

J. ICT Res. Appl., Vol. 8, No. 3, 2015, 195-212

 195

Received October 28th, 2014, Revised February 2nd, 2015, Accepted for publication February 13th, 2015.
Copyright © 2015 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2015.8.3.2

Handwritten Javanese Character Recognition Using
Several Artificial Neural Network Methods

Gregorius Satia Budhi, Rudy Adipranata

Informatics Department, Petra Christian University
Jalan Siwalankerto 121-131, Surabaya 60236, Indonesia

Email: greg@petra.ac.id

Abstract. Javanese characters are traditional characters that are used to write the
Javanese language. The Javanese language is a language used by many people on
the island of Java, Indonesia. The use of Javanese characters is diminishing more
and more because of the difficulty of studying the Javanese characters
themselves. The Javanese character set consists of basic characters, numbers,
complementary characters, and so on. In this research we have developed a
system to recognize Javanese characters. Input for the system is a digital image
containing several handwritten Javanese characters. Preprocessing and
segmentation are performed on the input image to get each character. For each
character, feature extraction is done using the ICZ-ZCZ method. The output from
feature extraction will become input for an artificial neural network. We used
several artificial neural networks, namely a bidirectional associative memory
network, a counterpropagation network, an evolutionary network, a
backpropagation network, and a backpropagation network combined with chi2.
From the experimental results it can be seen that the combination of chi2 and
backpropagation achieved better recognition accuracy than the other methods.

Keywords: backpropagation; bidirectional associative memory; chi2;
counterpropagation; evolutionary neural network; Javanese character recognition.

1 0BIntroduction

Many people on the island of Java use the Javanese language in their
conversation. The Javanese language has its own letterforms that differ from
Roman characters. Javanese character recognition has its own difficulties
because of the shapes of the basic characters, vowels, complementary
characters, and so on. Because the characters are difficult to recognize, not
many people can read or write Javanese script any more. For many people,
Javanese characters will eventually be regarded as decoration only and not
mean anything. This will gradually erode the existence of Javanese characters
and will ultimately also affect Javanese culture in general.

In this research, we have developed a system that can automatically recognize
Javanese characters in the form of a digital image and convert them into digital

196 Gregorius Satia Budhi & Rudy Adipranata

text using a Hanacaraka font. The first process is digital image preprocessing,
followed by segmentation and feature extraction. The features will be used as
input for the recognition system. In this research we used and compared five
methods of artificial neural networks for recognition, namely a bidirectional
associative memory network, a counterpropagation network, an evolutionary
neural network, a backpropagation neural network, and a combination of chi2
and a backpropagation neural network.

In addition to serving as the basis of further research, we hope that with this
system the Javanese characters can be preserved and studied more easily. The
system, which makes it easy to save articles in Javanese characters to electronic
documents, can also help teachers teach the Javanese language in schools. And
finally for those who do not know about Javanese script, this system can be
used to identify and interpret writings in Javanese characters that they encounter
in touristic sites.

2 Related Works

Some researchers have conducted research on Javanese character recognition.
Nurmila [1] used a backpropagation neural network. The accuracy rate was
about 61%. Another researcher, Priyatma, used fuzzy logic [2] and the
recognition results were satisfactory. Also in relation to Javanese character
studies, Rudy, et al. [3] have developed an application that translates the results
of typing on a Roman letter keyboard into Javanese characters using a
Hanacaraka font. This application can later be combined with the result of the
present research to create optical character recognition and an editor for
Javanese characters. This research is an extension of previous research [4],[5],
which evaluated the use of a backpropagation neural network for character
recognition and some improvement in digital image preprocessing.

Several studies on the implementation of artificial neural networks have also
been done, including automatic classification of sunspot groups for space
weather analysis [6] using backpropagation and other neural network methods.
Other studies have used backpropagation methods to recognize types of
automobiles [7], to identify abnormalities of the pancreas through the image of
the iris with a recognition rate of more than 90% [8], and to recognize
characters in a digital image [9].

3 Javanese characters

Compared to Roman characters, Javanese characters have a different structure
and shape. The basis of the Javanese characters is called carakan, which
consists of 20 syllables called dentawyanjana, see Figure 1 [10].

Handwritten Javanese Char. Recog. Using Several ANN Methods 197

Figure 1 Basic (carakan) characters.

Numbers in Javanese characters are shown in Figure 2 [11].

Figure 2 Javanese symbols for numbers.

Sandhangan characters are special characters that are used as complementary
characters, vowels or consonants that are commonly used in everyday language.
Sandhangan can be seen in Table 1 [12].

Table 1 Sandhangan characters.

Sandhangan name Java character Description
Pepet

Vowel ê

Taling

Vowel é
Wulu Vowel i

Taling tarung Vowel o
Suku Vowel u

4 Image Segmentation

One of the important processes used to transform an input image into an output
image is segmentation. Segmentation is based on the attributes of the image.
The image is divided into several regions based on their intensity, so objects
and background can be distinguished. Once each object has been isolated or

198 Gregorius Satia Budhi & Rudy Adipranata

made clearly visible, segmentation should be discontinued [13]. In this research,
we used thresholding and skeletonizing for the segmentation process.

Thresholding is one way of separating objects (foreground) in an image from
the background by selecting a threshold value T. In thresholding, the value of T
is used to separate all points (x, y) in an image in two categories. All points
(x,y), where f (x, y) > T, can be called either an object point or a background
point [13].

To get rid of redundant pixels and produce an image that is more modest in size,
the skeletonizing process is used. The goal of skeletonizing is to make a simpler
image, so that the shape and suitability of the image can be analyzed further.
The most important problem addressed in the skeletonizing process is how to
determine the redundant pixels. If we do not adequately determine the
redundant pixels, the skeletonizing process is likely to turn into an erosion
process, which can cause image regions to be deleted. The skeleton should have
some basic properties, such as [14]:

1. The pixels that form the skeleton should be located near the middle area of
the region’s cross section.

2. It must consist of several thin regions, with each region having a width of
only 1 pixel.

3. Skeletal pixels must be connected to each other to form several regions and
the number of those regions should be equal to the number of regions in the
original image.

5 Bidirectional Associative Memory

In 1988 Bart Kosko proposed an artificial neural network called bidirectional
associative memory (BAM) [15]. BAM is a hetero-associative and content-
addressable memory. A BAM network consists of two bipolar binary layers of
neurons, say A and B. The neurons in the first layer (A) are fully interconnected
to the neurons in the second layer (B). There is no interconnection between
neurons in the same layer. Because the BAM network processes information in
time and it involves bidirectional data flow, it differs in principle from a linear
association, although both networks are used to store association pairs [16]. A
general diagram of BAM is shown in Figure 3.

BAM algorithm [16]:

Step 1: The associations between pattern pairs are stored in the memory in the
form of bipolar binary vectors with entries -1 and 1.

 {(a(1), b(1)), (a(2), b(2)), …, (a(p), b(p))} (1)

Handwritten Javanese Char. Recog. Using Several ANN Methods 199

Vector a stores a pattern and is n-dimensional, while vector b is m-dimensional
and stores the associated output.

1

2

n

1

2

mwnm wmn

w11 W11
w12

w1m

w21
wn1

W W’
1

2

m

a1 b1

a2 b2

an bm

Layer A Layer B

Figure 3 Bidirectional Associative Memory: General Diagram.

Step 2: Calculate weight using Eq. (2).

 𝑊 = ∑ 𝑎(𝑖)𝑝
𝑖=1 𝑏(𝑖)𝑡 (2)

Step 3: The test vector pair a and b is given as input.
Step 4: In the pass forward, b is given as input. Calculate a using Eq. (3).

 𝑎 = Γ[𝑊𝑏] (3)

Calculate each element of vector a using Eq. (4).

 𝑎𝑖′ = 𝑠𝑔𝑛�∑ 𝑤𝑖𝑗𝑏𝑗𝑚
𝑗=1 �,𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑛 (4)

Step 5: Vector a is now given as input to the second layer during the backward
pass. Calculate the output of this layer using Eq. (5).

 𝑏′ = Γ[𝑊𝑎] (5)

Calculate each element of vector b using Eq. (6).

200 Gregorius Satia Budhi & Rudy Adipranata

 𝑏𝑗′ = 𝑠𝑔𝑛�∑ 𝑤𝑖𝑗𝑎′𝑖𝑛
𝑖=1 �,𝑓𝑜𝑟 𝑗 = 1, 2, … ,𝑚 (6)

Step 6: Stop the process if there is no further update. Otherwise repeat step 4
and 5.

BAM storage capacity:

The maximum number of pattern pairs that can be stored and successfully
retrieved is min (m, n). This estimate is heuristic. The memory storage capacity
of BAM [16] is

 P ≤ min (m, n) (7)

6 Counterpropagation Network

In 1987, Robert Hecht-Nielsen defined the counterpropagation network (CPN).
The CPN is widely used because of its simplicity and ease of the training
process. It also has good stats in the representation of the input layer for a wide
range of environments. It combines an unsupervised training method on the
Kohonen layer and a supervised training method on the Grossberg layer [17].

6.1 Forward Only Counterpropagation

The training for forward-only counterpropagation is the same as training for full
counterpropagation. It consists of two phases; the first phase should be
completed before proceeding to the second phase. The first phase is Kohonen
learning and the second phase is Grossberg learning. In Figure 4 we can see the
forward-only counterpropagation network architecture.

X1

Xi

Xn

Z1

Zj

Zp

Y1

Yk

Ym

V11

V1iV1n

Vi1

Vij

Vip

Vn1

Vnj

Vnp

W11

W1k

W1m

Wjk

Wj1

Wjm

Wp1 Wpk

Wpm

Figure 4 Forward only counterpropagation architecture.

Handwritten Javanese Char. Recog. Using Several ANN Methods 201

Only the winner unit is allowed to learn or update the weights in the learning
phase of the Kohonen training. The minimum distance between the weight
vector and the input vector is calculated to determine the winning unit. Either
Eqs. (8) or (9) can be used to calculate the distance between two vectors:

 Dot Product (z_inj = ∑ xi vij + ∑ yk wkj) (8)

 Euclidean Distance (Dj = ∑ (xi – vij)2 + ∑ (yk – wkj)2) (9)

When using dot product, look for results that have the largest value, because the
larger the value of dot product, the smaller the angle between two vectors will
become, provided that both vectors are normalized. When using Euclidean
distance, look for results that have the smallest value, because Euclidean
distance calculates the physical distance between the two vectors.

The training algorithm for forward-only counterpropagation is as follows [18]:

Step 0 : Initialize learning rate and all weights.
Step 1 : Do step 2-7 as long as the stop condition of the first phase is not met.
Step 2 : Do step 3-5 for each pair of input x:y.
Step 3 : Enter input vector x in input layer X.
Step 4 : Find the winner of the Kohonen layer unit, save its index into variable

J.
Step 5 : Update weight for unit Zj using Eq. 10

 vijnew = (1 - α)vijold + αxi , i = 1 . . . n (10)

Step 6 : Decrease the learning rate (α).
Step 7 : Check if the stop condition is met for the first phase.
Step 8 : Do step 9-15 as long as the stop condition of the second phase has not

been met (α and β are very small and constant during the second
phase).

Step 9 : Do step 10-13 for each pair of input x:y.
Step 10 : Enter input vector x in input layer X.
Step 11 : Find the winner of the Kohonen layer unit, save its index into variable
 J.
Step 12 : Update the weights that go into Zj using Eq. (11).

 vijnew = (1 - α)vijold + αxi , i = 1 . . . n (11)

Step 13 : Update the weights from Zj to the output layer using Eq. (12).

 wjknew = (1 - α)wjkold + αyk , k = 1 . . . m (12)

Step 14 : Decrease the learning rate (α).
Step 15 : Check if the stop condition is met for the second phase.

202 Gregorius Satia Budhi & Rudy Adipranata

After the training process has been completed, the forward-only
counterpropagation network can be used to map x into y using the following
algorithm [18].

Step 0 : Use the weight training results.
Step 1 : Enter input vector x in input layer X.
Step 2 : Find the winner index unit, save in J.
Step 3 : Calculate output using Eq. (13).

 Yk = wjk (13)

7 Evolutionary Neural Network

An evolutionary neural network (ENN) is a combination of a neural network
with an evolutionary algorithm. A common limitation of neural networks is
associated with network training. Backpropagation learning algorithms have
serious drawbacks, which cannot guarantee that the optimal solution is given.
Another difficulty in neural network implementation is related to selecting the
optimal network topology. Network architecture that is appropriate for certain
cases are often chosen using heuristic methods. This shortcoming can be
addressed using an evolutionary algorithm.

Evolutionary algorithms refer to a probabilistic adaptation algorithm inspired by
natural evolution. This method follows the statistical search strategies in a
population of individuals, each representing a possible solution to the problem.
Evolutionary algorithms can divided into three main forms, namely evolution
strategies, genetic algorithms, and evolutionary programming [19].

The evolutionary algorithm used in this research is a genetic algorithm. The
genetic algorithm is an effective optimization technique that can help both
optimizing the weight and selecting the network topology. A problem must be
represented as a chromosome in order to use a genetic algorithm. When we
want to look for a set of optimal weights of a multilayer feed-forward neural
network, the first step in solving this problem is to have the system encode the
network into a chromosome. This process can be seen in Figure 5 [20].

The second step is to define the fitness function in order to evaluate the
performance of the chromosome. This function must be calculated given the
performance of the neural network. A simple function from squared errors can
be implemented. Each chromosome weight is given for each link in the network
to evaluate the fitness of the chromosomes. Collections of training examples are
then presented to the network and the number of squared errors is calculated.

Handwritten Javanese Char. Recog. Using Several ANN Methods 203

The genetic algorithm seeks to find the set amount of weight that has the
smallest squared errors.

Figure 5 Encoding a network into a chromosome.

The third step is to choose the genetic operators crossover and mutation. The
crossover operator requires two parent chromosomes and creates a child with
genetic material from both of its parents. Each gene of the child chromosome is
represented by the corresponding genes of a randomly selected parent. The
system is ready to apply the genetic algorithm when the mutation operator
randomly selects a gene and replaces it with a random result between -1 and 1.
Users need to define the number of networks with different weights, the
probability of crossover and mutation, the population number and the number of
generations [20].

8 ICZ-ZCZ

Image centroid and zone (ICZ) and centroid zone and zone (ZCZ) are feature
extraction methods that utilize the type of zoning and zone centroid of the zones
that an image has been divided into. These methods begin with dividing an
image into several equal zones.

After dividing the image into equal zones, the ICZ method calculates the
centroid of the image. For each zone, the average distance between black image
pixels and the centroid zone is calculated. In the ZCZ method, the centroid of
the image is calculated instead of the centroid of each zone. And again, for each
zone, the average distance between black image pixels and the image centroid is
calculated. The average distances are then used as features for classification and
recognition [21].

204 Gregorius Satia Budhi & Rudy Adipranata

9 Backpropagation

A backpropagation neural network is a neural network that uses a multilayer
feed-forward architecture. This method is widely used to solve many problems,
such as classification, pattern recognition and generalization [22].

The training algorithms in backpropagation are as follows [23]:

Feed-forward phase (7 steps):

Step 0 : Initialize weight (random value between 0-1) and learning rate α
Step 1 : Do step 2-13 as long as the stop condition is not met
Step 2 : Perform steps 3-13 as the desired amount of training
Step 3 : Do steps 4-13 for each hidden layer and output layer
Step 4 : Calculate the input of each node in the hidden layer using Eq. (14).

 1
_ *

n

j i ij
i

z in x w
=

=∑
 (14)

Step 5 : Calculate the output of each node in the hidden layer activation
 function using Eqs. (15) and (16)

 (_)j jz f z in= (15)

 1
1()

1 exp()
f x

x
=

+ −
 (16)

Step 6 : Calculate the input of each node in the output layer using Eq. (17)

1

_ *
n

k j jk
j

y in z w
=

=∑ (17)

Step 7 : Calculate the output at each node in the output layer using Eq. (18)

 (_)k ky f y in= (18)

Error-backpropagation phase (6 steps):

Step 8 : Calculate the error of each node in the output layer with the
 deactivation function using Eqs. (19) and (20)

 ()* '(_)k k k kt y f y inδ = − (19)

)](1)[()(11
'

1 xfxfxf −= (20)

Step 9 : Calculate the change in weight for each output node in each layer
 using Eq. (21).

Handwritten Javanese Char. Recog. Using Several ANN Methods 205

 *jk kw α δ∆ = (21)

Step 10 : Calculate the error for each node in the hidden layer to deactivate the
 function using Eq. (22)

1

(*)* '(_)
n

j k jk k
k

w f z inδ δ
=

= ∑ (22)

Step 11 : Calculate the change in weight for each node in each hidden layer
 using Eq. (23)

 *ij jw α δ∆ = (23)

Step 12 : Update the weight for each node in the output layer using Eq. (24)

 () ()jk jk jkw new w old w= + ∆ (24)

Step 13 : Update the weight for each node in each hidden layer using Eq. (25)

 () ()jk jk jkw new w old w= + ∆ (25)

10 Chi2

The Chi2 algorithm [24] is an algorithm that uses the χ2 statistic to discretize
numeric valued attributes. This algorithm is quite effective if used in the
selection of the important features of a group of numerical attributes. By using
the features that are relevant, this algorithm can speed up the training process
and improve the prediction accuracy of classification algorithms in general.
Additionally, there are many classification algorithms that require and work
better on discrete training data.

In use, the Chi2 algorithm is divided into two phases. The first phase begins
with a high enough significance value, e.g. 0.5, for all attributes for
discretization. The process of merging the data will continue for as long as χ2
does not exceed the specified significance value (0.5, yielding a value 0.455
with degree of freedom equal to 1). This phase will be repeated, reducing the
significance value until the number of inconsistent data in the discretization
exceeds the specified limit. The equation to calculate the value of χ2 can be
seen in Eq. (26).

 x2 = ∑ ∑ (Aij-Eij)2

Eij
k
j=1

2
i=1 (26)

 k = number of classification,

206 Gregorius Satia Budhi & Rudy Adipranata

 Aij = number of pattern at interval - i, classification - j

Eij = the pattern expected from Aij = Ri* Cj N⁄ , if Ri or Cj equal to 0,

Eij should change to 0.1

 Ri = number of pattern at interval - i = ∑ Aij
k
j=1

 Cj = number of pattern at interval - j =∑ 𝐴𝑖𝑗2
𝑖=1

 N = total number of pattern = ∑ 𝑅𝑖2
𝑖=1

The second phase is an optimization of the first phase. The most visible
difference is the calculation of inconsistency. Calculation is done after all the
attributes have gone through the merger process in the second phase. The
inconsistency value is calculated at the end of each attribute discretization while
in the first phase. The second phase will be repeated until there are no longer
any values of attributes that can be discretized or combined. Inconsistency
occurs when there are several samples with all of their attributes having the
same value but they belong to different groups.

11 Design and Implementation

The input for the system is a Javanese character digital image. Grayscale
processing and filtering are done to reduce noise. Subsequently, we apply skew
detection and correction to straighten skewed images. Later, the segmentation
process is executed to get each Javanese character using thresholding and
skeletonizing. Feature extraction is done using ICZ-ZCZ [21] and the features
will be used as inputs for the artificial neural network.

Each Javanese character image is divided into 4*5 zones, after which ICZ-ZCZ
will be performed for each zone, so there are 40 ICZ-ZCZ output values. These
values will later become artificial neural network input nodes.

The overall system workflow can be seen in Figure 6.

The application interface is shown in Figure 7.

Having obtained the image of each Javanese character from the document and
having carried out the feature extraction process on each image, the next step
performed by the system is to identify the characters using the artificial neural
network methods. After successful recognition, the Javanese character images
are converted into a textual sequence in a Hanacaraka font and formed into a
document.

Handwritten Javanese Char. Recog. Using Several ANN Methods 207

START

Input: Javanese
Characters

Digital Image
Grayscaling

Filtering

Segmentation

Feature
Extraction

Pattern Recognition
Using Artificial

Neural Networks

Output: Sequential
Pattern of Javanese

Characters in the form
of Hanacaraka font

END

Figure 6 System workflow.

Figure 7 Application interface.

11.1 Dataset for the Experiment

For the experiment, we used two kinds of datasets of handwritten Javanese
characters, one dataset for training and the other set for testing. For training
CPN, BPNN and ENN, the number of data in the dataset was 20 samples for

208 Gregorius Satia Budhi & Rudy Adipranata

each character. There are in total 31 Javanese characters, so the overall number
of data was 620 characters. The dataset for testing also consisted of 20 sample
data for each Javanese character, with the overall data being 620 characters.
Examples of the sample data can be seen in Figure 8. Every sample data was
processed by feature extraction using the ICZ-ZCZ method. The 40 value
results of the feature extraction became the inputs for 40 nodes of the neural
network input neurons.

Figure 8 Examples of data samples for training and testing process.

12 Experimental Results

For pattern recognition of Javanese characters, we used five kinds of artificial
neural networks, namely bidirectional associative memory, counterpropagation,
evolutionary, backpropagation and backpropagation combined with chi2.

The experimental results of bidirectional associative memory (BAM) can be
seen in Table 2.

Table 2 Experimental Results of BAM.

Number of sample Input node Output node Accuracy (%)

2

6 4 100.00
15 10 0.00
30 10 0.00

3

6 4 100.00
15 10 33.33
30 10 0.00

4

6 4 100.00
15 10 0.00
30 10 0.00

6

6 4 66.67
15 10 0.00
30 10 0.00

8

6 4 75.00
15 10 0.00
30 10 0.00

Handwritten Javanese Char. Recog. Using Several ANN Methods 209

From the experimental results above, we can see that BAM was inaccurate
when applied to Javanese character recognition. This is because we needed at
least 40 nodes for the input, while BAM only works well when the number of
inputs is the same as or less than 6 nodes. For the output we needed 31 nodes in
this experiment because the total number Javanese characters is 31, while BAM
only works well for 4 nodes or less.

Another experiment used a counterpropagation network (CPN), a
backpropagation network (BPNN) and an evolutionary neural network (ENN)
with 1 layer and 2 layers. We performed the experiment using a dataset that had
been trained beforehand and a dataset that had not been trained beforehand.

The neural network output layer consisted of 31 neurons. These 31 neurons
were in accordance with the number of Javanese characters used in this
research: 20 basic (carakan) characters, 4 sandhangan characters, and 7 number
characters (not all 10 number characters, because 3 number characters have the
same form as carakan characters). Each neuron has a value of 0 or 1. For the
first character, the first neuron is 1, while the other neurons are 0. For the
second character, the second neuron is 1, while the other neurons are 1, etc. The
number of neurons in the other layer is 60.

From the experimental results it can be seen that the average recognition
accuracy of CPN was only about 71% for trained data and 6% for test data (data
had not been trained beforehand). The average recognition accuracy of ENN
was about 94% for trained data and about 66% for test data. The parameters
used for ENN were: the number of neurons for each layer: 60, crossover
probability: 100%, mutation probability: 50%, maximum population: 50,
maximum epoch: 10 million, and error limit: 0.1. The average recognition
accuracy of BPNN was about 79% for trained data and 33% for test data. The
parameter used for BPNN: input neurons: 40, learning rate: 0.1, error threshold:
0.001.

We tried to improve the accuracy of recognition by using an additional method,
Chi2, and combining it with a backpropagation neural network. The Chi2
method was used to further increase the variation of the features of each data to
be trained or recognized. With more data features it was expected that the
differences in the features of each Javanese character would be accentuated. The
experiment with a combination of Chi2 and BPNN was done using the
following parameters: feed-forward network with one hidden layer, number of
neurons in hidden layer: 60, maximum epoch: 1000, learning rate: 0.1, initial
input neuron: 40 features combined with output of Chi2 algorithm to become
440 input neurons (using N=10, for each input will produce 10 outputs), output
neurons: 31. The overall experimental results can be seen in Table 3 for the

210 Gregorius Satia Budhi & Rudy Adipranata

experiment using data that had been trained beforehand and Table 4 for the
experiment using test data.

Table 3 Experimental results using trained data.

Javanese
characters type

Recognition accuracy (%)
CPN BPNN ENN 1 layer ENN 2 layers Chi2 and BPNN

Basic character /
Carakan

61.25 66.25 97.75 96.00 98.25

Numbers 73.57 72.14 97.14 97.86 97.86
Sandhangan 77.50 78.75 93.75 90.00 97.50

All characters type 71.45 79.03 94.19 92.26 98.71

Table 4 Experimental results using test data.

Javanese
characters type

Recognition accuracy (%)
CPN BPNN ENN 1 layer ENN 2 layers Chi2 and BPNN

Basic character /
Carakan

4.75 32.25 48.75 52.75 65.75

Numbers 6.43 32.14 58.57 63.57 79.29
Sandhangan 7.50 36.25 66.25 68.75 83.75

All characters type 6.29 33.87 50.32 66.29 73.71

13 Conclusion

In this research, we have developed a handwritten Javanese character
recognition system using several artificial neural network methods and
compared their recognition results. From the experiment that has been executed
it can be concluded that the bidirectional associative memory method and the
counterpropagation network method cannot be used for recognition of Javanese
characters because their average accuracy was very low. The combination of the
Chi2 method and the backpropagation neural network method performed better
than the evolutionary neural network method with 1 layer or 2 layers for
Javanese character recognition. Its recognition accuracy rate reached 98% for
data that had been trained beforehand and 73% for data that had not been
trained beforehand. For future research, the accuracy rate may be improved by
using another method for segmentation and feature extraction that can better
distinguish similar Javanese characters. Also a combination of Chi2 and ENN
may be used to improve accuracy.

Acknowledgments
This research was funded by Research Competitive Grant DIPA-PT
Coordination of Private Higher Education Region VII, East Java, Indonesia
(20/SP2H/PDSTRL_PEN/LPPM-UKP/IV/2014), fiscal year 2014 and 2015.

Handwritten Javanese Char. Recog. Using Several ANN Methods 211

This research was also funded by Research Center, Petra Christian University,
Surabaya, Indonesia, through the Internal Research Grant (05/Pen-
LPPM/UKP/2012), fiscal year 2012. We also thank Edwin Prasetio Nandra,
Danny Setiawan Putra, Eric Yogi Tjandra, Evan Sanjaya, Jeffry Hartanto, Ricky
Fajar Adi Edna P., and Christopher H. Imantaka for their help in doing the
system coding.

References
[1] Nurmila, N., Sugiharto, A. & Sarwoko, E.A., Back Propagation Neural

Network Algorithm for Java Character Pattern Recognition, Jurnal
Masyarakat Informatika, 1(1), pp. 1-10, 2010.

[2] Priyatma, J.E. & Wahyuningrum, S.E., Java Character Recognition
Using Fuzzy Logic, SIGMA, 8(1), pp. 75-84, 2005.

[3] Adipranata, R., Budhi, G.S. & Thedjakusuma, R., Java Characters Word
Processing, in Proceeding of The 3rd International Conference on Soft
Computing. Intelligent System and Information Technology, Bali,
Indonesia, 2012.

[4] Budhi, G.S. & Adipranata, R., Comparison of Bidirectional Associative
Memory, Counterpropagation and Evolutionary Neural Network for Java
Characters Recognition, in Proceedings of The 1st International
Conference on Advanced Informatics: Concepts, Theory and
Applications, Bandung, Indonesia, 2014.

[5] Budhi, G.S. & Adipranata, R., Java Characters Recognition using
Evolutionary Neural Network and Combination of Chi2 and
Backpropagation Neural Network, International Journal of Applied
Engineering Research, 9(22), pp. 18025-18036, 2014.

[6] Adipranata, R., Budhi, G.S. & Setiahadi, B., Automatic Classification of
Sunspot Groups for Space Weather Analisys, International Journal of
Multimedia and Ubiquitous Engineering, 8(3), pp. 41-54, 2013.

[7] Budhi, G.S., Adipranata, R. & Jimmy Hartono, F., The Use of Gabor
Filter and Backpropagation Neural Network for Automobile Types
Recognition, in Proceeding of The 2nd International Conference on Soft
Computing, Intelligent System and Information Technology, Bali,
Indonesia, 2010.

[8] Budhi, G.S., Purnomo, M.H. & Pramono, M., Recognition of Pancreatic
Organ Abnormal Changes Through Iris Eyes Using Feed-Forward
Backpropagation Artificial Neural Network, in Proceeding of The 7th
National Conference on Design and Application of Technology, 2008.

[9] Budhi, G.S., Gunawan, I. & Jaowry S., Backpropagation Artificial
Neural Network Method for Recognition of Characters on Digital Image,
in Proceeding of t he 3rd National Conference on Design and Application
of Technology, 2004.

212 Gregorius Satia Budhi & Rudy Adipranata

[10] Java Character Hanacaraka, http://nusantaranger.com/referensi/buku-
elang/chapter-4merah/aksara-jawa-hanacaraka/, last access October 2014.

[11] Javanese Alphabet (Carakan), http://www.omniglot.com/writing/
javanese.htm (October 2014).

[12] Java Characters, http://id.wikipedia.org/wiki/Aksara_Jawa (January
2013).

[13] Gonzalez, R.C. & Woods, R.E., Digital Image Processing, 3rd Edition,
New Jersey: Prentice-Hall, Inc., 2008.

[14] Parker, J.R., Algorithm for Image Processing and Computer Vision, New
York: John Wiley and Sons, Inc., 2010.

[15] Kosko, B., Bidirectional Associative Memories, IEEE Transactions on
Systems, Man, and Cybernetics, 18(1), pp. 49-60, 1988.

[16] Singh, Y.P., Yadav, V.S., Gupta, A. & Khare A., Bi Directional
Associative Memory Neural Network Method In The Character
Recognition, Journal of Theoretical and Applied Information Technology,
5(4), pp. 382-386, 2009.

[17] Boyu, W., Feng W. & Lianjie S., A Modified Counter-Propagation
Network for Process Mean Shift Identification, in Proceeding of IEEE
International Conference on Systems, Man and Cybernetics, pp. 3618-
3623, 2008.

[18] Fu, L.M., Neural Networks in Computer Intelligence, New York:
McGraw-Hill, Inc, 1994.

[19] Dewri, R., Evolutionary Neural Networks: Design Methodologies,
http://ai-depot.com/articles/evolutionary-neural-networks-design-method
ologies/ (January 2013).

[20] Negnevitsky, M, Artificial Intelligence: A Guide to Intelligence Systems
(2nd ed.), New York: Addison Wesley, 2005.

[21] Rajashekararadhya, S.V. & Ranjan, P.V., Efficient Zone Based Feature
Extraction Algorithm for Handwritten Numeral Recognition of Four
Popular South Indian Scripts, Journal of Theoretical and Applied
Information Technology, 4(12), pp. 1171-1181, 2005.

[22] Rao, H.V. & Valluru B.R., C++ Neural Networks and Fuzzy Logic, New
York: Henry Holt and Company, 1993.

[23] Fausett, L., Fundamentals of Neural Networks, New Jersey: Prentice
Hall, 1994.

[24] Liu, H. & Setiono, R., Chi2: Feature Selection and Discretization of
Numeric Attributes, In Proceeding of The 7th International Conference on
Tools with Artificial Intelligence, pp. 388-391, 1995.

	1 Introduction
	2 Related Works
	3 Javanese characters
	4 Image Segmentation
	5 Bidirectional Associative Memory
	6 Counterpropagation Network
	6.1 Forward Only Counterpropagation

	7 Evolutionary Neural Network
	8 ICZ-ZCZ
	9 Backpropagation
	10 Chi2
	11 Design and Implementation
	11.1 Dataset for the Experiment

	12 Experimental Results
	13 Conclusion

