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ABSTRACT 

In this paper we proposed a defect detection on the pattern pabric. This defect usually occured 
since the pattern is shifted, broken, or different to the intended design. To solve this problem, we 
use comparing signals approch.To do that, we first modeled the images in a 2D nonparametric 
regression. Moreover, to cope with the correlation between the neighbour of each pixels, we 
model the errors correlated in their neighbourhoods. The image is divided into two parts vertically, 
and then a hypothesis test is constructed so that the left image is the same to the right one, 
against they are significantly different. Similarly, then the image is divided horizontally, and 
perform the same test for the upper and lower images. To reject or faild to reject the hypothesis 
we need to measure the distance between two nonparametric regressions. Since the distribution 
of test statistic under the hypothesis null is not known. In this method we use the standardized 
modification of the Mallows distance and construct spatial bootstrap for representing the 
distribution of the test statistic. To preserve the bound of a pixel to its neighbourhood we construct 
a spatial bootstrap. The reject hypothesis imply that the defects are found in that particular area. 
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1. INTRODUCTION 

In recent years, visual inspection on texture has played role in the quality control, since products` 
quality controls are designed and presented to ensure not giving defect products to customers. In the 
visual inspection the human doing quality control has been replaced by mechanics and visual vision 
has been replaced by computer vision.  

Finding defects automatically for any types of texture have been researching topics for several years. 
Some methods have been developed in many fields of interest. Kumar (2008) gave a survey on this 
topics. Ngan, et al. have been worked on this problem using several techniques (2009, 2010a, 2010b). 
Moahseri et al.(2010) used multi resolution decomposition for detecting defect on the texture. Timm 
and Barth (2011), approached this problem by computing the distribution of image gradients and then 
computed the Weibull fit and determined the shape and scale of the parameters to detect the defect 
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on the texture. Fu (2009) approached this problem using adaptive local binary patterns. Tang, et al 
(2011) used statistical approach for detecting defect in wood. In line with Tang, Franke and Halim 
(2007,2008) also used statistical approach, that is by comparing  signals and images. To compare 
those signals, Franke and Halim modelled them as 1D nonparametric regression models and then 
tested either those signals are significantly the same against they are significantly different. Since the 
approach of that model is only 1D. That’s mean the smoothing procedure in the Franke and Halim 
model works, line by line.

Therefore, the aim of this article is to enhance the Franke and Halim approach by modelling the 
images using 2D nonparametric regression, so that the smoothing procedure works for two-
dimensional images directly. In the following section we discuss the methods we used for modelling 
the defect detection on the texture. Illustrations and examples are presented in the fourth section of 
the paper, and finally we conclude and point out the future research direction in the last section: 

2. METHODS 

In this proposed method, we first consider the images as signals and model those signals in the 
nonparametric regression setup. We then wish to test either those signals are significantly the same 
against they are significantly different. To perform a test, first we need to measure the distance 
between two nonparametric regression models and use that distance as a statistic test for testing the 
null hypothesis. 

To compare those signals, we first model them as the following nonparametric regression setup, for 
simplicity we assume that the size of the image is ��by �.

                              ��� � �	
���� 
 ���� ���� � �		
���� 
 ����� ���� � � ��� � �.                                            (1)  

where ���  is the image without defect, and �����  is the defected images; �	�� � and �		  are general 
functions represented the non-defected and defected images respectively. ���  is the grid of pixels;   

���� � � ���� ����� � � ����  are independent with mean zero and finite variance, ���
���� � ���
����� �
� ����� and uniformly bounded fourth moments !���� �!���� " # $ � �� � � ��� � �
For the sake of simplicity, we only consider the case of equidistant ��� on a compact set, say [0,1] 

(Detail: Halim (2005)). 

2.1. Kernel  smoothing 

To model an image as a regression, first, we consider an equidistant grid of pixels 
                           %&' � �& �( ) & *�( � ' �( ) ' *�( � � + �( �&� '� ) + *�( , &� ' � +�� � �                           

(2) 
in the unit square - � ./� +0* and a function 12 ./� +0* 3 �4 to be estimated from data, i.e.. the gray 
levels of the image as follows: 5&' � 1
%&'� 
 6&', &� ' � +�� � �                                     (3) 
where the noise is part of a stationary random field 6&'� )7 $ �� � $ 7, with zero-mean and finite 
variance. 

We use the Gasser-Muerller-type kernel to estimate�1�%�. For that purpose we decompose 8 into 
squares 8&' � 9% : 8, �& ) +� �( " ;+ " & �( , �' ) +� �( " ;* " ' �( <� �+ " &� ' " ��such that % is the 
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midpoint of 8&'� then estimate 1 using: 1= �%� >� � ? @ A>�% ) ;�B;�5&'8&'
�&�'C+                                      (4)                            

where�A24* 3 �4 is a given kernel function and for the bandwidth vector > � �>+� >*�.
To simplify notation, we write the index in the following way, D � � ��� �� such that, (4) can be written as 
�E � ���E� 
 �E� D : F� � 9��� � �< . Let�E� G : H , is strictly stationary random field on the integer lattice 
with I�E � J� �����E � ��J� $ �7 and autocovariances ��D� � KLM��ENOE�� D� DP : H  (Franke et al. [3]).  
We wish to test either those signals are significantly the same against they are significantly different, 
i.e., QR2�	
���� � �		
���� � �
����� ��� � � ��� � � against Q�2�	
���� S �		
�����for some �� �

2.2. Performing test 

To perform a test, first we need to measure the distance between TU	 ��� and TU		��� and use this 
distance as a test statistic for testing the null hypothesis. Following, Haerdle and Mammen (1993), we 

use standardized V -distance between these two estimates, i.e. W� � �XY@
TU	 ��� ) TU		���� Z� .
Convergence in this distance is equivalent to weak convergence. 

2.3. Testing with Bootstrap

We have to decide either those signals are significantly the same (i.e., there is no defect present on a 
surface) against they are significantly different (i.e., the defect presents on a surface). Typically, a test 
is performed by calculating some function W�[� of the data and comparing it with some bound�#\,
chosen as the �� ) ]� quantile of the distribution of W�[� under the hypothesis QR. If W�[� " #\, we 
accept  as compatible with the data, otherwise we reject it in favor of Q� . ]� is the prescribed 
probability of an error of the first kind, i.e., under the QR , we have ^��W��� _ #\� � ` . Now, 
constructing the test becomes a problem of determining�#\. However, the distribution of test statistic 
W���  under QR is not known. The classical approach to handle this problem is by deriving the 
asymptotic approximation for unknown distribution that holds for sample size a 3 7. However, this 
approach practically cannot be applied in signal and image analysis, since the structure of the data 
has been frequently too complicated.

We then used bootstrap tests, we move from our original data � to the bootstrap data vector or 
resample �b. The resample �b may be artificially generated from the original data and has a similar 
random structure as ��itself. Then, we consider the test statistic W��b� calculated from the bootstrap 
data �b  and determine the �� ) ]� -quantile #\b of its distribution: ^�b�W��b� _ #\b� � `�  where ^�b
denotes the conditional probability given the data ���The �� ) ]� -quantile #\b  can be computed 
numerically using Monte Carlo simulation  (Franke and Halim, 2007). 
1. generate a realization �b�c� of the bootstrap data and then calculate Wdb � W��b�c��

repeat for c � ��� � e
2. order W�b� � � Wfb such that W���b " g " W�f�b
3. set #\�fb � W�.��h\�f0�b , where .�0 denotes the largest integer " �.

The applicability of the bootstrap data �b depends on the way the bootstrap data �b are generated as 
well as the test statistic W��� considered. To construct the��b for the image, first, we estimated the 
residual as follows  �i�� � ��� ) T	
�����, ������j�� � ���� ) T		
����; centering the residual by their sample 

mean, we achieve �i��R � �i�� ) �
� ? �i������C� ; ��j��R � ��j�� ) �

� ? ��j������C�
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We, then construct out bootstrap samples from ���b � Tk	 
���� 
 �i��bR,������b � Tk		
���� 
 ��j��bR where��i��bR� ��j��bR
are the centering residual.  

For the construction of �i��bR� ��j��bR; We constructed using the spatial bootstrap to preserve the bond of a 

pixel to its neighbourhood. First, we compute the spatial covariance matrix of �i��  and ��j��  and 
generated both bootstrap residual of them based on that bond. 

The spatial covariance of �i�� and ��j��, is computed between a pair of �i�� and ��j�� respectively located at 
points separated by the distance . The covariance function can be written as a product of a variance 
parameter, �  times a positive definite correlation function l�Y�, i.e., #LM�Y� � � l�Y�.
Denote  the basic parameter of the correlation function and name it the range parameter. Some of 
the correlation functions will have an extra parameter , the smoothness parameter. mn��� denotes the 
modified Bessel function of the third kind of order kappa. In the equations below the functions are 
valid for o _ Jand p _ J, unless stated otherwise (Diggle and Ribeiro, 2007).  
Cauchy l�Y� � q� 
 rYst

 u
hn

Generalized 
Cauchy l�Y� � v� 
 wUxy

n zh�
{|
{}�

, p� _ J� J $ ~� " �
Cubic l�Y� � � ) � wUxy

 ) ���� wUxy
� 
 ��� wUxy

� ) J��� wUxy
�
 if Y $ s, 0 otherwise 

Gaussian l�Y� � ���� �)rYst
 �

Exponential l�Y� � �����)Y�s�
In this work we chose the correlation l�Y� as Gaussian model. 

Now, the bootstrap test statistics can be constructed as follows (Franke and Halim 2007,2008). 

                     W� � �Y�� @
TU	 ��� ) TU		���� Z� �Y�� ? wTU	 
���� ) TU		
����y ����C�                   (5) 

Under the hypothesis QR�  we use two forms of the test statistics based on (5) with the bootstrap 
samples. From now on, we call them as W�� and W�� respectively, and we set  

���b � Y�� � wTUb	
���� ) TUb		
����y �
���C�

Using one of these two functions then we can set the #\�fb � ���.��h\�f0�b  and deduce either the 

hypothesis is rejected (the defect presents in the image) or failed to reject (no defect presents in the 
image) 

3. RESULTS 

The idea of detecting defects on the texture`s pattern is the same as we compare the not defected 
“signal” or series of the texture to the defected one. However, this step can also be applied to the half 
part of the image, i.e., we divided the image into two parts: Upper and lower part, and also left and 
right part. We then, comparing the series of the left part to the right one, and of the upper part to the 
lower one (Figure 1a-b). In this example, we can see that the series are shifted when we compare it 
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from the upper to lower part (Figure 1a-b). However, there is no significantly different of signal when 
we compare it from left to right one (Figure 1 c-d). The series in Figure b, lead to a conjucture that 
there is no defect on that line, while in Figure c, lead to a conjecture that there is defect on that line. 
We then test the conjecture use the proposed hypothesis test explaining in Section 2.3 

Before testing those series, we first smooth the image using the 2D nonparametric approach, 
explaining in Section 2.1. We then use that smooth image for constructing the hypothesis test. The 
hypothesis test is run in each line. Suppose. we take one vector columns from Figure 1a, and let  
T	������ � � �� � � ��� �� be the first column of the upper image, and called it series I. Let T		������ � �
�� � � � 
 ��� � � be the first column of the lower image, and called it series II. We perform a test  

QR2 T	
���� � T		
���� � T
����� ��� � � ��� � �  against Q�2 T	
���� S T		
���� . We run the test for � �
��� � �. (for simplicity, we let the image size in  � by �), and notify in which positions the test reject the 
hypothesis. Those positions are regarded as the defected area in the image. Similary, the test also 
run from each row in Figure 1c. Running the test row-wise and columns wise then we we have a set 
of points which recorded the defect positions in the image. We then take the most four outer points 
and draw a box thougth those points for detecting the defetc area in the image. 

A b c d
Figure 1. The idea of comparing series from the upper to lower part and from the left to the 
right part 

Applying the proposed methods to some defected textures, we are successfully to detect the simple 
defect as well as the pattern`s defect (Figure 2). Since, we take the outer points for drawing a box to 
detect the defect area, so in one bix box we can find several defects, i.e. Figure 2a, 2c, 2f. Therefore, 
we can extend the procedure for finding the defect area, so that we can find several defet areas in a 
image (see Figure 2d, 2i). Here, we do not use four outer points, but search  points in which those 
points can form a box The proposed model is not running well for detecting defect for wood texture. 
We need to transform the image using wavelet tansformation first and then perform the test in the 
wavelet space, then invers the defected area in to the original space (see Figure 2j). The computation 
in this work was carried out using R-programming (2014).  
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f          g     h          i                              j 
Figure 2. Some examples of defect detection on pattern fabric 

4. DISCUSSION AND CONCLUSION 

So far, the methods presented here can handle the simple as well as the pattern defect detection in 
the texture. However, there are some limitations that these methods cannot overcome, and therefore 
should be handled in the future work. This method is not successful for capturing many defects on 
several locations of large texture, capturing in a complex structure such as a defect in the surface of 
the wood. For capturing many defects on several locations, the procedure for detecting the area of 
defect shold be impove, so that it can detect many areas of defects at once. So far, the four outer 
points defect area detection can produce too large defected area due to some small defect in the 
corner of the image for example. Searching some points which can detect several defect areas should 
be improved so that, the defected area are not too large, yet not too small to cover the defected area. 

For capturing defect in a complex structure, the transformation of the image in the wavelet space is 
also a challenge to be considered in the future research, Since, inversing the result from the wavelet 
space to the original space sometime give different result as it is expected. 
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