

l

Abstract— In this work we employ FreeSpan,
one of the sequential pattern mining methods, to
discover sequential disease patterns in sequential
database. For our study, we use a medical database
which was built as a transactional database. There
is a different representation data with sequential
database that will be used as an input for FreeSpan
method. Therefore, we build sequential database
from medical databases. The generated patterns
are used as knowledge to predict the sequential
disease. Therefore, the medical representative can
take preventive and curative actions more precise.
To make the sequential disease patterns easily to
understand, we visualize the pattern using graph.

I. INTRODUCTION

ATA can be interpreted from a temporal or a
sequential perspective, i.e. the order appearance

elements are relevant. There are several methods to
discover sequential patterns along the data currently,
e.g. AprioriAll [1], GSP [2], FreeSpan [3], PrefixSpan
[4], SPADE [5], CloSpan [6]. Several studies have
contributed to the efficient mining of sequential
patterns or other frequent patterns in time related data.

Sequential pattern mining, which discovers frequent
sequences as patterns in a database, is an important
data mining research problem with broad applications.
In this paper, we employ FreeSpan [3] for discovering
sequential disease pattern in the medial databases.
FreeSpan is employed because the method is

Manuscript received September 27, 2009. This work was

supported by the Direktorat Jenderal Pendidikan Tinggi,
Departemen Pendidikan Nasional under Grant
110/SP2H/PP/DP2M/IV/2009.

Oviliani Yenty Yuliana is a lecturer at Informatics Engineering
Department, Petra Christian University, Surabaya 60236 Indonesia
(corresponding author to provide phone: +62-31-2983455; e-mail:
ovi@petra.ac.id).

Silvia Rostianingsih is a lecturer at Informatics Engineering
Department, Petra Christian University, Surabaya 60236 Indonesia
(corresponding author to provide phone: +62-31-2983455; e-mail:
silvia@petra.ac.id).

Gregorius Satia Budhi is a lecturer at Informatics Engineering
Department, Petra Christian University, Surabaya 60236 Indonesia
(corresponding author to provide phone: +62-31-2983455; e-mail:
greg@petra.ac.id).

interesting, scalable, and efficient. Sequence disease
represents an important source of potentially new
medical knowledge to predict the sequential disease.
Based on the knowledge, the medical representatives
can take preventive and curative actions more precise.

The remaining of the paper is organized as follows.
In Section 2 we overview the FreeSpan. The
demonstrations to discover sequential pattern disease
using FreeSpan are presented in Section 3. We
summarize our work in Section 4.

II. FREESPAN

Let I = {i1, i2, …, in} be a set of items. An itemset is
a subset of items. A sequence is an ordered list of
itemsets. A sequence s is denoted by <s1 s2 … sl>,
where sj is an itemset, i.e., sj ⊆ I for 1 ≤ j ≤ l. sj is also
called an element of the sequence, and denoted as (x1
x2 … xm), where xk is an item, i.e., xk ∈ I for 1 ≤ k ≤
m. For brevity, the brackets are omitted if an element
has only one item. That is, element (x) is written as x.
An item can occur at most once in an element of a
sequence, but can occur multiple times in different
elements of a sequence. A sequence α = <a1 a2 … an>
is called a subsequence of another sequence β = <b1 b2
… bm> and β a super sequence of α, denote as α ⊆ β,
if there exist integer 1 ≤ j1 < j2 < … < jn ≤ m such that
a1 ⊆ jb

1
, a2 ⊆ jb

2
, …, an ⊆ jb

n
.

A sequence database S is a set of tuples <sid, s>,
where sid is a sequence identifier and s is a sequence.
A tuple <sid, s> in a sequence database S is said to
contain a sequence α, if α is a subsequence of s, i.e., α
⊆ s. The support of a sequence α in a sequence
database S is the number of tuples in the database
containing α. Given a positive integer ξ as the support
threshold, a sequence α is called a sequential pattern
in sequence database S if the sequence is contained by
at least ξ tuples in the database.

Given a sequence database S and the support
threshold ξ, FreeSpan algorithm mine the complete set
of sequential patterns as follows. At last, visualize the
sequential diseases using graph.

Discovering Sequential Disease Patterns in Medical
Databases Using FreeSpan Mining Approach

Oviliani Yenty Yuliana, Silvia Rostianingsih, and Gregorius Satia Budhi
Informatics Engineering Department

Industrial Technology Faculty, Petra Christian University
Email: ovi@petra.ac.id, silvia@petra.ac.id, greg@petra.ac.id

D

A. Generate a Length-1 Sequential Patterns
Scan S once to find the set of frequent items on

distinct item of tuples in S. Save and sort them by
descending order in a frequent list. The frequent list
will be used throughout the mining process. The
frequent items which fulfill the support threshold are
used to construct a frequent item matrix F.

B. Construct a Frequent Item Matrix
Construct a frequent item matrix F by scanning the

database to count the occurrence frequency of each
length-2 sequence formed by items in the frequent list,
as follows. For frequent list < i1, i2, …, in >, F is a
triangular matrix F[j, k], where 1 ≤ j ≤ m and 1 ≤ k ≤ j,
m is the number of frequent items. F[j, j] (for 1 ≤ j ≤
m) has only one counter (recording the appearance of
sequence <jj>), whereas every other slot F[j, k] (1 ≤ j
≤ m and 1 ≤ k ≤ j) has three counters: (A, B, C). A is
the number of occurrences that ik occurs after ij, i.e.
the sequence contains <ij ik>. B is that ik occurs before
ij, i.e. the sequence contains <ik ij>. C is that ik occurs
concurrently with ij, i.e. the sequence contains <(ij
ik)>.

C. Generate a Length-2 Sequential Patterns
Generate a length-2 sequential patterns and a set of

projected database from the frequent item matrix. For
each counter, if the value in the counter is no less than
minimum support, output the corresponding frequent
pattern.

1) Generate annotations on item-repeating patterns
for row j: For the diagonal slot, if F[j, j] ≥ minimum
support, generate <jj+>. The count of <jjj>, <jjjj>, …
should be registered in the next round. For a column i
≠ j, follow rules: If F[i, i] ≥ minimum support, the
annotation should contain i+. It means there are
potentially more than one I appearing in the sequential
pattern. If F[j, j] ≥ minimum support, the annotation
should contain j+. Moreover, if only one of the three
counter of F[i, j] is frequent, sequence is used as the
annotation; otherwise set is used. It means, enhance
string filtering. The annotation of an item repeating
pattern is of the form $ai

ϒai
ϒ$, where $...$ can be

either <…> (indicating looking for a particular
ordered sequence only) or {…} (indicating looking for
any ordered sequence), and ai

ϒ can be either ai
+

(indicating looking for more than one occurrence of
ai), or ai (i.e. no repeating ai’s) – notice that at least
one of ai and aj is a repeating one.

2) Generate annotations on projected databases for
row j: for each i < j, if F[i, j], F[k, j], and F[i, k] (k <
i) may form a pattern generating triple (i.e. all the
corresponding pairs are frequent), k should be added
to i’s projected column set. After examining all
columns in front of i, the set of projected columns is
determined. Output the annotation containing I, j, and

the set of projected columns. If there is a choice
between sequence or set, sequence is preferred since it
enforces a stronger restriction in the projection. The
annotation of the projected database is of the form
$aiaj$: {bp, …, bq}, where $...$ has the same
convention as the item repeating pattern, and {bp, …,
bq} represents a set of frequent items which may occur
together with $aiaj$ to form longer sequential patterns
in subsequent mining.

D. Generate a Length-3 Sequential Patterns
Based on the annotation generated from the matrix,

scan the database one more time and generate the
item-repeating patterns and projected databases. The
remaining mining will be confined to each small
projected database, by examining only the
corresponding patterns enclosed in the header set.

III. DISCOVERING SEQUENTIAL DISEASE PATTERNS

In our study, we use RSU Dr. Soetomo medical
databases (OLTP). Partly diagnosis structure table is
shown in Table 1. The disease codes base on an
international standard, ICD-X [7]. For example,
A09.X is a disease code for Diarrhoea and
gastroenteritis of presumed infectious origin. We built
sequential database (OLAP) from diagnosis table as
shown in Table 2. Given the sequence disease
database S, the first two columns, in Table 2. The
minimum support is 2. The discovering sequential
disease patterns process can be done. The mining
conceptual framework is show in Figure 1.

TABLE I

PARTLY DIAGNOSIS STRUCTURE TABLE

Patient
Id Patient In Diagnosis 1 Diagnosis 2 Diagnosis 3

1450 04/14/07 A09.X A41.9
1450 12/23/07 E86.X
1450 05/25/08 A09.X
1450 03/07/09 I10.X E86.X

. . .
1456 08/09/07 C34.9 J90.X
1456 0/31/08 C34.9 D63.0 J90.X

The first step (section 2.1), generate a length-1

sequential patterns, i.e. frequent list, by scanning S.
The frequent list is sorted in descending order, i.e.
<A09.X: 6, E86.X: 5, A41.9: 4, C34.9: 4, D63.0: 3,
I10.X: 3, J90.X: 2>. E14.9 disease is not included into
frequent list because its support less than 2.

TABLE II
A DISEASE SEQUENCE DATABASE

Patient
Id Sequence Disease Pattern

1450 <(A09.X A41.9) E86.X
A09.X (I10.X E86.X)>

{A09.X, A41.9, E86.X,
I10.X}

1451
<(A09.X D63.0) (E86.X
C34.9) A09.X (D63.0
E14.9)>

{A09.X, C34.9, D63.0,
E14.9, E86.X}

1452
<(I10.X J90.X) (A09.X
D63.0) I10.X A09.X
D63.0>

{A09.X, D63.0, I10.X,
J90.X}

1453 <(A09.X C34.9) (E86.X
C34.9) A41.9>

{A09.X, E86.X, A41.9,
C34.9}

1454
<I10.X (A09.X A41.9)
A09.X E86.X A09.X
(I10.X A41.9 C34.9)>

{A09.X, A41.9, C34.9,
E86.X, I10.X}

1455 <A09.X (A09.X E86.X)
(A09.X A41.9)> {A09.X, A41.9, E86.X}

1456 <(C34.9 J90.X) (C34.9
D63.0 J90.X)> {C34.9, D63.0, J90.X}

The second step (section 2.2), construct a frequent

item matrix. In our example, the frequent list consists
of 7 items. It leads to generate a 7 X 7 triangular
frequent item matrix, with every counter initialized to
0. For example, we fill up the counter matrix with the
first tuples sequence disease in Table 2, i.e. <(A09.X
A41.9) E86.X A09.X (I10.X E86.X)>. It generates a
combination sequence diseases of <(A09.X A41.9)>,
<(I10.X E86.X)>, <A09.X A09.X>, <A09.X E86.X>,
<A09.X I10.X>, <A41.9 A09.X>, <A41.9 E86.X>,
<A41.9 I10.X>, <E86.X A09.X>, <E86.X E86.X>,
and <E86.X I10.X>. The sequence <A09.X I10.X>
increases the counter matrix F[A09.X, I10.X] by 1, i.e.
F[A09.X, I10.X] = (1,0,0). The <A41.9 A09.X> and
<(A09.X A41.9)> increase the counter matrix
F[A09.X, A41.9] by 1, i.e. F[A09.X, A41.9] = (0,1,1).
The <A09.X E86.X> and <E86.X A09.X> increase
the counter matrix F[A09.X, E86.X] by 1, i.e.
F[A09.X, E86.X] = (1,1,0). The <E86.X I10.X> and
<(I10.X E86.X)> increase the counter matrix

F[E86.X, I10.X] by 1, i.e. F[E86.X, I10.X] = (1,0,1).
The <A41.9, E86.X> increases the counter matrix
F[E86.X, A41.9] by 1, i.e. F[E86.X, A41.9] = (0,1,0).
The <A41.9 I10.X> increases the counter matrix
F[A41.9, I10.X] by 1, i.e. F[A41.9, I10.X] = (1,0,0).
The last <A09.X A09.X> increases the counter matrix
F[A09.X, A09.X] by 1 (i.e. F[A09.X, A09.X] = 1)
and <E86.X E86.X> increases the counter matrix
F[E86.X, E86.X] by 1 (i.e. F[E86.X, E86.X] = 1).
The process continues along tuples the sequential
database. At the end of the second step, the frequent
item matrix is shown in Figure 2. The counter matrixes
which are greater than or equal minimum support are
written in a bold font.

The third step (section 2.3), generate a length-2
sequential patterns, annotations on item repeating
patterns, and annotations on the projected databases as
shown in Table 3. This step is based on the frequent
item matrix F, Figure 2. For instance, we demonstrate
the process for two rows I10.X and D63.0.

TABLE III

PATTERN GENERATION FROM THE FREQUENT DISEASE MATRIX

Disease Output Length-2
Sequential Patterns

Ann. on Repeating
Items

Ann. on
Projected DBs

J90.X <J90.X D63.0>: 2 <J90.X D63.0+> ∅

I10.X

<A09.X I10.X>: 3,
<I10.X A09.X>: 2,
<E86.X I10.X>: 2,
<A41.9 I10.X>: 2,
<I10.X I10.X>: 2

{A09.X+ I10.X+},
<E86.X I10.X+>,
<A41.9 I10.X+>,
<I10.X I10.X+>

<E86.X I10.X>:
{A09.X},
<A41.9 I10.x>:
{A09.X E86.X}

D63.0

<A09.X D63.0>: 2,
<D63.0 A09.X>: 2,
<(A09.X D63.0)>:
2, <C34.9 D63.0>:
2, <D63.0 D63.0>:
2

{A09.X+ D63.0+},
<C34.9+ D63.0+>,
<D63.0 D63.0+>

∅

C34.9

<A09.X C34.9>: 3,
<(E86.X C34.9)>:
2, <C34.9 C34.9>:
2

<A09.X+ C34.9+>,
<E86.X C34.9+>,
<C34.9 C34.9+>

<(E86.X
C34.9)>:
{A09.X}

A41.9

<A09.X A41.9>: 3,
<A41.9 A09.X>: 2,
<(A09.X A41.9)>:
3, <E86.X A41.9>:
3, <A41.9 E86.X>:
2

{A09.X+ A41.9}
<E86.X
A41.9>:
{A09.X}

E86.X <A09.X E86.X>: 5,
<E86.X A09.X>: 4

{A09.X+ E86.X} ∅

A09.X <A09.X A09.X>: 5 <A09.X A09.X+> ∅

The I10.X row has 5 frequent counters matrix

respectively as follows. F[A09.X, I10.X] = (3,2,0)

Fig. 1. The mining conceptual framework

A09.X 5
E86.X (5,4,1) 1
A41.9 (3,2,3) (3,2,0) 1
C34.9 (3,1,1) (1,1,2) (1,1,1) 2
D63.0 (2,2,2) (1,1,0) (0,0,0) (2,1,1) 2
I10.X (3,2,0) (2,1,1) (2,1,1) (0,1,1) (1,1,0) 2
J90.X (0,1,0) (0,0,0) (0,0,0) (1,1,1) (0,2,1) (0,1,1) 1

A09.X E86.X A41.9 C34.9 D63.0 I10.X J90.X
Fig. 2. The frequent diseases matrix

generates two length-2 sequential patterns <A09.X
I10.X>: 3 and <I10.X A09.X>: 2. F[E86.X, I10.X] =
(2,1,1) generates a length-2 sequential pattern <E86.X
I10.X>: 2. F[A41.9, I10.X] = (2,1,1) generates a
length-2 sequential pattern <A41.9 I10.X>: 2. At last,
F[I10.X, I10.X] = 2 generates a length-2 sequential
pattern <I10.X I10.X>: 2. Since both F[A09.X,
A09.X] and F[I10.X, I10.X] are frequent, the
annotation on repeating items {A09.X+ I10.X+} is
generated which means one need to examine multiple
occurrences of A09.X’s dan I10.X’s and their
combinations in the next scan. In addition, F[I10.X,
I10.X] are frequent, add <I10.X I10.X+> to the
annotation on repeating items. Moreover, there are still
two frequent items in the I10.X row, i.e. E86.X and
A41.9 columns. Each column has only one frequent
counter with F[I10.X, I10.X] is frequent. F[E86.X,
E86.X] and F[A41.9, A41.9], however, are not
frequent. Therefore the annotation <E86.X I10.X+>
and <A41.9 I10.X+> are generated. Furthermore, since
F[A41.9, I10.X], F[E86.X, I10.X], and F[E86.X,
A41.9] form a pattern generating triple, and F[A41.9,
I10.X] = (2,1,1) which means only <A41.9 I10.X> is
valid. The annotation for the projected database
should be <A41.9 I10.X>: {A09.X, E86.X}. It
indicates generating <A41.9 I10.X> projected
database with item {A09.X, E86.X} included.
F[E86.X, I10.X], F[A09.X, I10.X], and F[A09.X,
E86.X] also form a pattern generating triple. F[E86.X,
I10.X] = (2,1,1), it means only <E86.X I10.X> is
valid. The annotation for the projected database
should be <E86.X I10.X>: {A09.X}. It indicates
generating <E86.X I10.X> projected database with
only item {A09.X} included. As a result see Table 3,
the second row, i.e. disease I10.X.

The D63.0 row also has 5 counter frequent, which
leads to generate 5 length-2 sequential pattern:
<A09.X D63.0>: 2, <D63.0 A09.X>: 2, <(A09.X
D63.0)>: 2, <C34.9 D63.0>: 2, <D63.0 D63.0>: 2.
F[A09.X, A09.X], F[D63.0, D63.0], and F[C34.9,
C34.9] are frequent. Since more than one counter
frequent in F[A09.X, D63.0] = (2,2,2), the annotation
on repeating items {A09.X+ D63.0+} is generated.
Since only one counter frequent in F[C34.9, D63.0] =
(2,1,1), the annotation on repeating items <C34.9+
D63.0+> is generated. In addition, the annotation on
repeating items <D63.0 D63.0+> is generated.
Furthermore, since F[C34.9, D63.0], F[A41.9, D63.0],
and F[A41.9, C34.9] do not form a pattern generating
triple. It means no other item could be co-frequented
with <C34.9, D63.0>, there is no projected database
annotation with A41.9. As a result see Table 3, the
thrid row, i.e. disease D63.0.

The fourth step (section 2.4), generate a length-3
sequential patterns based on pattern generation in
Table 3, i.e. projecting database and generating

repeating pattern. There are 5 annotation on projected
databases in Table 3 the fourth column, i.e. <E86.X
I10.X>: {A09.X}, <A41.9 I10.x>: {A09.X E86.X},
<(E86.X C34.9)>: {A09.X}, and <E86.X A41.9>:
{A09.X}. For instance, we demonstrate the annotation
<E86.X I10.X>: {A09.X} by scanning sequential
database one or more times. As a result, the projected
databases are <A09.X E86.X A09.X (I10.X E86.X)>
and <I10.X A09.X A09.X E86.X A09.X I10.X>.
Based on the projected database, sequential patterns
<A09.X E86.X A09.X I10.X>:2, <E86.X A09.X
I10.X>:2, and <A09.X E86.X I10.X>:2 are
discovered. The generated length-3 sequential patterns
by projected databases are shown in Table 4.

TABLE IV
SEQUENTIAL DISEASE PATTERNS FROM PROJECTED DATABASE

Ann. on
Projected DBs Projected Database Sequential

Patterns
<A09.X E86.X
A09.X I10.X>:2
<E86.X A09.X
I10.X>:2

<E86.X
I10.X>:
{A09.X}

<A09.X E86.X
A09.X (I10.X
E86.X)>, <I10.X
A09.X A09.X E86.X
A09.X I10.X> <A09.X E86.X

I10.X>:2
<(A09.X A41.9)
I10.X>:2
<A41.9 E86.X
A09.X I10.X>:2
<A41.9 E86.X
I10.X>:2

<A41.9
I10.x>:
{A09.X
E86.X}

<(A09.X A41.9)
E86.X A09.X (I10.X
E86.X)>, <(A09.X
A41.9) A09.X E86.X
A09.X (I10.X
A41.9)> <A41.9 A09.X

I10.X>:2

<(E86.X
C34.9)>:
{A09.X}

<A09.X (E86.X
C34.9) A09.X>,
<A09.X (E86.X
C34.9)>

<A09.X (E86.X
C34.9)>:2

<E86.X
A41.9>:
{A09.X}

<A09.X E86.X
A41.9>, <A09.X
A09.X E86.X A09.X
A41.9>, <A09.X
(A09.X E86.X)
(A09.X A41.9)>

<A09.X E86.X
A41.9>:3

There are 14 annotations on repeating items

including a looking for a particular and any ordered
sequences (see Table 3 the third column). The
particular ordered sequences are <J90.X D63.0+>,
<E86.X I10.X+>, <A41.9 I10.X+>, <I10.X I10.X+>,
<C34.9+ D63.0+>, <D63.0 D63.0+>, <A09.X+
C34.9+>, <E86.X C34.9+>, <C34.9 C34.9+>, and
<A09.X A09.X+>. They should not be generated for
further repeating patterns. The particular ordered
sequences use the output length-2 sequential patterns.
Moreover, there are 4 any ordered sequences, i.e.
{A09.X+, I10.X+}, {A09.X+, D63.0+}, {A09.X+,
A41.9}, and {A09.X+, E86.X}. For example, we
demonstrate how to generate repeating items for
{A09.X+, I10.X+}. Generate several sequence from
{A09.X+, I10.X+}, e.g. <A09.X, I10.X, I10.X>,
<I10.X, A09.X, I10.X>, <A09.X, I10.X, I10.X>. For
each sequence, scan sequential databases to discover

the frequent sequence pattern. For our example, there
are 3 frequent sequence patterns, i.e. <A09.X, A09.X,
I10.X>: 2, <I10.X, A09.X, I10.X>: 2, and <I10.X,
A09.X, A09.X>: 2. The generated length-3 sequential
patterns by repeating item are shown in Table 5.

TABLE V
SEQUENTIAL DISEASE PATTERNS FROM REPEATING ITEMS

Ann. on Repeating
items Sequential Patterns

<A09.X, A09.X, I10.X>: 2
<I10.X, A09.X, I10.X>: 2 {A09.X+, I10.X+}

<I10.X, A09.X, A09.X>: 2
<(A09.X, D63.0), A09.X, D63.0>: 2
<(A09.X, D63.0), A09.X>: 2
<(A09.X, D63.0), D63.0>: 2
<A09.X, A09.X, D63.0>: 2

{A09.X+, D63.0+}

<D63.0, A09.X, D63.0>: 2
<(A09.X, A41.9), A09.X>: 2 {A09.X+, A41.9}
<A09.X, A09.X, A41.9>: 2
<A09.X, E86.X, A09.X>: 4

{A09.X+, E86.X}
<A09.X, A09.X, E86.X>: 2

{A09.X, A09.X+} <A09.X, A09.X, A09.X>: 2

The last step as an optional step, visualize a

sequential disease pattern using graph. For instance an
annotation on repeating items {A09.X+, D63.0+} in
Table 5 is visualized in Figure 3. Double circle is used
for start sequence, bold circle is used for end
sequence, and normal circle is used for transition
sequence.

A. <(A09.X, D63.0), A09.X, D63.0>

<(A09.X, D63.0), A09.X>
<(A09.X, D63.0), D63.0>

B. <A09.X, A09.X, D63.0>

����� �����

C. <D63.0, A09.X, D63.0>

Fig. 3. An {A09.X+, D63.0+} sequential pattern graph

IV. CONCLUSIONS

FreeSpan method can be used for mining sequential
diseases pattern form database sequential. In case

medical database was built in different representative
data, i.e. transactional database. The medical database
should be transformed into a sequential database first.
Then use FreeSpan to mine sequential diseases
pattern. The generated patterns can be used a
knowledge to predict sequential diseases. As a result
the medical representative can take preventive and
curative action more precisely.

ACKNOWLEDGMENT

This work was supported by the Direktorat Jendral
Pendidikan Tinggi, Departemen Pendidikan Nasional
under Grant 110/SP2H/PP/DP2M/IV/2009.

REFERENCES
[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns”, The

eleventh international conference on data engineering, IEEE
Computer Society Press, Taipei Taiwan, March 6-10 1995,
pp. 3-14.

[2] Srikant, R. and R. Agrawal, Mining Sequential Patterns:
Generalizations and Performance Improvments, IBM
Research Division, San Jose CA, 1996.

[3] J. Han, J. Pei, B.M. Asl, Q. Chen, U. Dayal, and M.C. Hsu,
”FreeSpan: Frequent Pattern-Projected Sequential Pattern
Mining”, Proceedings of the sixth ACM SIGKDD
international conference on knowledge discovery and data
mining, Boston MA USA, August 20-23 2000, pp. 355-359.

[4] J. Pei, J. Han, B.M. Asl, Q. Chen, U. Dayal, and M.C. Hsu,
”Prefixspan: Mining Sequential Patterns Efficiently by Prefix
Projection Pattern Growth”, Proceedings of the 17th
International Conference on Data Engineering, 2001, pp. 215-
224.

[5] M. Zaki, “Spade: An Efficient Algorithm for Mining Frequent
Sequences“, Machine Learning Journal, special issue on
Unsupervised Learning, Kluwer Academic Publishers,
Boston, 2000.

[6] X. Yan, J. Han, and R. Afshar, ”Clospan: Mining Closed
Sequential Patterns in Large Datasets”, Proceeding of SIAM
International Conference on Data Mining, 2003, pp. 438-
457.

[7] World Health Organization, ICD-10 Version 2007. Available:
http://apps.who.int/classifications/apps/icd/icd10online

