ANALISIS KEANDALAN PENINGKATAN KAPASITAS GARDU INDUK (GI) DENGAN MENGGUNAKAN PEMBANGKIT LISTRIK TERSEBAR (PLT) PADA JARINGAN DISTRIBUTI 20 KV

RELIABILITY ANALYSIS OF SUBSTATION PARENT CAPACITY (GI) USING DISTRIBUTED POWER GENERATION (PLT) AT DISTRIBUTION NETWORK 20 KV

Julius Sentosa Setiadji, Emmy Hosea, Ontoseno Penanggang, Hary Kurniawan Kosasi

1,3,4 Fakultas Teknologi Industri Program Studi Teknik Elektro
Universitas Kristen Petra, Surabaya
3 Fakultas Teknologi Industri Jurusan Teknik Elektro
Institut Teknologi Sepuluh Nopember, Surabaya
* julius@petra.ac.id, emmyho@petra.ac.id

Abstrak

Keandalan jaringan distribusi merupakan sebuah aspek penting dalam merencanakan dan mengoperasikan sistem distribusi. Pembangkit Listrik Tersebar (PLT) merupakan salah satu cara untuk meningkatkan keandalan yang dapat diterima oleh pelanggan selama pertumbuhan beban. Paper ini menyajikan sebuah model keandalan untuk menentukan ekivalensi PLT dengan sebuah fasilitas distribusi berdasarkan perbandingan tingkat keandalan (SAIFI, SAIDI, dan AENS) yang diberikan. Penambahan satu unit PLT dengan ukuran yang besar, yaitu 1 MW atau dua unit PLT dengan ukuran yang lebih kecil, yaitu 800 kW dan 300 kW, dapat mengurangi nilai SAIFI sebesar 18.38 % (dari 1.98695 menjadi 1.62178), SAIDI sebesar 12.17 % (dari 0.09681 menjadi 0.08503), dan AENS sebesar 12.00 % (dari 162.74686 menjadi 143.20978). Pengurangan nilai SAIFI, SAIDI, dan AENS menunjukkan perbaikan keandalan jaringan distribusi.

Kata kunci: keandalan, Pembangkit Listrik Tersebar (PLT), SAIFI, SAIDI, AENS.

Abstract

Distribution system reliability is an important aspect in planning and operating distribution system. Distributed Generation (DG) is one of the ways to improve reliability levels to customers as load increases. This paper presents a reliability model for determining the DG equivalence to a distribution facility based on the comparable reliability levels (SAIFI, SAIDI and AENS). Adding one unit DG with bigger size, which is 1 MW, or two unit DG with smaller size, which are 800 kW and 300 kW, can decrease the value of SAIFI by 18.38 % (from 1.98695 to 1.62178), SAIDI by 12.17 % (from 0.09681 to 0.08503) and AENS by 12.00 % (from 162.74686 to 143.20978). The decrease value of SAIFI, SAIDI and AENS showed the improvement of the distribution system reliability.

Key words: Reliability, distributed generation (DG), SAIFI, SAIDI, AENS

Tanggal Terima Naskah : 24 Februari 2015
Tanggal Persetujuan Naskah : 13 Maret 2015
1. PENDAHULUAN

Keandalan sistem distribusi merupakan sebuah aspek penting dalam merencanakan dan mengoperasikan sistem distribusi. Salah satu cara untuk meningkatkan keandalan sistem distribusi adalah menambah sebuah fasilitas distribusi (penyulang atau Gardu Induk). Cara ini membantu untuk menurunkan modal investasi yang berdampak pada kenaikan harga listrik. Peningkatan harga listrik merupakan masalah yang sangat peka bagi pelanggan dan belum tentu dapat diterima oleh pelanggan [1].

Cara lain untuk mempertahankan keandalan sistem distribusi adalah dengan membangun Pembangkit Listrik Tersebar (PLT). PLT dapat memperbaiki kemampuan sistem distribusi untuk melayani beban puncak pada sebuah penyulang, sehingga pengeluaran modal investasi untuk sebuah penyulang dapat ditangguhkan. Dasar pertimbangan utama untuk membangun PLT adalah ukuran dari sebuah PLT atau kombinasi dari beberapa unit PLT.

2. KEANDALAN JARINGAN DISTRIBUTU

Jaringan distribusi ialah jaringan yang menyalurkan dan mendistribusikan tenaga listrik dari gardu induk distribusi (distribution substation) kepada berbagai jenis (type) pelanggan tenaga listrik dengan mutu pelayanan yang memadai. Keandalan jaringan distribusi menggambarkan keamanan jaringan distribusi dari gangguan-gangguan yang menyebabkan sebagian besar pemadaman jaringan distribusi, khususnya pada jaringan tegangan menengah 20 kV, seperti akibat alam (petir, angin, hujan, binatang) atau kerusakan peralatan.

Indeks Keandalan Jaringan Distribusi adalah suatu besaran untuk membandingkan penampilan jaringan distribusi dalam menjalankan fungsinya. Indeks yang umum digunakan adalah: [2]

1. System average interruption frequency index (SAIFI)

\[
SAIFI = \sum_{i=1}^{n} \left( \frac{SAIFI_i}{n} \right)
\]

\[
SAIFI = \sum_{i=1}^{n} \left( \frac{\lambda_i S_i}{n} \right) = \frac{1}{n} \sum_{i=1}^{n} \lambda_i S_i
\]

dimana:
\(SAIFI_i\) = kontribusi ke SAIFI dari komponen \(i\).
\(\lambda_i\) = laju kegagalan dari komponen \(i\).
\(S_i\) = jumlah pelanggan yang mengalami pemadaman bertahan (sustained interruption) karena gangguan dari komponen \(i\).
\(n\) = jumlah seluruh pelanggan.
\(m\) = jumlah seluruh komponen

2. System average interruption duration index, (SAIDI)

\[
SAIDI = \sum_{i=1}^{n} \left( \frac{SAIDI_i}{n} \right)
\]

\[
SAIDI = \sum_{i=1}^{n} \left( \frac{\lambda_i D_i}{n} \right) = \frac{1}{n} \sum_{i=1}^{n} \lambda_i D_i
\]

dimana:
\(SAIDI_i\) = kontribusi ke SAIDI dari komponen \(i\).
\( \lambda_i \) = laju kegagalan dari komponen i.
\( D_i \) = lamanya pemadaman bertahan (sustained interruption) untuk seluruh pelanggan karena gangguan dari komponen i.
\( n \) = jumlah seluruh pelanggan.
\( m \) = jumlah seluruh komponen.
\( d_{ij} \) = lamanya pemadaman bertahan (sustained interruption) untuk pelanggan j karena gangguan dari komponen i, j = 1, 2, 3, ..., Si.
\( S_i \) = jumlah pelanggan yang mengalami pemadaman bertahan (sustained interruption) karena gangguan dari komponen i.

3. Average Energy Not Served (AENS)

\[
AENS = \frac{EENS}{n}
\]

dimana:

EENS = Expected Energy Not Served

\( n \) = jumlah seluruh pelanggan.

3. PEMBANGKIT LISTRIK TERSEBAR

Pembangkit Listrik Tersebar (PLT) didefinisikan sebagai pembangkit tenaga listrik modular, kecil, atau alat-alat/peralatan penyimpanan (storage devices) yang tersebar dekat tempat pelanggan dan dapat digabungkan dengan jaringan atau dioperasikan secara terpisah. Istilah PLT menunjuk kepada pembangkit tenaga listrik skala kecil dengan ukuran antara 15–10.000 kW[3]. PLT mempunyai beberapa aplikasi, yaitu: [3]

a. Peak power (load shaving). PLT beroperasi antara 200-3.000 jam tiap tahun untuk mengurangi harga listrik yang harus dibayar oleh pelanggan jenis industri selama waktu beban puncak. Karakteristik PLT pada aplikasi ini adalah biaya pemasangan rendah dan dapat start hanya dalam beberapa menit (quick startup).


d. Emergency power. PLT difungsikan sebagai back-up generator dan akan dihubungkan ke beban (critical load) apabila terjadi gangguan pada jaringan. Pelanggan pada aplikasi ini merupakan pelanggan yang tidak dapat menerima pemadaman pelayanan (interruption), seperti fasilitas keselamatan.

4. KONFIGURASI UTAMA PLT

Terdapat dua konfigurasi utama dalam menghubungkan suatu PLT dengan suatu jaringan distribusi, yaitu: [3]

2. PLT dikonfigurasi untuk dapat beroperasi lepas dari jaringan distribusi (independent of the utility network) atau grid-independent (off-grid mode). Konfigurasi ini dikenal juga dengan istilah "intentional islanded mode". Pada konfigurasi ini PLT dapat diklasifikasikan sebagai back-up power dan uninterruptible power supplies (UPS). Supply beban dialihkan dari suatu jaringan distribusi ke PLT dalam sebuah transisi terbuka (open transition) – sebuah urutan peralihan (switching sequence), dimana supply beban sungguh-sungguh lepas dari jaringan distribusi sebelum supply beban dialihkan ke suatu PLT. Open transition mempunyai susunan yang paling sederhana dan tidak memerlukan sistem proteksi dan fungsi kontrol. Open transition tidak sesuai untuk pengalihan supply beban selama terjadi pemadaman sekejap (momentary interruption).


Gambar 1. Pemasangan PLT pada jaringan tegangan menengah

5. HASIL DAN PEMBAHASAN

Gambar 2. Bentuk penyederhanaan topologi penyulang Darmo Permai

Dari Gambar 2 terlihat bahwa Penyulang Darmo Permai dibagi atas empat seksi dan masing-masing seksi dibatasi oleh sectionalizing switch, yakni antara seksi 1 dan seksi 2 dibatasi oleh LBS Margomulyo; antara seksi 2 dan seksi 3 dibatasi oleh LBS Gunung Jati; dan antara seksi 3 dan seksi 4 dibatasi oleh PGS Simojawar.

Pada kondisi operasi kerja normal, penyulang Darmo Permai beroperasi sebagai penyulang dengan topologi radial. Jika terjadi gangguan atau kegagalan pada suatu komponen dari penyulang Darmo Permai yang berada di dalam salah satu seksi, maka seksi yang terganggu dapat secara manual disolir dengan cara membuka sectionalizing switch yang ada pada setiap sisi dari seksi yang terganggu tersebut. Seksi yang tidak terganggu kemudian dapat dialihkan ke penyulang Kupang melalui sebuah tie switch (normally open), yaitu LBS Raya Simojawar.

Gambar 3. Bentuk penyederhanaan topologi penyulang Darmo Permai + 1 unit PLT

Dari Gambar 3 terlihat bahwa pada kondisi operasi kerja normal, penyulang Darmo Permai beroperasi sebagai penyulang dengan topologi radial. Jika terjadi gangguan atau kegagalan pada suatu komponen yang ada di dalam seksi 1, maka PLT akan memberikan supply daya listrik kepada pelanggan di dalam seksi 2 dan seksi 3. Seluruh pelanggan yang berada di dalam seksi 4 dapat dialihkan ke Penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C).

Gambar 4. Bentuk penyederhanaan topologi penyulang Darmo Permai + 2 unit PLT
Dari Gambar 4 terlihat bahwa pada kondisi operasi kerja normal, penyulang Darmo Permai beroperasi sebagai penyulang dengan topologi radial. Jika terjadi gangguan atau kegagalan pada suatu komponen yang ada di dalam seksi 1, maka PLT 1 akan memberikan supply daya listrik kepada pelanggan di dalam seksi 2 dan PLT 2 akan memberikan supply daya listrik kepada pelanggan di dalam seksi 3. Jika terjadi gangguan atau kegagalan pada suatu komponen yang ada di dalam seksi 2, maka hanya PLT 2 yang akan memberikan supply daya listrik kepada pelanggan di dalam seksi 3. Karakteristik konfigurasi penyulang Darmo Permai adalah sebagai berikut:

1. **Mode Kegagalan Komponen Seksi 1 Penyulang Darmo Permai**
   Dari Gambar 5 terlihat bahwa jika terjadi gangguan atau kegagalan pada seksi 1, maka seksi 1 dapat secara manual diisolir dengan cara membuka LBS Margomulyo. Seksi 2 dan seksi 3 yang sebenarnya merupakan seksi yang tidak terganggu tidak dapat dialihkan ke penyulang Kupang karena batas operasional penyulang Kupang, sehingga seluruh pelanggan yang berada di dalam seksi 2 (L.P. 1-L.P. 9) dan seksi 3 (L.P. 10-L.P. 12) akan ikut mengalami pemadaman bertahan dengan menunggu sampai komponen yang terganggu atau gagal dalam seksi 1 selesai diperbaiki.

![Gambar 5. Mode kegagalan komponen seksi 1 penyulang Darmo Permai](image)

Sementara seksi 4 dapat dialihkan ke penyulang Kupang, dengan cara menutup LBS Raya Simojajar (N/C), sehingga seluruh pelanggan yang terdapat di dalam seksi 4 (L.P. 13-L.P. 25) dapat mengalami pemulihan pelayanan yang cepat.

![Gambar 6. Mode kegagalan komponen seksi 1 penyulang Darmo Permai + 1 unit PLT](image)

Dari Gambar 6 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 1, maka disconnect switch dapat ditutup (N/C), sehingga sebuah unit PLT dengan ukuran besar (1-6 MW) dapat memberikan supply daya listrik kepada pelanggan dalam seksi 2 dan seksi 3. Seluruh pelanggan yang berada di dalam seksi 4 dapat dialihkan ke Penyulang Kupang dengan cara menutup LBS Raya Simojajar (N/C). Setelah selesai diperbaiki, maka disconnect switch dapat dibuka kembali (N/O), kemudian LBS Margomulyo dapat ditutup kembali (N/C) dan selanjutnya LBS Raya Simojajar (tie switch) dapat dibuka kembali (N/O) – sehingga penyulang Darmo Permai akan dapat kembali beroperasi sebagai penyulang dengan topologi radial, seperti pada kondisi operasi kerja normal.
Dari Gambar 7 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 1, maka disconnect switch 1 dan disconnect switch 2 dapat ditutup (N/C), sehingga PLT 1 – dengan ukuran antara 600-800 kW dapat memberikan supply daya listrik kepada pelanggan di dalam seksi 2 dan PLT 2 – dengan ukuran antara 100-300 kW – dapat memberikan supply daya listrik kepada pelanggan di dalam seksi 3. Seluruh pelanggan yang berada di dalam seksi 4 dapat dialihkan ke Penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C). Setelah selesai diperbaiki, maka disconnect switch 1 dan disconnect switch 2 dapat dibuka kembali (N/O), kemudian LBS Margomulyo dapat ditutup kembali (N/C) dan selanjutnya LBS Raya Simojawar (tie switch) dapat dibuka kembali (N/O) sehingga penyulang Darmo Permai akan dapat kembali beroperasi sebagai penyulang dengan topologi radial, seperti pada kondisi operasi kerja normal.

2. Mode Kegagalan Komponen Seksi 2 Penyulang Darmo Permai
Dari Gambar 8 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 2, maka seksi 2 dapat secara manual diisolasi dengan cara membuka LBS Margomulyo dan LBS Gunung Jati. Seksi 3 yang sebenarnya merupakan seksi yang tidak terganggu tidak dapat dialihkan ke penyulang Kupang karena batasan operasional penyulang Kupang, sehingga seluruh pelanggan yang berada dalam seksi 3 juga akan ikut mengalami pemadaman bertahan bersama-sama dengan seluruh pelanggan yang berada dalam seksi 2, sampai komponen yang terganggu atau gagal dalam seksi 2 selesai diperbaiki. Seksi 4 dapat dialihkan ke penyulang Kupang, dengan cara menutup LBS Raya Simojawar (N/C), sehingga seluruh pelanggan yang terdapat dalam seksi 4 dapat mengalami pemulihan pelayanan yang cepat.
Gambar 9. Mode kegagalan komponen seksi 2 penyulang Darmo Permai + 1 unit PLT

Dari Gambar 9 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 2, maka disconnect switch dapat ditutup (N/C), sehingga sebuah unit PLT dengan ukuran besar (1-6 MW) dapat memberikan supply daya listrik kepada pelanggan dalam seksi 3. Seluruh pelanggan yang berada di dalam seksi 4 dapat dialihkan ke Penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C). Setelah selesai diperbaiki, maka disconnect switch dapat dibuka kembali (N/O), kemudian LBS Margomulyo dan LBS Gunung Jati dapat ditutup kembali (N/C) dan selanjutnya LBS Raya Simojawar (tie switch) dapat dibuka kembali (N/O) – sehingga penyulang Darmo Permai akan dapat kembali beroperasi sebagai penyulang dengan topologi radial, seperti pada kondisi operasi kerja normal.

Gambar 10. Mode kegagalan komponen seksi 2 penyulang Darmo Permai + 2 unit PLT

Dari Gambar 10 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 2, maka disconnect switch 2 dapat ditutup (N/C), sehingga PLT 2 – dengan ukuran antara 100-300 kW dapat memberikan supply daya listrik kepada pelanggan yang berada di dalam seksi 3. Seluruh pelanggan yang berada di dalam seksi 4 dapat dialihkan ke Penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C).

3. Mode Kegagalan Komponen Seksi 3 Penyulang Darmo Permai

Dari Gambar 11 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 3, maka seksi 3 dapat secara manual diisolasi dengan cara membuka LBS Gunung Jati dan PGS Simojawar. Seksi 2 akan tetap menerima supply dari GI, sehingga seluruh pelanggan yang terdapat di dalam seksi 2 tidak akan ikut mengalami pemadaman. Seksi 4 dapat dialihkan ke penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C), sehingga seluruh pelanggan yang terdapat dalam seksi 4 dapat mengalami pemulihan pelayanan yang cepat.
Gambar 11. Mode kegagalan komponen seksi 3 penyulang Darmo Permai

Dari Gambar 12 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 3, maka seluruh pelanggan di dalam seksi 2 akan tetap mendapatkan supply daya listrik dari GI. Sementara seluruh pelanggan dalam seksi 4 dapat dialihkan ke penyulang Kupang dengan cara menutup LBS Raya Simojawar (N/C).

Gambar 12. Mode kegagalan komponen seksi 3 penyulang Darmo Permai + 1 unit PLT

Dari Gambar 13 terlihat bahwa Jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 3, maka PLT 1 tidak perlu memberikan supply daya listrik kepada seluruh pelanggan di dalam seksi 2.

Gambar 13. Mode kegagalan komponen seksi 3 penyulang dorno permai + 2 unit PLT

4. Mode Kegagalan Komponen Seksi 4 Penyulang Darmo Permai
Dari Gambar 14 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 4, maka seksi 4 dapat secara manual diisolir dengan cara membuka PGS Simojawar. Seksi 2 dan seksi 3 akan tetap mendapatkan supply dari GI, sehingga seluruh pelanggan yang terdapat dalam seksi 2 dan seksi 3 tidak perlu mengalami pemadaman bertahan, melainkan hanya mengalami switching time dalam
pemulihan pelayanannya. Khusus untuk gangguan atau kegagalan pada suatu komponen dalam seksi 4 yang terjadi di cabang (lateral), di belakang fuse cutout (C.O), maka hanya pelanggan pada cabang tersebut (L.P. 14) yang akan mengalami pemadaman bertahan (C.O melebur) dengan menunggu sampai komponen yang terganggu atau gagal pada cabang tersebut selesai diperbaiki.

![Diagram Gambar 14. Mode kegagalan komponen seksi 4 penyulang Darmo Permai]

Gambar 14. Mode kegagalan komponen seksi 4 penyulang Darmo Permai

![Diagram Gambar 15. Mode kegagalan komponen seksi 4 penyulang Darmo Permai + 1 unit PLT]

Gambar 15. Mode kegagalan komponen seksi 4 penyulang Darmo Permai + 1 unit PLT

Dari Gambar 15 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 4, maka PLT 1 dan PLT 2 tidak perlu memberikan supply daya listrik kepada pelanggan yang terdapat dalam seksi 2 dan seksi 3 – disconnect switch 1 dan disconnect switch 2 tetap terbuka (N/O).

![Diagram Gambar 16. Mode kegagalan komponen seksi 4 penyulang Darmo Permai + 2 unit PLT]

Gambar 16. Mode kegagalan komponen seksi 4 penyulang Darmo Permai + 2 unit PLT

Dari Gambar 16 terlihat bahwa jika terjadi gangguan atau kegagalan pada suatu komponen dalam seksi 4, maka PLT 1 dan PLT 2 tidak perlu memberikan supply daya listrik kepada pelanggan yang terdapat dalam seksi 2 dan seksi 3 – disconnect switch 1 dan disconnect switch 2 tetap terbuka (N/O).
Tabel 1. Indeks keandalan jaringan distribusi sebelum dan setelah penambahan PLT

<table>
<thead>
<tr>
<th>Topologi Jaringan Distribusi</th>
<th>SAIFI</th>
<th>SAIDI</th>
<th>AENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penyulang Darmo Permai</td>
<td>1.98695</td>
<td>0.09681</td>
<td>162.74686</td>
</tr>
<tr>
<td>Penyulang Darmo Permai + Penyulang Simohilir</td>
<td>1.62178</td>
<td>0.08503</td>
<td>143.20978</td>
</tr>
<tr>
<td>Penyulang Darmo Permai + 1 Unit PLT Ukuran 1 MW</td>
<td>1.62178</td>
<td>0.08503</td>
<td>143.20978</td>
</tr>
<tr>
<td>Penyulang Darmo Permai + PLT 1 Ukuran 600 kW dan PLT 2 Ukuran 100 kW</td>
<td>1.89832</td>
<td>0.09181</td>
<td>156.39615</td>
</tr>
<tr>
<td>Penyulang Darmo Permai + PLT 1 Ukuran 800 kW dan PLT 2 Ukuran 300 kW</td>
<td>1.62178</td>
<td>0.08503</td>
<td>143.20978</td>
</tr>
</tbody>
</table>

Dari data pada Tabel 1 terlihat bahwa terjadi perubahan nilai indeks keandalan (SAIFI, SAIDI, dan AENS) setelah penambahan penyulang Simohilir atau penambahan satu unit PLT ukuran 1 MW (PLT dengan ukuran yang besar) atau penambahan dua unit PLT dengan ukuran yang lebih kecil (ukuran 800 kW dan 300 kW) pada penyulang Darmo Permai.

1. Nilai SAIFI berkurang dari 1.98695 menjadi 1.62178 (nilai SAIFI berkurang sebesar 18.38%) setelah penambahan PLT karena jumlah pelanggan yang mengalami pemadaman akibat gangguan komponen \( i \) (S1) berkurang. Pengurangan \( S1 \) tersebut terjadi pada mode kegagalan komponen seksi 1 dan seksi 2 penyulang Darmo Permai + unit PLT. Karena unit PLT dapat memberikan supply daya listrik kepada seluruh pelanggan dalam seksi 2 sehingga \( S1 \) berkurang dari 2030 pelanggan menjadi 0. Penurunan nilai SAIFI pada mode ini sebanding dengan nilai yang diberikan oleh mode penambahan penyulang Simohilir pada penyulang Darmo Permai.

2. Nilai SAIDI berkurang dari 0,09681 menjadi 0,08503 (nilai SAIDI berkurang sebesar 12.17%) setelah penambahan penyulang atau penambahan PLT. Hal ini karena lamanya pemadaman untuk seluruh pelanggan akibat gangguan dari komponen \( i \) (Di) berkurang. Pengurangan \( Di \) tersebut terjadi pada mode kegagalan komponen seksi 1 dan seksi 2 penyulang Darmo Permai + unit PLT. Penurunan nilai SAIDI pada mode ini sebanding dengan nilai yang diberikan oleh penambahan penyulang Simohilir pada penyulang Darmo Permai.

3. Nilai AENS berkurang dari 162.74686 menjadi 143.20978 (nilai AENS berkurang sebesar 12.00%) setelah penambahan unit PLT 1. Hal ini karena daya yang tidak tersalur untuk seluruh pelanggan akibat gangguan dari komponen \( i \) (kW) berkurang. Pengurangan kW tersebut terjadi pada mode kegagalan komponen seksi 1 dan seksi 2 penyulang Darmo Permai. Daya yang tidak tersalur untuk seluruh pelanggan akibat gangguan dari komponen \( i \) (kW) berkurang dari 986.1102 kW menjadi 720.0738. Penurunan nilai AENS pada mode ini sebanding dengan nilai yang diberikan oleh penambahan penyulang Simohilir – sebuah fasilitas distribusi – pada penyulang Darmo Permai.
6. KESIMPULAN

Penambahan penyulang Simohilir atau penambahan satu unit PLT ukuran 1 MW atau penambahan dua unit PLT (ukuran 800 kW dan 300 kW), ke suatu jaringan distribusi penyulang Darmo Permai terbukti efektif karena dapat memperbaiki keandalan jaringan distribusi. Hal ini terlihat dari penurunan nilai SAIFI sebesar 18,38 % (dari 1,98695 menjadi 1,62178), penurunan nilai SAIDI sebesar 12,17 % (dari 0,09681 menjadi 0,08503) dan penurunan nilai AENS sebesar 12,00 % (dari 162,74686 menjadi 143,20978).

REFERENSI


