its influence extends over one layer of elements around the node.  In this new class of FEM, 
shape functions are constructed using KI over a set of nodes encompassing a number of layers of 
elements.  Thus, the shape function associated with a node extends beyond one layer of elements.  
With K-FEM, very smooth field variables and their derivatives can be obtained without any smoothing 
process.  Any requirement for high order shape functions can easily be fulfilled without any change of 
the element. The advantage of this method over mesh-free methods is that it inherits the computational 
procedure of FEM so that the modification from a standard FE program to a K-FEM program is 
straightforward.   

The K-FEM has been successfully applied to solve 1-D bar and 2-D plane stress/plane strain problems 
[1].  In this study, the K-FEM is developed for analyses of plates based on Reissner-Mindlin theory.  
In addition to the commonly used gaussian correlation function, a new type of correlation function for 
KI is proposed.  The range of correlation parameter suggested by Plengkhom and Kanok-Nukulchai 
[1] is employed to obtain the formulae relating the parameter bounds with the number of influence 
nodes.  The discretized equations are formulated using the standard displacement-based FE procedure 
on the variational form.  The same kriging shape functions are used for the deflection and rotation 
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fields.  Triangular elements are chosen as the integration cells owing to its flexibility in representing 
complex geometry and its easiness to be automatically generated.  A numerical experiment on a 
simply supported square plate is carried out to investigate the shear-locking phenomenon.  The effects 
of choosing different order of basis functions and different type of correlation functions are 
investigated.   

2 KRIGING INTERPOLATION 

Named after Danie G. Krige, a South African mining engineer, kriging is a well-known geostatistical 
technique for spatial data interpolation in geology and mining [2-4].  Using this interpolation, every 
unknown value at a point can be interpolated from known values at scattered points in its specified 
neighborhood.  This section presents a summary of KI formulation in the context of K-FEM.  A detail 
explanation and derivation of kriging can be found in the geostatistics literatures (e.g. [4] and [5]).   

For each element, the KI is defined over a set of nodes in a sub-domain elΩ ⊆Ω  encompassing a 
predetermined number of layers of elements (see Figure 1).  The KI function over sub-domain elΩ  can 
be expressed in the usual FE form as 

 h ( ) ( )u =x N x d  (1) 

where N(x) is the 1 n×  matrix of shape functions and d is the 1n×  matrix of field values at the nodes.  
In contrast to FE, here n in not the number of nodes in the element, but it is the number of all nodes in 
the domain of interpolation (DOI) of element el.   
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Domain of interpolation for element el with one, two and three layers of elements 

The shape function matrix is obtained from 

 T T( ) ( ) ( )= +N x p x A r x B  (2) 

In this equation,  
 [ ]T

1( ) ( ) ... ( )mp p=p x x x  (3) 

is vector of m-term-polynomial basis and  

 [ ]T1( ) ( ) ... ( )nC h C h=r x  (4) 

is vector of covariance between random function U at nodes i=1,…,n and U at the point x.  Note that 
in kriging formulation, a deterministic function u(x) is viewed as a realization of a random function 
U(x).  The covariance between a pair of random variables U(x) and U(xj) depends only on the distance 
between x and xi, i.e. i ih = −x x .  Thus, cov[ ( ), ( )] ( )i iU U C h=x x .  Matrices m n×A and n n×B  are 
defined as follows: 

One layer Two layers Three layers 

Element 
el 
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and I is the n n×  identity matrix.  In Equation (6), R is n n×  matrix of covariance between U(x) at 
nodes x1, …, xn, ( ) cov[ ( ), ( )]ij i jC h U U= x x , and P is n m×  matrix of polynomial values at the nodes.   

Setting up the kriging shape functions, Equation (2), requires a model of covariance function, C(h).  
This covariance model is more conveniently expressed in term of coefficient of correlation function or, 
shortly, correlation function.  The coefficient of correlation function between a pair of random 
variables U(x) and U(x+h) is 2( ) ( )h C hρ σ= , where [ ] [ ]2 var ( ) var ( )U Uσ = = +x x h .  According to 
Gu [2], σ2 has no influence on the final results and so in this study it is taken as 1.  One of the widely 
used correlation model is the gaussian correlation function, that is, 

 2( ) exp( ( / ) )h h dρ θ= −  (7) 

where θ>0 is the correlation parameter, h is the distance between two points, and d is a scale factor to 
normalize the distance.  In this study, d is taken to be maximum distance between a pair of nodes in 
the DOI.  Besides the gaussian, a new correlation function is introduced, that is,  

 
2 3 41 6( / ) 8( / ) 3( / )      for 0 / 1  

( )
0                                                        for / 1

h d h d h d h d
h

h d
θ θ θ θ

ρ
θ

⎧ − + − ≤ ≤
= ⎨

>⎩
 (8) 

This function is quartic spline (QS), adopted from the commonly used weight function in the moving 
least-squares approximation (see e.g. [6]).   

The quality of the kriging is influenced by the parameter θ.  Plengkhom and Kanok-Nukulchai [1] 
proposed the lower and upper bound criteria for θ to guarantee the quality of KI.  The lower bound is 
given by 

 10

1
1 1 10

n
a

i
i

N − +

=

− ≤ ×∑  (9) 

where a is the order of basis function, while the upper bound is given by 

 det( ) 1 10 b−≤ ×R  (10) 

where b is the dimension of problem.  For two-dimensional problem with quadratic basis function, for 
example, a=2 and b=2. 

3 NUMERICAL INVESTIGATION ON THE UPPER AND LOWER BOUNDS  

Consider seven sample elements in a 100 100×  square domain with 8 8×  uniformly distributed nodes, 
as shown in Figure 2(a).  Using Delaunay triangulation algorithm, the domain is meshed with 
triangular elements of the same sizes.  The upper and lower bounds of θ satisfying Equations 9 and 10 
are searched for the cases of KI with linear basis, gaussian and QS correlation functions, and one- up 
to four-layer DOIs.  The layered DOIs for the lower triangular element in the center of the square are 
shown in Figure 2(b).  The results of the search for the lower and upper bounds of the gaussian and QS 
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correlation parameters are displayed in Figure 3(a) and Figure 3(b) together with their quadratic 
regression curves.   

 

 
 
 
 
 
 
 
 

Figure 2. (a) Sample elements in the square     (b) Various layered DOI for the element in the center 

 

 
 
 
 
 
 
 
 
 
 

Figure 3. The lower and upper bounds of (a) gaussian and (b) QS correlation parameters for various 
number of nodes 

Based on the above and other numerical investigations on the same square domain but with some 
irregularly distributed nodes, the authors propose the parameter functions for implementation in the K-
FEM as follows: 

For gaussian correlation parameter, the lower-bound function is 

 low 2

0.08286 0.2386                      for 3 10
-8.364E - 4 0.1204 0.5283 for 10 55

0.02840 2.002                  for 55

n n
n n n

n n
θ

− ≤ <⎧
⎪= + − ≤ ≤⎨
⎪ + >⎩

 (11) 

while the upper-bound function is 

 up 2

0.34 0.7                               for 3 10
-2.484E-3 +0.3275 0.2771 for 10 55

0.05426 7.237                for 55

n n
n n n

n n
θ

− ≤ <⎧
⎪= − ≤ ≤⎨
⎪ + >⎩

 (12) 

The gaussian parameter function is  

 low up(1 )f fθ θ θ= + − ,     0 1f≤ ≤  (13) 

where f is a scale factor. 

For QS correlation parameter, the proposed function is 
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 0.1329 0.3290 for 3 10
1                     for 10

n n
n

θ
− ≤ <⎧

= ⎨ ≥⎩
 (14) 

Based on the authors’ experience, although Equations (11)-(14) are developed based on a limited 
number of samples in the square domain, they are applicable for any shape of 2D domain.   

4 NUMERICAL RESULTS FOR A SIMPLY SUPPORTED SQUARE PLATE 

An important issue in the numerical analysis of Reissner-Mindlin plates is the shear locking.  To 
observe the locking behaviour in the kriging-based finite element analyses (K-FEA), a simply-
supported square plate under uniform load is analysed.  Due to symmetry, only a quarter of the square 
plate is considered.  The quarter of the plate is discretized by uniform nodal distribution of 8 8×  and 
triangular elements are generated automatically using Delaunay algorithm.   

Effect Of Basis Order 

To observe the effect of choosing different basis orders, the following options are used in the analyses: 
• gaussian correlation function with mid-value parameters (f=0.5),  
• quadratic (P2), bi-quadratic (PB2), cubic (P3), quartic (P4), and bi-cubic (PB3) basis functions,  
• four influence-layers for quadratic, bi-quadratic, and cubic basis functions, and 
• four influence-layers and minimum 21 nodes for quartic and bi-cubic basis functions. 

The minimum 21 nodes for quartic and bi-cubic basis functions is needed to maintain good condition 
of matrix R in Equation (6), when constructing the kriging shape functions for each element.   

The center deflections from K-FEA, normalized with respect to the corresponding thin-plate-theory 
solutions [7], are plotted in Figure 4.  It can be seen from the figure that in general, the shear locking 
relieves as the order of the basis function increases. The locking disappears if bi-cubic basis is used.  
This phenomenon is similar to the results of Garcia et al. [8] in the hp-clouds method, of Liu [9, 
pp.468-469] and Noguchi et al. [6] in the element-free Galerkin method, and of Liu [9, pp.484-486] in 
the radial point interpolation method.   

Effect Of The Type Of Correlation Function 

Employing the best option of the basis functions, PB3, the plate is analysed using different correlation 
functions: gaussian with f=0 (G0), gaussian with f=50 (G50), gaussian with f=90 (G90), and QS.  The 
other analysis options are the same as in the previous investigation. 

The normalized center deflections are plotted against the length-to-thickness ratios in Figure 5.  The 
figure shows that the results are practically insensitive to the change of the correlation function or 
correlation parameter.   

5 CONCLUSIONS 

An extension of the K-FEM for solving Reissner-Mindlin’s plate problems is presented together with a 
summary of KI formulation.  A new type of correlation function is introduced.  Based on the 
investigations on the lower and upper bounds of the correlation parameter, the parameter formulae for 
implementation in the K-FEM are proposed.  The well-known shear-locking problem in the FEM 
remains present in the K-FEM.  The use of high order basis can alleviate shear locking, and for the 
simply-supported plate, bi-cubic basis can eliminate the locking completely.  When there is no shear 
locking, the results are insensitive to the change of the type of correlation function.  Future research on 
the K-FEM for plate problems should be directed on: firstly, developing a more reliable method to 
eliminate shear locking; secondly, investigating of the solution convergence; and thirdly, investigating 
the accuracy of the stress resultants.  
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Figure 4. Normalized center deflection vs thickness aspect ratio (log scale) for various basis order 
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Figure 5:  Normalized center deflection vs thickness aspect ratio (log scale) for various  

types of correlation functions 
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