

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Feature Extraction for Java Character Recognition

Rudy Adipranata
1)

, Liliana
2)

, Meiliana Indrawijaya
3)

, Gregorius Satia Budhi
4)

Informatics Department, Petra Christian University

Siwalankerto 121-131, Surabaya, Indonesia

rudya@petra.ac.id
1)
, lilian@petra.ac.id

2)
,

meiliindrawijaya@gmail.com
3)
, greg@petra.ac.id

4)

Abstract. Feature extraction is very important in the process of character

recognition. A good feature of the character will increase the level of accuracy

for the character recognition. In this research, the feature extraction experiment

of Java characters is done, where those features could be used for Java character

recognition later. Before performing the process of feature extraction,

segmentation is performed to get each Java character in an image, and followed

by skeletonization process. After skeletonization process, feature extraction is

done including simple closed curve, straight lines and curve. Several

experiments was done using various parameters and Java characters in order to

obtain the optimal parameters. The experiment results of simple closed curve

and straight line feature extraction are quite good, respectively reached 82.85%

and 74.28%. However, the result of the curve detection is still not good, only

reached 51.42%

Keywords: feature extraction, Java character, skeletonization

1 Introduction

One of the ethnic groups found in Indonesia is the Javanese with a culture that is

known as the Javanese culture, which has many aspects. One is the use of Java char-

acters on writing. To preserve the culture in the form of Java character, conservation

efforts need to be done so that the culture is not extinct, one is to digitize documents

bearing Java characters especially old documents that have high historical values.

Java characters consist of basic characters, numbers, complementary characters and

others. In this paper, we conduct research on feature extraction of Java characters.

The features obtained later will be used for the Java character recognition in order to

digitize the documents. These experiments of feature extractions need to be done in

order to find different features for each Java character, because some of the Java char-

acters have similar form to each other. Input to the system is an image that contains

handwritten Java characters. Image segmentation is performed to separate the existing

characters, and then we do the skeletonizing before feature extraction. The feature

extraction was conducted on the number of lines, simple close curves and open

curves.

2 Skeletonizing

Skeletonizing is one of image processing that is used to reduce the pixels of an image

while maintaining information, characteristics and important pixels of the object. This

is implemented by changing the initial image in binary into skeletal representation of

the image. The purpose of skeletonizing is to make simpler image so that the image

can be analyzed further in terms of shape and suitability for comparison with other

images. Problems encountered while doing skeletonizing is how to determine the

redundant pixels and to maintain important pixel. This process is more similar to ero-

sion process where erosion can lead to an unexpected region deleted, which is not

expected in the process of thinning. Skeleton must remain intact and have some basic

properties such as [1]:

• Must be composed of several thin regions, with a width of 1 pixel.

• Pixels that form the skeleton should be near the middle of the cross section area of

the region.

• Skeletal pixel must be connected to each other to form several regions which are

equal in number to the original image.

There are two requirements that are used to determine whether a pixel can be re-

moved or not. The first requirement is as follows [1]:

• A pixel can be removed only if it has more than one and less than 7 neighbors.

• A pixel can be removed only if it has the same one connectivity.

• A pixel can be removed only if at least one of the neighbors who are in the direc-

tion of 1, 3, or 5 is a background pixel.

• A pixel can be removed only if one of the neighbors who are in the direction of 3,

5, or 7 is a background pixel.

The second requirement is similar to the first but differ in the last two steps:

• A pixel can be removed only if at least one of the neighbors who are in the direc-

tion of 7, 1, or 3 is a background pixel.

• A pixel can be removed only if one of the neighbors who are in the direction of 1,

5, or 7 is a background pixel.

3 Simple Closed Curve

Simple closed curve is a simple curve that both endpoints coincide [2]. Examples of

simple closed curve can be seen in Figure 1.

Fig. 1. Simple close curve

To detect a closed curve can be done by using the flood fill algorithm. Flood fill algo-

rithm has three main parameters, namely the start node, the target color and color

replacement. This algorithm searches all nodes in the array are connected to the start

node through the path of the target color and then replace it with a replacement color.

Flood fill based algorithm by using recursion can be written as follows:

1. If the node is not the same color with the color of the target, the return

2. Set the color of nodes into a replacement color.

3. Run Flood-fill (one step to the west of the node).

Run Flood-fill (one step to the east of the node).

Run Flood-fill (one step to the north of the node).

Run Flood-fill (one step to the south of the node).

4. Return.

4 Hough Transform

Hough Transform is a technique for determining the location of a shape in the image.

Hough Transform was first proposed by P.V.C Hough [3], and implemented to detect

the lines in the image by Duda and Hart [4].

Hough Transform maps the points in the image into the parameter space (Hough

Transform space) based on a function that defines the shape that wants to be detected,

and then takes a vote on an array element called the accumulator array. Hough Trans-

form is generally used to perform the extraction of lines, circles or ellipses in the im-

age, but in its development, Hough Transform can also be used to the extraction of

more complex shapes. Hough Transform is used to detect the straight lines that satisfy

the Equation 1 and 2:

 � � 	�	� � � (1)

 � � 	�	�		� � �	 (2)

By changing the Equation 1 to 2, each edge point (x, y) on an image will result in

single line equation parameters (a, b). The points on the same line will have the value

of the parameter that cross at a point (a, b) in the parameter space as shown in Figure

2.

(a) (b)

Fig. 2. (a) xy Area (b) Parameter space

At first, the value of the accumulator is initialized with zero. For each point (x, y)

which is edge of the object in the image, the value of b will be calculated according to

the Equation 2 and will be rounded to the nearest value that is allowed in the accumu-

lator. Accumulator value will be incremented for each point that satisfies the equation

with the values of a and b given in accordance with the Equation 3:

��, �
 � 	
��, �
 � 1 (3)

Each edge point has line parameter mapped in the accumulator. The higher the value

in the accumulator, the greater the likelihood of a line is detected in the image. Duda

and Hart proposed a polar equation for a line with a parameter ρ and orientation θ [4]

(Equation 4). Illustration can be seen in Figure 3.

 � � �	 cos � � �	 sin � (4)

Fig. 3. (a) Normal representation of a line. (b) Parameter space (ρ, θ)

In the same way with the standard Hough transform, each point in the image is

mapped into the accumulator for each value ρ and θ which satisfy the Equation 5.

��, �
 � 	
��, �
 � 1 (5)

The range of values for the angle θ is ± 90 as measured by the x-axis. While the

range of values of ρ is �√2	�, where D is the distance between the vertex on the

image [5].

In general, the Hough Transform method consists of three basic steps:

• Each pixel of an image is transformed into a curve parameter of the parameter

space.

• Accumulator with cell arrays placed on the parameter space and each pixel images

provide a value to the cells in the transformation curve.

• Pixel with a local maximum value is selected, and the coordinates of the parame-

ters used to represent a segment of the curve in image space.

4.1 Parabolic curve detection using Hough Transform

In the image of the actual object, the curve can be in any orientation. Parabolic curve

with rotation can be detected by using an algorithm based on coordinate transfor-

mation of parabolic equations. In standard parabolic curve detection, there are four

parameters involved, namely the point (x0, y0), orientation (θ), and the coefficient

which contains information about the parabolic curvature. However, Jafri and Deravi

proposed an algorithm to detect parabolic curve in any orientation using only three

parameters [6]. The parameters are the point (x0, y0) and orientation θ. Using this

algorithm, all parabolic curves in various positions can be detected by using 3D ac-

cumulator. This approach uses a point on the curve as a parameter which also shows

the position of maximum curvature of the parabolic curve. Sobel operator is used for

the gradient approach. To detect the parabolic curve in any orientation, a coordinate

transformation matrix is used to derive a new parabolic equations involving parabolic

curve orientation.

Fig. 4. Parabolic curve

Parabolic curve with a specific orientation angle is shown in Figure 4. (x', y') coordi-

nates is the (x, y) coordinates rotation by θ degrees with the center coordinate system

as the axis of rotation. The vertex of parabola is (x0', y0') at the (x', y') coordinates or

(x0, y0) in the (x, y) coordinates. The equation of the parabola in the (x', y') coordi-

nates can be written in Equation 6 [6].

 ��� � ���
 � �	��� � ���
� (6)

Standard two dimensional geometry matrix for counter-clockwise rotation with θ

angle transformation is shown in Equation 7.

 ��′�′ � 	 ! cos � sin �
� sin � cos �"	!��" (7)

By substituting the value of x, y, x0 and y0 in Equation 7 to Equation 6, the parabolic

Equation 6 can be written as:

 ��� sin � � � cos �
 � ���� sin � � �� cos �

 � �	#�� cos � � � sin �
 � ��� cos � � �� sin �
$� (8)

And the value of differentiation of this equation is:

 � sin � �	%&
%' cos �

 � 	2�	#�� cos � � � sin �
 � ��� cos � � �� sin �
$. !cos � � %&
%' sin �" (9)

By substituting Equation 9 into 8, a new relation to the parabola vertex and the orien-

tation (x0, y0, θ) is [6]:

 �� � !)*�' +,-./& -01.
/�' -01.2& +,-.

)*�-01 .2+,-.
 "

�)* +,-./-01.

�)* -01.2+,-.
�� (10)

where 3	 is

 3	 � 2 sin �/4�
4� cos �

��cos �/4�
4� sin �
 �5 (11)

From the above relationship, it can be seen that the use of three dimensional accumu-

lator arrays is sufficient to detect a parabola in various orientations.

5 Experimental Results

Several types of experiments has been performed, such as simple close curve detec-

tion, line detection and curve detection on several sample scanned document images

of Java characters. The overall process can be seen in Figure 5. At first, system will

accept input images that contain Java characters. Then segmentation process will be

done to separate each character. For each character, skeletonization process will be

done before detection process.

begin

Input image

Segmentation process

Skeletonization process

Simple close
curve

detection

Straight line
detection

Curve
detection

Feature
extraction

end

Fig. 5. Flowchart of the system

The following are the results of the simple close curve detection. The number of sim-

ple close curve contained in several sample images can be seen in Table 1.

Table 1. Experiments results of simple close curve detection

No Java Character Number of simple close curve detected

1

0

2

2

3

3

4

3

5

0

6

2

7

1

8

0

9

0

10

4

11

0

12

2

13

1

14

1

15

2

16

1

17

1

18

2

19

0

20

0

21

2

22

0

23

1

24

1

25

1

27

1

From the experiment results in Table 1, there are incorrect calculations of the number

of close curve, that is the sample number 2, 3, 4, 6, 10, 12, 15, 16, 18, 21, 24, and 25.

This error rate reaches 44.44%. Some existing problems are:

1. Two parallel lines are too close together, so it becomes a closed curve after the

thinning process.

2. There are areas that are too close together, so it becomes a closed curve after the

thinning process.

3. The presence of noise in the form of a closed curve with a small size.

To solve the problem number three, we add minimum area parameter which used to

limit the value of the minimum area of a closed area that can be considered as the

actual close curve, not just as a noise. To overcome the problem of numbers 1 and 2,

we divide the image into two equal segments (top and bottom). By using minimum

area parameter and dividing image, we got better experiment result. Closed curve is

considered as noise if the area less than or equal to 2 pixels.

The following is experiment of line detection by using several parameters. The pa-

rameters are:

• Theta resolution: Resolution angle in degrees.

• Threshold: The minimum value limit value in the accumulator array can be ex-

pressed as a line. Threshold consists of two types, namely by percentage and by

value.

• Min line length: The value of the minimum length of a line segment can be consid-

ered to be a line.

• Max line gap: The minimum distance between the lines can be detected as a line.

Table 2. Experiment results of line detection

No Parameter Image
Thinned

image

Result

image

Union of line

detected and

thinned image

Number

of line

detected

1

Theta resolution: 1

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 4

 5

2

Theta resolution: 2

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 8

 8

3

Theta resolution: 3

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 7

 7

4 Theta resolution: 5

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 2

 5

5 Theta resolution: 7

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 3

 3

6 Theta resolution: 1

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 5

 2

7 Theta resolution: 3

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 4

 3

8 Theta resolution: 5

Neighbor: 4

Threshold: 5

Min line length: 4

Max line gap: 4

 4

 2

From the experiment results in Table 2, we can conclude that the smaller the value of

theta resolution, more lines can be detected, and also we can see that theta resolution

value of 1 gives the best results.

We also do experiments on changing of threshold parameter. From experiment

results, it can be concluded that if the threshold is too small, will causes noise be

detected. However, if the threshold is too large causing a short line will not be

detected. The threshold value for 7 pixels provide relatively good results and stable

for line detection.

From other experiment on changing of line length, we get results that the optimum

line length ranges between 4 - 5 pixels.

From experiments on changing maximum line gap, it can be concluded that if the

max line gap is too small will causes many lines are detected. And from the results,

maximum line gap of 4 pixels will give good results.

The following is experiment of curve detection by using several parameter values.

The experiment result can be seen in Table 3.

Table 3. Experiment results of curve detection

No Parameter Image Result Image
Number of

curve detected

1

Theta Step: 4

Neighbor: 7

Threshold: 9

4

0

2

Theta Step: 5

Neighbor: 7

Threshold: 9

3

0

3

Theta Step: 6

Neighbor: 7

Threshold: 9

4

0

The parameters tested in the detection curve are theta step, neighbor and threshold

value. Theta step value affects the increment value of angle (theta), the line will be

detected every n-degree value of angle. From the experiment results, it can be con-

cluded that the smaller value of theta step, the detail lines can be detected, and the

theta step value 1 gives the best results.

Neighbor parameters affect the width of the window for detecting local maxima.

From experiment results, the smaller the value of the neighbor, more lines can be

detected because of the larger peak, and the optimum value of neighbor is 7, it will

get the best result.

The threshold parameter affects the number of crossovers in the parameter space.

From experiment results, it can be concluded that if the threshold is too small, will

cause noise is detected. However, if the threshold is too large causing a short line is

not detected. The optimum threshold value of 7 pixels gives relatively good results.

By using the parameters obtained from each experiment, we conduct experiment

on a number of Java characters document images to get the number of simple closed

curve, lines and curves as well as a comparison with the calculation of the number

manually. The results of the simple closed curve detection reaches 82.85%, and the

result of line detection reached 74.28%. While the result of curve detection is still

low, reaching only 51.42%.

6 Conclusion

In this paper we have conducted experiment on feature extraction of Java character

document images that later will be used for the detection of Java character. Based on

the experiment results, it can be concluded that the optimum parameters for the detec-

tion of simple closed curve is a minimum area of 2 pixels, while the optimum parame-

ters for detecting the line is the theta resolution value of 1 pixel, threshold 7 pixels,

line length ranges between 4 - 5 pixels, and maximum line gap 4 pixels. For detection

of curves, the best parameters are theta step 1, neighbor 7 pixels and the threshold 7

pixels. From experiment on the samples of Java character document images, the re-

sults of simple closed curve and line feature extraction are quite good, respectively

reached 82.85% and 74.28%. However, the result of the curve detection is still not

good, only reached 51.42%.

Acknowledgment.

We thank to PT Coordination of Private Higher Education Region VII, East Java,

Indonesia for funding this research by Research Competitive Grant DIPA-PT Coordi-

nation of Private Higher Education Region VII, East Java, Indonesia fiscal year 2015

entitled (in Bahasa Indonesia) “Aplikasi Pengenalan Aksara Jawa Guna Digitalisasi

Dokumen Beraksara Jawa Untuk Mendukung Pelestarian Budaya Nasional”.

References.
1. Parker, J. R.: Algorithm for image processing and computer vision. New York, NY, USA:

John Wiley & Sons, Inc. (1997)

2. Adjie, N., & Maulana.: Mathematics Problem Solving. Bandung: UPI Press (2006)

3. P.V.C. Hough.: Machine Analysis of Bubble Chamber Pictures. Proc. Int. Conf. High En-

ergy Accelerators and Instrumentation (1959).

4. Duda, R. O. and P. E. Hart.: Use of the Hough Transformation to Detect Lines and Curves

in Pictures," Comm. ACM, Vol. 15, pp. 11–15 (1972)

5. Gonzalez, R., & Woods, R.: Digital Image Processing, Third Edition. New Jersey: Prentice

Hall (2008)

6. Jafri, M., & Deravi, F.: Efficient algorithm for the detection of parabolic curves. Vision

Geometry III, 53-62 (1994)

