
 
 

 

l  

Abstract— In this work we employ FreeSpan, 
one of the sequential pattern mining methods, to 
discover sequential disease patterns in sequential 
database. For our study, we use a medical database 
which was built as a transactional database. There 
is a different representation data with sequential 
database that will be used as an input for FreeSpan 
method. Therefore, we build sequential database 
from medical databases. The generated patterns 
are used as knowledge to predict the sequential 
disease. Therefore, the medical representative can 
take preventive and curative actions more precise. 
To make the sequential disease patterns easily to 
understand, we visualize the pattern using graph. 

I. INTRODUCTION 

ATA can be interpreted from a temporal or a 
sequential perspective, i.e. the order appearance 

elements are relevant. There are several methods to 
discover sequential patterns along the data currently, 
e.g. AprioriAll [1], GSP [2], FreeSpan [3], PrefixSpan 
[4], SPADE [5], CloSpan [6]. Several studies have 
contributed to the efficient mining of sequential 
patterns or other frequent patterns in time related data. 

Sequential pattern mining, which discovers frequent 
sequences as patterns in a database, is an important 
data mining research problem with broad applications. 
In this paper, we employ FreeSpan [3] for discovering 
sequential disease pattern in the medial databases. 
FreeSpan is employed because the method is 
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interesting, scalable, and efficient. Sequence disease 
represents an important source of potentially new 
medical knowledge to predict the sequential disease. 
Based on the knowledge, the medical representatives 
can take preventive and curative actions more precise. 

The remaining of the paper is organized as follows. 
In Section 2 we overview the FreeSpan. The 
demonstrations to discover sequential pattern disease 
using FreeSpan are presented in Section 3. We 
summarize our work in Section 4. 

II. FREESPAN 

Let I = {i1, i2, …, in} be a set of items. An itemset is 
a subset of items. A sequence is an ordered list of 
itemsets. A sequence s is denoted by <s1 s2 … sl>, 
where sj is an itemset, i.e., sj ⊆ I for 1 ≤ j ≤ l. sj is also 
called an element of the sequence, and denoted as (x1 
x2 … xm), where xk is an item, i.e., xk ∈ I for 1 ≤ k ≤ 
m. For brevity, the brackets are omitted if an element 
has only one item. That is, element (x) is written as x. 
An item can occur at most once in an element of a 
sequence, but can occur multiple times in different 
elements of a sequence. A sequence α = <a1 a2 … an> 
is called a subsequence of another sequence β = <b1 b2 
… bm> and β a super sequence of α, denote as α ⊆ β, 
if there exist integer 1 ≤ j1 < j2 < … < jn ≤ m such that 
a1 ⊆ jb

1
, a2 ⊆ jb

2
, …, an ⊆ jb

n
. 

A sequence database S is a set of tuples <sid, s>, 
where sid is a sequence identifier and s is a sequence. 
A tuple <sid, s> in a sequence database S is said to 
contain a sequence α, if α is a subsequence of s, i.e., α 
⊆ s. The support of a sequence α in a sequence 
database S is the number of tuples in the database 
containing α. Given a positive integer ξ as the support 
threshold, a sequence α is called a sequential pattern 
in sequence database S if the sequence is contained by 
at least ξ tuples in the database. 

Given a sequence database S and the support 
threshold ξ, FreeSpan algorithm mine the complete set 
of sequential patterns as follows. At last, visualize the 
sequential diseases using graph. 
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A. Generate a Length-1 Sequential Patterns 
Scan S once to find the set of frequent items on 

distinct item of tuples in S. Save and sort them by 
descending order in a frequent list. The frequent list 
will be used throughout the mining process. The 
frequent items which fulfill the support threshold are 
used to construct a frequent item matrix F. 

B. Construct a Frequent Item Matrix 
Construct a frequent item matrix F by scanning the 

database to count the occurrence frequency of each 
length-2 sequence formed by items in the frequent list, 
as follows. For frequent list < i1, i2, …, in >, F is a 
triangular matrix F[j, k], where 1 ≤ j ≤ m and 1 ≤ k ≤ j, 
m is the number of frequent items. F[j, j] (for 1 ≤ j ≤ 
m) has only one counter (recording the appearance of 
sequence <jj>), whereas every other slot F[j, k] (1 ≤ j 
≤ m and 1 ≤ k ≤ j) has three counters: (A, B, C). A is 
the number of occurrences that ik occurs after ij, i.e. 
the sequence contains <ij ik>. B is that ik occurs before 
ij, i.e. the sequence contains <ik ij>. C is that ik occurs 
concurrently with ij, i.e. the sequence contains <(ij 
ik)>. 

C. Generate a Length-2 Sequential Patterns 
Generate a length-2 sequential patterns and a set of 

projected database from the frequent item matrix. For 
each counter, if the value in the counter is no less than 
minimum support, output the corresponding frequent 
pattern. 

1) Generate annotations on item-repeating patterns 
for row j: For the diagonal slot, if F[j, j] ≥ minimum 
support, generate <jj+>. The count of <jjj>, <jjjj>, … 
should be registered in the next round. For a column i 
≠ j, follow rules: If F[i, i] ≥ minimum support, the 
annotation should contain i+. It means there are 
potentially more than one I appearing in the sequential 
pattern. If F[j, j] ≥ minimum support, the annotation 
should contain j+. Moreover, if only one of the three 
counter of F[i, j] is frequent, sequence is used as the 
annotation; otherwise set is used. It means, enhance 
string filtering. The annotation of an item repeating 
pattern is of the form $ai

ϒai
ϒ$, where $...$ can be 

either <…> (indicating looking for a particular 
ordered sequence only) or {…} (indicating looking for 
any ordered sequence), and ai

ϒ can be either ai
+ 

(indicating looking for more than one occurrence of 
ai), or ai (i.e. no repeating ai’s) – notice that at least 
one of ai and aj is a repeating one. 

2) Generate annotations on projected databases for 
row j: for each i < j, if F[i, j], F[k, j], and F[i, k] (k < 
i) may form a pattern generating triple (i.e. all the 
corresponding pairs are frequent), k should be added 
to i’s projected column set. After examining all 
columns in front of i, the set of projected columns is 
determined. Output the annotation containing I, j, and 

the set of projected columns. If there is a choice 
between sequence or set, sequence is preferred since it 
enforces a stronger restriction in the projection. The 
annotation of the projected database is of the form 
$aiaj$: {bp, …, bq}, where $...$ has the same 
convention as the item repeating pattern, and {bp, …, 
bq} represents a set of frequent items which may occur 
together with $aiaj$ to form longer sequential patterns 
in subsequent mining. 

D. Generate a Length-3 Sequential Patterns 
Based on the annotation generated from the matrix, 

scan the database one more time and generate the 
item-repeating patterns and projected databases. The 
remaining mining will be confined to each small 
projected database, by examining only the 
corresponding patterns enclosed in the header set. 

III. DISCOVERING SEQUENTIAL DISEASE PATTERNS 

In our study, we use RSU Dr. Soetomo medical 
databases (OLTP). Partly diagnosis structure table is 
shown in Table 1. The disease codes base on an 
international standard, ICD-X [7]. For example, 
A09.X is a disease code for Diarrhoea and 
gastroenteritis of presumed infectious origin. We built 
sequential database (OLAP) from diagnosis table as 
shown in Table 2. Given the sequence disease 
database S, the first two columns, in Table 2. The 
minimum support is 2. The discovering sequential 
disease patterns process can be done. The mining 
conceptual framework is show in Figure 1. 

 
TABLE I 

PARTLY DIAGNOSIS STRUCTURE TABLE 

Patient 
Id Patient In Diagnosis 1 Diagnosis 2 Diagnosis 3 

1450 04/14/07 A09.X A41.9  
1450 12/23/07 E86.X   
1450 05/25/08 A09.X   
1450 03/07/09 I10.X E86.X  

. . .     
1456 08/09/07 C34.9 J90.X  
1456 0/31/08 C34.9 D63.0 J90.X 

 
The first step (section 2.1), generate a length-1 

sequential patterns, i.e. frequent list, by scanning S. 
The frequent list is sorted in descending order, i.e. 
<A09.X: 6, E86.X: 5, A41.9: 4, C34.9: 4, D63.0: 3, 
I10.X: 3, J90.X: 2>. E14.9 disease is not included into 
frequent list because its support less than 2. 
 
 
 
 
 
 
 



 
 

 

TABLE II 
A DISEASE SEQUENCE DATABASE 

Patient 
Id Sequence Disease Pattern 

1450 <(A09.X A41.9) E86.X 
A09.X (I10.X E86.X)> 

{A09.X, A41.9, E86.X, 
I10.X} 

1451 
<(A09.X D63.0) (E86.X 
C34.9) A09.X (D63.0 
E14.9)> 

{A09.X, C34.9, D63.0, 
E14.9, E86.X} 

1452 
<(I10.X J90.X) (A09.X 
D63.0) I10.X A09.X 
D63.0> 

{A09.X, D63.0, I10.X, 
J90.X} 

1453 <(A09.X C34.9) (E86.X 
C34.9) A41.9> 

{A09.X, E86.X, A41.9, 
C34.9} 

1454 
<I10.X (A09.X A41.9) 
A09.X E86.X A09.X 
(I10.X A41.9 C34.9)> 

{A09.X, A41.9, C34.9, 
E86.X, I10.X} 

1455 <A09.X (A09.X E86.X) 
(A09.X A41.9)> {A09.X, A41.9, E86.X} 

1456 <(C34.9 J90.X) (C34.9 
D63.0 J90.X)> {C34.9, D63.0, J90.X} 

 

 
The second step (section 2.2), construct a frequent 

item matrix. In our example, the frequent list consists 
of 7 items. It leads to generate a 7 X 7 triangular 
frequent item matrix, with every counter initialized to 
0. For example, we fill up the counter matrix with the 
first tuples sequence disease in Table 2, i.e. <(A09.X 
A41.9) E86.X A09.X (I10.X E86.X)>. It generates a 
combination sequence diseases of <(A09.X A41.9)>, 
<(I10.X E86.X)>, <A09.X A09.X>, <A09.X E86.X>, 
<A09.X I10.X>, <A41.9 A09.X>, <A41.9 E86.X>, 
<A41.9 I10.X>, <E86.X A09.X>, <E86.X E86.X>, 
and <E86.X I10.X>. The sequence <A09.X I10.X> 
increases the counter matrix F[A09.X, I10.X] by 1, i.e. 
F[A09.X, I10.X] = (1,0,0). The <A41.9 A09.X> and 
<(A09.X A41.9)> increase the counter matrix 
F[A09.X, A41.9] by 1, i.e. F[A09.X, A41.9] = (0,1,1). 
The <A09.X E86.X> and <E86.X A09.X> increase 
the counter matrix F[A09.X, E86.X] by 1, i.e. 
F[A09.X, E86.X] = (1,1,0). The <E86.X I10.X> and 
<(I10.X E86.X)> increase the counter matrix 

F[E86.X, I10.X] by 1, i.e. F[E86.X, I10.X] = (1,0,1). 
The <A41.9, E86.X> increases the counter matrix 
F[E86.X, A41.9] by 1, i.e. F[E86.X, A41.9] = (0,1,0). 
The <A41.9 I10.X> increases the counter matrix 
F[A41.9, I10.X] by 1, i.e. F[A41.9, I10.X] = (1,0,0). 
The last <A09.X A09.X> increases the counter matrix 
F[A09.X, A09.X] by 1 (i.e. F[A09.X, A09.X] = 1) 
and <E86.X E86.X> increases the counter matrix 
F[E86.X, E86.X] by 1 (i.e. F[E86.X, E86.X] = 1). 
The process continues along tuples the sequential 
database. At the end of the second step, the frequent 
item matrix is shown in Figure 2. The counter matrixes 
which are greater than or equal minimum support are 
written in a bold font. 
 

The third step (section 2.3), generate a length-2 
sequential patterns, annotations on item repeating 
patterns, and annotations on the projected databases as 
shown in Table 3. This step is based on the frequent 
item matrix F, Figure 2. For instance, we demonstrate 
the process for two rows I10.X and D63.0. 

 
TABLE III 

PATTERN GENERATION FROM THE FREQUENT DISEASE MATRIX 

Disease Output Length-2 
Sequential Patterns 

Ann. on Repeating 
Items 

Ann. on 
Projected DBs 

J90.X <J90.X D63.0>: 2 <J90.X D63.0+> ∅ 

I10.X 

<A09.X I10.X>: 3, 
<I10.X A09.X>: 2, 
<E86.X I10.X>: 2, 
<A41.9 I10.X>: 2, 
<I10.X I10.X>: 2 

{A09.X+ I10.X+}, 
<E86.X I10.X+>, 
<A41.9 I10.X+>, 
<I10.X I10.X+> 

<E86.X I10.X>: 
{A09.X}, 
<A41.9 I10.x>: 
{A09.X E86.X} 

D63.0 

<A09.X D63.0>: 2, 
<D63.0 A09.X>: 2, 
<(A09.X D63.0)>: 
2, <C34.9 D63.0>: 
2, <D63.0 D63.0>: 
2 

{A09.X+ D63.0+}, 
<C34.9+ D63.0+>, 
<D63.0 D63.0+> 

∅ 

C34.9 

<A09.X C34.9>: 3, 
<(E86.X C34.9)>: 
2, <C34.9 C34.9>: 
2 

<A09.X+ C34.9+>, 
<E86.X C34.9+>, 
<C34.9 C34.9+> 

<(E86.X 
C34.9)>: 
{A09.X} 

A41.9 

<A09.X A41.9>: 3, 
<A41.9 A09.X>: 2, 
<(A09.X A41.9)>: 
3, <E86.X A41.9>: 
3, <A41.9 E86.X>: 
2 

{A09.X+ A41.9} 
<E86.X 
A41.9>: 
{A09.X} 

E86.X <A09.X E86.X>: 5, 
<E86.X A09.X>: 4 

{A09.X+ E86.X} ∅ 

A09.X <A09.X A09.X>: 5 <A09.X A09.X+> ∅ 

 
The I10.X row has 5 frequent counters matrix 

respectively as follows. F[A09.X, I10.X] = (3,2,0) 

 

 
Fig. 1.  The mining conceptual framework 

A09.X 5
E86.X (5,4,1) 1
A41.9 (3,2,3) (3,2,0) 1
C34.9 (3,1,1) (1,1,2) (1,1,1) 2
D63.0 (2,2,2) (1,1,0) (0,0,0) (2,1,1) 2
I10.X (3,2,0) (2,1,1) (2,1,1) (0,1,1) (1,1,0) 2
J90.X (0,1,0) (0,0,0) (0,0,0) (1,1,1) (0,2,1) (0,1,1) 1

A09.X E86.X A41.9 C34.9 D63.0 I10.X J90.X  
Fig. 2.  The frequent diseases matrix 
 



 
 

 

generates two length-2 sequential patterns <A09.X 
I10.X>: 3 and <I10.X A09.X>: 2. F[E86.X, I10.X] = 
(2,1,1) generates a length-2 sequential pattern <E86.X 
I10.X>: 2. F[A41.9, I10.X] = (2,1,1) generates a 
length-2 sequential pattern <A41.9 I10.X>: 2. At last, 
F[I10.X, I10.X] = 2 generates a length-2 sequential 
pattern <I10.X I10.X>: 2. Since both F[A09.X, 
A09.X] and F[I10.X, I10.X] are frequent, the 
annotation on repeating items {A09.X+ I10.X+} is 
generated which means one need to examine multiple 
occurrences of A09.X’s dan I10.X’s and their 
combinations in the next scan. In addition, F[I10.X, 
I10.X] are frequent, add <I10.X I10.X+> to the 
annotation on repeating items. Moreover, there are still 
two frequent items in the I10.X row, i.e. E86.X and 
A41.9 columns. Each column has only one frequent 
counter with F[I10.X, I10.X] is frequent. F[E86.X, 
E86.X] and F[A41.9, A41.9], however, are not 
frequent. Therefore the annotation <E86.X I10.X+> 
and <A41.9 I10.X+> are generated. Furthermore, since 
F[A41.9, I10.X], F[E86.X, I10.X], and F[E86.X, 
A41.9] form a pattern generating triple, and F[A41.9, 
I10.X] = (2,1,1) which means only <A41.9 I10.X> is 
valid. The annotation for the projected database 
should be <A41.9 I10.X>: {A09.X, E86.X}. It 
indicates generating <A41.9 I10.X> projected 
database with item {A09.X, E86.X} included. 
F[E86.X, I10.X], F[A09.X, I10.X], and F[A09.X, 
E86.X] also form a pattern generating triple. F[E86.X, 
I10.X] = (2,1,1), it means only <E86.X I10.X> is 
valid. The annotation for the projected database 
should be <E86.X I10.X>: {A09.X}. It indicates 
generating <E86.X I10.X> projected database with 
only item {A09.X} included. As a result see Table 3, 
the second row, i.e. disease I10.X. 

The D63.0 row also has 5 counter frequent, which 
leads to generate 5 length-2 sequential pattern: 
<A09.X D63.0>: 2, <D63.0 A09.X>: 2, <(A09.X 
D63.0)>: 2, <C34.9 D63.0>: 2, <D63.0 D63.0>: 2. 
F[A09.X, A09.X], F[D63.0, D63.0], and F[C34.9, 
C34.9] are frequent. Since more than one counter 
frequent in F[A09.X, D63.0] = (2,2,2), the annotation 
on repeating items {A09.X+ D63.0+} is generated. 
Since only one counter frequent in F[C34.9, D63.0] = 
(2,1,1), the annotation on repeating items <C34.9+ 
D63.0+> is generated. In addition, the annotation on 
repeating items <D63.0 D63.0+> is generated. 
Furthermore, since F[C34.9, D63.0], F[A41.9, D63.0], 
and F[A41.9, C34.9] do not form a pattern generating 
triple. It means no other item could be co-frequented 
with <C34.9, D63.0>, there is no projected database 
annotation with A41.9. As a result see Table 3, the 
thrid row, i.e. disease D63.0. 

The fourth step (section 2.4), generate a length-3 
sequential patterns based on pattern generation in 
Table 3, i.e. projecting database and generating 

repeating pattern. There are 5 annotation on projected 
databases in Table 3 the fourth column, i.e. <E86.X 
I10.X>: {A09.X}, <A41.9 I10.x>: {A09.X E86.X}, 
<(E86.X C34.9)>: {A09.X}, and <E86.X A41.9>: 
{A09.X}. For instance, we demonstrate the annotation 
<E86.X I10.X>: {A09.X} by scanning sequential 
database one or more times. As a result, the projected 
databases are <A09.X E86.X A09.X (I10.X E86.X)> 
and <I10.X A09.X A09.X E86.X A09.X I10.X>. 
Based on the projected database, sequential patterns 
<A09.X E86.X A09.X I10.X>:2, <E86.X A09.X 
I10.X>:2, and <A09.X E86.X I10.X>:2 are 
discovered. The generated length-3 sequential patterns 
by projected databases are shown in Table 4. 
 

TABLE IV 
SEQUENTIAL DISEASE PATTERNS FROM PROJECTED DATABASE 

Ann. on 
Projected DBs Projected Database Sequential 

Patterns 
<A09.X E86.X 
A09.X I10.X>:2 
<E86.X A09.X 
I10.X>:2 

<E86.X 
I10.X>: 
{A09.X} 

<A09.X E86.X 
A09.X (I10.X 
E86.X)>, <I10.X 
A09.X A09.X E86.X 
A09.X I10.X> <A09.X E86.X 

I10.X>:2 
<(A09.X A41.9) 
I10.X>:2 
<A41.9 E86.X 
A09.X I10.X>:2 
<A41.9 E86.X 
I10.X>:2 

<A41.9 
I10.x>: 
{A09.X 
E86.X} 

<(A09.X A41.9) 
E86.X A09.X (I10.X 
E86.X)>, <(A09.X 
A41.9) A09.X E86.X 
A09.X (I10.X 
A41.9)> <A41.9 A09.X 

I10.X>:2 

<(E86.X 
C34.9)>: 
{A09.X} 

<A09.X (E86.X 
C34.9) A09.X>, 
<A09.X (E86.X 
C34.9)> 

<A09.X (E86.X 
C34.9)>:2 

<E86.X 
A41.9>: 
{A09.X} 

<A09.X E86.X 
A41.9>, <A09.X 
A09.X E86.X A09.X 
A41.9>, <A09.X 
(A09.X E86.X) 
(A09.X A41.9)> 

<A09.X E86.X 
A41.9>:3 

 
There are 14 annotations on repeating items 

including a looking for a particular and any ordered 
sequences (see Table 3 the third column). The 
particular ordered sequences are <J90.X D63.0+>, 
<E86.X I10.X+>, <A41.9 I10.X+>, <I10.X I10.X+>, 
<C34.9+ D63.0+>, <D63.0 D63.0+>, <A09.X+ 
C34.9+>, <E86.X C34.9+>, <C34.9 C34.9+>, and 
<A09.X A09.X+>. They should not be generated for 
further repeating patterns. The particular ordered 
sequences use the output length-2 sequential patterns. 
Moreover, there are 4 any ordered sequences, i.e. 
{A09.X+, I10.X+}, {A09.X+, D63.0+}, {A09.X+, 
A41.9}, and {A09.X+, E86.X}. For example, we 
demonstrate how to generate repeating items for 
{A09.X+, I10.X+}. Generate several sequence from 
{A09.X+, I10.X+}, e.g. <A09.X, I10.X, I10.X>, 
<I10.X, A09.X, I10.X>, <A09.X, I10.X, I10.X>. For 
each sequence, scan sequential databases to discover 



 
 

 

the frequent sequence pattern. For our example, there 
are 3 frequent sequence patterns, i.e. <A09.X, A09.X, 
I10.X>: 2, <I10.X, A09.X, I10.X>: 2, and <I10.X, 
A09.X, A09.X>: 2. The generated length-3 sequential 
patterns by repeating item are shown in Table 5. 
 

TABLE V 
SEQUENTIAL DISEASE PATTERNS FROM REPEATING ITEMS 

Ann. on Repeating 
items Sequential Patterns 

<A09.X, A09.X, I10.X>: 2 
<I10.X, A09.X, I10.X>: 2 {A09.X+, I10.X+} 

<I10.X, A09.X, A09.X>: 2 
<(A09.X, D63.0), A09.X, D63.0>: 2 
<(A09.X, D63.0), A09.X>: 2 
<(A09.X, D63.0), D63.0>: 2 
<A09.X, A09.X, D63.0>: 2 

{A09.X+, D63.0+} 

<D63.0, A09.X, D63.0>: 2 
<(A09.X, A41.9), A09.X>: 2 {A09.X+, A41.9} 
<A09.X, A09.X, A41.9>: 2 
<A09.X, E86.X, A09.X>: 4 

{A09.X+, E86.X} 
<A09.X, A09.X, E86.X>: 2 

{A09.X, A09.X+} <A09.X, A09.X, A09.X>: 2 

 
The last step as an optional step, visualize a 

sequential disease pattern using graph. For instance an 
annotation on repeating items {A09.X+, D63.0+} in 
Table 5 is visualized in Figure 3. Double circle is used 
for start sequence, bold circle is used for end 
sequence, and normal circle is used for transition 
sequence. 
 

 
A. <(A09.X, D63.0), A09.X, D63.0> 

<(A09.X, D63.0), A09.X> 
<(A09.X, D63.0), D63.0> 

 

 
B. <A09.X, A09.X, D63.0> 
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C. <D63.0, A09.X, D63.0> 

Fig. 3.  An {A09.X+, D63.0+} sequential pattern graph 

IV. CONCLUSIONS 

FreeSpan method can be used for mining sequential 
diseases pattern form database sequential. In case 

medical database was built in different representative 
data, i.e. transactional database. The medical database 
should be transformed into a sequential database first. 
Then use FreeSpan to mine sequential diseases 
pattern. The generated patterns can be used a 
knowledge to predict sequential diseases. As a result 
the medical representative can take preventive and 
curative action more precisely. 
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