ICSIIT 2010
Table of Contents

Preface.. xi

Organizing Committee.. xii

Program Committee .. xiii

Human Language Technology: The Philippine Context .. 1
Rachel Edita Roxas, Allan Borra

Hybrid-Multidimensional Fuzzy Association Rules from a Normalized Database 10
Rolly Intan

Fuzzy Systems & Neural Networks

A Context-Based Fuzzy Model for a Generator Bidding System.......................... 18
Moeljono Widjaja

Neural Networks for Air-Conditioning Objects Recognition in Industrial Environments ... 24
Enrique Dominguez, J.J. Carmona

Pattern Recognition Using Discrete Wavelet Transformation and Fuzzy Adaptive Resonance Theory... 29
Arnold Aribowo, Samuel Lukas, Joannes Franciscus

Resolving Occlusion in Multi-Object Tracking using Fuzzy Similarity Measure 33
Rahmatri Mardiko, M. Rahmat Widyanto

Search Engine Application using Fuzzy Relation Method for e-Journal of Informatics Department Petra Christian University .. 39
Leo Willyanto Santoso, Rolly Intan, Prayogo Probo Susanto

The Use of Gabor Filter and Back-Propogation Neural Network for the Automobile Types Recognition .. 45
Gregorius Satia Budhi, Rudy Adipranata, Fransisco Jimmy Hartono

Genetic Algorithm & Applications

A Linear Graph and Genetic Algorithm Approach for Evolving Manipulator Modelling 51
Kok Kiong Tan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparing Genetic and Ant System Algorithm in Course Timetabling Problem</td>
<td>56</td>
</tr>
<tr>
<td>Djasli Djamarus</td>
<td></td>
</tr>
<tr>
<td>Gas Distribution Network Optimization with Genetic Algorithm</td>
<td>62</td>
</tr>
<tr>
<td>K.A. Sidarto, L.S. Riza, C.K. Widita, F. Haryadi</td>
<td></td>
</tr>
<tr>
<td>Hybrid Genetic Algorithm for Solving Strimko Puzzle</td>
<td>68</td>
</tr>
<tr>
<td>Samuel Lukas, Arnold Aribowo, James Nagajaya Dyalim</td>
<td></td>
</tr>
<tr>
<td>Optimal Design of Hydrogen Based Stand-Alone Wind/Microhydro System Using Genetic Algorithm</td>
<td>71</td>
</tr>
<tr>
<td>Soedibyo, Heri Suryoatmojo, Imam Robandi, Mochamad Ashari, Takashi Hiyama</td>
<td></td>
</tr>
<tr>
<td>Optimization of Steel Structure by Combining Evolutionary Algorithm and SAP2000</td>
<td>76</td>
</tr>
<tr>
<td>Mohammad Ghozi, Pujo Aji, Priyo Suprobo</td>
<td></td>
</tr>
<tr>
<td>The Hydrophobic-Polar Model Approach to Protein Structure Prediction</td>
<td>82</td>
</tr>
<tr>
<td>Tigor Nauli</td>
<td></td>
</tr>
<tr>
<td>University Course Scheduling Using the Evolutionary Algorithm</td>
<td>86</td>
</tr>
<tr>
<td>Ade Jamal</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence & Applications</td>
<td></td>
</tr>
<tr>
<td>Adaptive Appearance Learning Method using Simulated Annealing</td>
<td>91</td>
</tr>
<tr>
<td>Du Yong Kim, Ehwa Yang, Moongu Jeon, Vladimir Shin</td>
<td></td>
</tr>
<tr>
<td>Bayesian Network and Minimax Algorithm in Big2 Card Game</td>
<td>96</td>
</tr>
<tr>
<td>Nur Ulfa Maulidevi, Hengky Budiman</td>
<td></td>
</tr>
<tr>
<td>Cell Formation Using Particle Swarm Optimization (PSO) Considering Machine Capacity, Processing Time, and Demand Rate Constraints</td>
<td>102</td>
</tr>
<tr>
<td>Dedy Suryadi, Ferry Putra, Cynthia Juwono</td>
<td></td>
</tr>
<tr>
<td>Computer Aided Learning for List Implementation in Data Structure</td>
<td>108</td>
</tr>
<tr>
<td>Ng Melissa Angga, Susana Limanto</td>
<td></td>
</tr>
<tr>
<td>Development Weightless Neural Network on Programmable Chips to Intelligent Mobile Robot</td>
<td>112</td>
</tr>
<tr>
<td>Siti Nurmaini, Bambang Tutuko</td>
<td></td>
</tr>
<tr>
<td>If-Statement Modification for Single Path Transformation: Case Study on Bubble Sort and Selection Sort Algorithms</td>
<td>116</td>
</tr>
<tr>
<td>Rahmadi Trimananda</td>
<td></td>
</tr>
</tbody>
</table>
Implementation of Particle Swarm Optimization Method in K-Harmonic Means Method for Data Clustering
Ahmad Saikhu, Yoke Okta

Implementation of Starfruit Maturity Classification Algorithm
R. Amirulah, M.M. Mokji, Z. Ibrahim

Improving Choquet Integral Agent Network Performance by using Competitive Learning Algorithms
Handri Santoso, Shusaku Nomura, Kazuo Nakamura

Improving Food Resilience with Effective Cropping Pattern Planning using Spatial Temporal-Based Updated Pranata Mangsa
Kristoko Dwi Hartomo, Sri Yulianto J.P., Krismiyati

Knowledge Based System in Defining Human Gender Based On Syllable Pattern Recognition
Muhammad Fachrurozi

Maintaining Visibility of a Moving Target: The Case of an Adaptive Collision Risk Function
Ashraf Elnagar, Ibrahim Al-Bluwi

Measuring Interesting Rules in Characteristic Rule
Spits Warnars

MIDI Composition Tools using JFugue Java API
Kartika Gunadi, Liliana, Hendra Kurnia Wijaya

Mobile-based Interaction using Djikstra’s Algorithm for Decision Making in Traffic Jam System
Puji Sularsih, Egy Wisnu Moyo, Fitria H. Siburian, Sigit Widiyanto, Dewi Agushinta R.

Model and Boarding Simulation for Reducing Seat and Aisle Interferences Between Passenger
Bilqis Amaliah, Victor Hariadi, Antonius Malem Barus

Optimizing Rijndael Cipher using Selected Variants of GF Arithmetic Operators
Petrus Mursanto

PCR Primer Design using Particle Swarm Optimization Combined with Piecewise Linear Chaotic Map
Cheng-Hong Yang, Yu-Huei Cheng, Li-Yeh Chuang

Performance Analysis of Heterogeneous Computer Cluster
Abdusy Syarif, Saiful Ikhwan, Muhammad Risky

Reduced Space Classification using Kernel Dimensionality Reduction for Question Classification in Public Health Question-Answering
Hapnes Toba, Ito Wasito
The Developing of Interactive Software for Supporting the Kinematics Study on Linear Motion and Swing Pendulum...193
Liliana, Kartika Gunadi, Yonathan Rindayanto Ongko

University Timetabling Problems with Customizable Constraints using Particle Swarm Optimization Method..197
Paulus Mudijhartono, Wahyu Triadi Gunawan, The Jin Ai

Knowledge & Data Engineering

A Design of Multidimensional Database for Content-based Television Video Commercial Mining..201
Yaya Heryadi, Yudho Giri Sucahyo, Aniati Murni Arumurthy

Applying Sound to Enhance the Comprehension of Sorting Algorithms...206
Lisana, Edwin Pramana

Data Mining to Build a Pattern of Knowledge from Psychological Consultations..................211
Sri Mulyana, Sri Hartati, Retantyo Wardoyo, Edi Winarko

Data Warehouse Information Management System RSU Dr. Soetomo for Supporting Decision Making..215
Silvia Rostianingsih, Oviliani Yenti Yuliana, Gregorius Satia Budhi, Denny Irawan

Development of an Electronic Medical Record (EMR) in Stayed Nursing Installation..................220
Eko Handoyo, Aghus Sofwan, Mohammad Muttaqin

Development of Supporting Sales Analysis Application using Frequent Closed Constraint Gradient Mining Algorithm (FCCGM) ..224
Susana Limanto, Dhiani Tresna Absari

Implementation of KMS to Integrate Knowledge Management and Supply Chain Management Process ...229
Vivine Nurcahyawati, Retno Aulia Vinarti, Mudjahidin

Indonesian WordNet Sense Disambiguation using Cosine Similarity and Singular Value Decomposition...234
Syandra Sari, Ruli Manurung, Mirna Adriani

Influence of Electronic Media and External Reward Towards Knowledge Sharing Management to Learning Process in Higher Education Institution..240
Alexander Setiawan
Information and Technology Outsourcing Vendor Selection: An Integrative Literature Review........245
Jimmy

Information Retrieval on MARC Metadata...251
Adi Wibowo, Rolly Intan, Irawan Arifin

Learning Management Systems’ Integration...256
N.S Linawati, Putra Sastra, P.K. Sudiarta

Mining Sequential Pattern on Sequential Data of Paint Sales Transaction Flow260
Agustinus Noertjahyana, Gregorius Satia Budhi, Henny Kusumawati Wibowo

Modeling School Bus for Needy Student Using Geographic Information System265
Daniel Hary Prasetyo, Jamilah Muhamad, Rosmadi Fauzi

Optimization SQL Server 2005 Query using Cost Model and Statistic272
Ibnu Gunawan

Spatial Autocorrelation Modelling for Determining High Risk Dengue Fever Transmission Area in Salatiga, Central Java, Indonesia ...277
Sri Yulianto J.P., Kristoko Dwi Hartomo, Krismiyati

Supply Chain Improvement with Design Structure Matrix Method and Clustering Analysis (A Case Study)..281
Tanti Octavia, Siana Halim, Stefanus Anugraha Lukmanto, Harvey Sutopo

The Comparation of Similarity Detection Method on Indonesian Language Document285
Anna Kurniawati, Lily Wulandari, I Wayan Simri Wicaksana

The Effects of Training Documents, Stemming, and Query Expansion in Automated Essay Scoring for Indonesian Language with VSM and LSA Methods290
Heninggar Septiantri, Indra Budi

The Impact of Object Ordering in Memory on Java Application Performance296
Amil A. Ilham, Kazuaki Murakami

Using Data Mining to Improve Prediction of ‘No Show’ Passenger on an Airline Reservation System ..302
Johan Setiawan, Bobby Limantara

Using Frequent Max Substring Technique for Thai Keyword Extraction used in Thai Text Mining ..309
Todsanai Chumwatana, Kok Wai Wong, Hong Xie
Using the End-User Computing Satisfaction Instrument to Measure Satisfaction with Web-Based Information Systems ...315
Dedi Rianto Rahadi

Imaging Technology

Batik Image Classification using Log-Gabor and Generalized Hough Transform Features320
Laksmita Rahadianti, Hadaiq R. Sanabila, Ruli Manurung, Aniati Murni

Burrows Wheeler Compression Algorithm (BWCA) in Lossless Image Compression326
Elfirin Syahrul, Julien Dubois, Vincent Vajnovszki, Asep Juarna

Comparison of Random Gaussian and Partial Random Fourier Measurement in Compressive Sensing Using Iteratively Reweighted Least Squares Reconstruction332
Endra

Developing a Video Player Application for Phillips File Standard for Pictoral Data Format (NXPP): A Project View Approach ..335
Eko Handoyo, Restiono Djati Kusumo

Development Edge Detection Using Adhi Method, Case Study: Batik Sidomukti Motif340
Adhi Pranoto, Suyoto

Discriminating Cystic and Non Cystic Mass Using GLCM and GLRM-based Texture Features346
Hari Wibawanto, Adhi Susanto, Thomas Sri Widodo, S Maesadji Tjokronegoro

Fractal Terrain Generator ..351
Budi Hartanto, Monica Widiasri, Gunawan Widjaja

From Taiwan Puppet Show to Augmented Reality ..356
Yang Wang, Bo Ruei Huang, Zih Huei Wang

Generating Iriscode using Gabor Filter ..362
I Ketut Gede Darma Putra, Lie Jasa

Interpolation Technique to Improve Unsupervised Motion Vector Learning of Wyner-Ziv Video Coding ...366

Iris Segmentation and Normalization ...371
I Ketut Gede Darma Putra, I Nyoman Piarsa, Nazer Jawas

NEATS: A New Method for Edge Detection ..377
Maria Yunike, Suyoto
Online Facial Caricature Generator ...383
Rudy Adipranata, Stephanus Surya Jaya, Kartika Gunadi

Silny Approach to Edge Detection for Central Borneo Batik..387
Silvia, Suyoto

Internet, Web Services & Mobile Applications

Cattle’s Cost of Goods Sold System Information at CV Agriranch ...392
Lily Puspa Dewi, Yulia, Anita Nathania, Doddy Hartanto

Compensation Method for Internet Grids using One-to-many Bargaining396
Andreas Kurniawan, Pujianto Yugopuspito, Johan Muliadi Kerta

Mobile RSS Push Using Jabber Protocol...406
Fajar Baskoro, Dwi Ardi Irawan

Teacher’s Community Building Website to Facilitate Networking and Life-Long Learning........412
Arlinah Imam Rahardjo, Yulia, Silvia Rostianingsih

Vision and Mission Educational Foundation (YPVM) Web-Based Project Management System417
Arlinah Imam Rahardjo, Yulia, Edwin

Web Based School Administration Information System on LOGOS School..........................421
Djoni Haryadi Setiabudi, Ibnu Gunawan, Handoko Agung Fuandy

Communication Systems & Networks

Data Visualization of Modulated Laser Beam Communication System427
Zin May Aye

Development of Steganography Software with Least Significant Bit and Substitution
Monoalphabetic Cipher Methods for Security of Message Through Image.........................432
Iswar Kumbara, Erwin

Feasibility Analysis of Zigbee Protocol in Wireless Body Area Network436
Vera Suryani, Achmad Rizal

Mobile TV with RTSP Streaming Protocol and Helix Mobile Producer439
Yunianto Purnomo, Andrew Jaya Efendy

Quantitative Performance Mobile Ad-Hoc Network using Optimized Link State Routing
Protocol (OLSR) and Ad-Hoc On-Demand Distance Vector (AODV).................................443
Andreas Handojo, Justinus Andjarwirawan, Hiem Hok

Spatial Rain Rate Measurement to Simulation Colour Noise Communication Channel Modeling for Millimeter Wave In Mataram..449
Made Sutha Yadnya, Gamantyo Hendrantoro

The Effect of Maximum Allocation Model in Differentiated Service-Aware MPLS-TE.............453
Bayu Erfianto

User Accounting System of Centralized Computer Networks using RADIUS Protocol457
Heru Nurwarsito, Raden Arief Setyawan, Handoko D. Fatikno

Wireless Data Communication with Frequency Hoping Spread Spectrum (FHSS) Technique..........463
Khin Swe Myint, Zarli Cho

Wireless LAN User Positioning using Location Fingerprinting and Weighted Distance Inverse469
Justinus Andjarwirawan, Silvia Rostianingsih, Charlie Anthony

WLANXCHANGE: A New Approach in Data Transfer for Mobile Phone Environment474
Ary Mazharuddin Shiddiqi, Bagus Jati Santoso, Rio Indra Maulana

Control & Automation

Analysis Influence Internal Factors on Fuzzy Type 2 Performance of Swing Phase Gait Restoration..479
Hendi Wicaksono

Design and Construction of Wind Speed Indicator Based on PIC Microcontroller System484
Khin Mar Aye, Khi Tar Oo

Fault Diagnosis in Batch Chemical Process Control System using Intelligent System489
Syahril Ardi

Implementation of an Adaptive PID Controller using the SPSA Algorithm with Realistic Target Response..493
Sofyan Tan

Induction Heating Efficiency Analysis Modeling Using COMSOL® Multiphysics Software..........498
Didi Istardi

Authors Index..504
Preface

First of all, I would like to give thank to God the Creator, God the Redeemer and God who leads us to the truth for all His blessings to us. As we all know, this 2nd International Conference on Soft Computing, Intelligent Systems and Information Technology 2010 (ICSIIT 2010) is held from 1-2 July 2010 in the Hard Rock Hotel located at this paradise island, Bali, Indonesia. I thank Him for His presence and guidance in letting this conference happen. Only by God's grace, we hope we could give our best for 2nd ICSIIT 2010 despite of all of our limitation.

We have received more than 130 papers from 15 countries. Only 96 papers from 13 countries have been accepted based on reviewers' ratings and comments. The paper selection process was based on full paper submissions. We thank all authors who have contributed and participated in presenting their works at this conference. We also gratefully acknowledge the important review supports provided by the 19 members of the program committee from 8 different countries. Their efforts were crucial to the success of the conference.

We are also so blessed by the presence of two invited speakers who will address the important trends relating to natural languages processing and soft computing. The first issue on natural language will be addressed by a lovely professor, Prof. Rachel Edita O. Roxas, Phd. who will present "Human Language Technology: the Philippine Context". We are aware that the main problem in language processing is ambiguity from syntax level to semantic level. In my personal opinion, we are also living in between inherently ambiguous and completely reasonable world. Einstein once said that "As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain, they do not refer to reality." Prof. Rolly Intan, Dr.Eng will address this issue on soft computing with his presentation entitled "Mining Multidimensional Fuzzy Association Rules from a Normalized Relational Database".

I hope during your stay in this beautiful island you will enjoy and benefit both, the fresh sea breeze and harmonious sound from sea waves, as well as the intellectual and scientific discussions. I hope your contributions and participation of the discussion will lead to the benefit of the advancements on Soft Computing, Intelligent Systems and Information Technology.

Soli Deo Gloria,
Iwan Njoto Sandjaja
Conference Chair
ICSIIT 2010 Bali Indonesia
The first ICSIIT 2010 is organized by Informatics Engineering Department, in cooperation with the Center of Soft Computing and Intelligent System Studies, Petra Christian University, Indonesia.

Conference Chair:

- Iwan Njoto Sandjaja
- Adi Wibowo

Organizing Committee:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agustinus Noertjahyana</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Alexander Setiawan</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Andreas Handojo</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Djoni Haryadi Setiabudi</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Gregorius Satia Budhi</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Ibnu Gunawan</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Justinus Andjarwirawan</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Kartika Gunadi</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Leo Willyanto Santoso</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Liliana</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Lily Puspa Dewi</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Rudy Adipranata</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Silvia Rostianingsih</td>
<td>Petra Christian University, Indonesia</td>
</tr>
<tr>
<td>Yulia</td>
<td>Petra Christian University, Indonesia</td>
</tr>
</tbody>
</table>
Program Committee

Grant Pogosyan (Japan)
Jan Chan (Australia)
Kevin Wong (Australia)
Kwan Pyo, Ko (Korea)
Masao Mukaidono (Japan)
Moeljono Widjaja (Indonesia)
M. Rahmat Widyanto (Indonesia)
Nelson Marcos (Philippines)
Masashi Emoto (Japan)
Noboru Takagi (Japan)
Rolly Intan (Indonesia)
Budi Bambang (Indonesia)
Rudy Setiono (Singapore)
Shan Ling, Pan (Singapore)
Son Kuswadi (Indonesia)
Tae Soo, Yun (Korea)
Xiuying Wang (Australia)
Yung Chen, Hung (Taiwan)
Zuwairie Ibrahim (Malaysia)
Supply Chain Improvement with Design Structure Matrix Method and Clustering Analysis (A Case Study)

Tanti Octavia
Department of Industrial Engineering
Faculty of Industrial Technology
Petra Christian University
Siwalankerto 121-131
Surabaya 60236, Indonesia
+62-31-2983433
tanti@petra.ac.id

Siana Halim
Department of Industrial Engineering
Faculty of Industrial Technology
Petra Christian University
Siwalankerto 121-131
Surabaya 60236, Indonesia
+62-31-2983433
halim@petra.ac.id

Stefanus Anugraha Lukmanto
Department of Industrial Engineering
Faculty of Industrial Technology
Petra Christian University
Siwalankerto 121-131
Surabaya 60236, Indonesia
+62-31-2983433

Harvey Sutopo
Department of Industrial Engineering
Faculty of Industrial Technology
Petra Christian University
Siwalankerto 121-131
Surabaya 60236, Indonesia
+62-31-2983433

ABSTRACT

Many strategic businesses attempt to achieve coordinating operations of company across departments using information and communication flow for their supply chain network. One of customer goods companies in Surabaya attempts to improved their flow of information and communication using Design Structure Matrix (DSM). DSM is a method that could provide an alternative system grouping work activities. The activities of each department and intra department. The analysis technique used is the clustering analysis, which consists of hierarchical methods. The results show that for inter-department single linkage hierarchical clustering method with a number of groups of three is the best number of groups. For intra-planning department and intra-RMS department, the best number of groups is 14 and 8, respectively, using ward linkage method.

Keywords

supply chain, the design structure matrix, clustering analysis.

1. INTRODUCTION

Nowadays, competitive pressures and changes in the economic conditions have forced companies to continuously improve their competitive advantage by creating new strategic business. Many strategic businesses attempt to achieve coordinating operations of company across departments using information and communication flow for their supply chain network. Simchi (2005) stated that coordination of the supply chain has become strategically important as new forms of organization, such as virtual enterprises, global manufacturing and logistics networks, and other company-to-company alliances, evolve.

The customer goods industries are not an exception for developing and creating the new strategies. They usually have a long supply chain and a complex network of supply chain. The multifaceted of supply chain network may occur the ineffective of information flow, inefficient the use of information and communication. Ogulin (2003) suggests three distinctive waves of supply chain management in the new economy: operational excellence, supply chain integration and collaboration, and virtual supply chains. Operation excellence refers to the degree of sharing within company, workflow activities across department within the company in order to achieve efficiencies from increased order accuracy and timely shipments. Workflow activities and the interactions between elements can be depicted in a design structure matrix (DSM). A DSM can achieve an alternative system to perceive how strong the relationship between the elements effectively. After developing a DSM, the closeness relationship of activities in a DSM could be clustered using the use of information and communication. The clustering analysis is useful to classify the groups with the similar characteristics (Barolomei, 2007).

This research aims to propose an alternative system in a customer goods industry by applying DSM and clustering analysis.

2. LITERATURE REVIEW

Design structure matrix is a matrix which aims to show all the interactions between elements (Chen & Huang, 2007). DSM has the advantage that they can improve the structure of the system by using matrix-based analysis techniques. Figure 1 presents the structure of the DSM. The input on a cell is the relationships between two elements.
Type of interaction in DSM can be divided into two, namely numerical binary DSM (Chen & Huang, 2007). The first type is the type of interactions that binary interactions, which interaction is only worth or not there is interaction. This type of interactions is able to show interaction between each element, but still have shortcomings. This type cannot describe how strong the interaction between one and another element. The second type of interaction in the DSM is the numerical which the value is worth its interaction with the figures.

2.1 Clustering Analysis

Clustering analysis is a method of classifying an object into one or more than one group, so that each object is located in one group will have the same value of interaction. Clustering analysis aims to form groups with similar characteristics. Two kinds of methods in clustering analysis are hierarchical methods and non-hierarchical method (Sharma, 2006). Hierarchical method is a method that takes into account the distance between the two groups. Five-way hierarchical clustering methods are in the following:

- Single linkage clustering
- Complete linkage clustering
- Centroid linkage clustering
- Average linkage clustering
- Ward linkage clustering

In order to calculate the similarity value, the squared Euclidean distance can be applied. The squared Euclidean can be calculated in the formula 1.

\[D_{ij} = \sum_{k=1}^{p} (X_{ik} - X_{jk})^2 \]

where:

- \(D_{ij} \): distance between elements \(i \) and \(j \)
- \(X \): the different data elements on
- \(i \): an element which was in line
- \(j \): is the element in column
- \(k \): a number of variables of each of the elements

3. RESEARCH METHODOLOGY

This research was designed and conducted using primary and secondary data. Primary data is applied by doing interview to the manager and his subordinates in the planning department and raw material store. The interviews used to obtain the workflow for each department. In addition, it also gives the information for determining the elements that are based on the activity manager and the subordinates. Secondary data used there are two that work instructions and past data on program systems and applications products in data processing in order to add elements that are not derived from the interviews and obtained the data flow.

Data collection is designed in a Design Structure Matrix (DSM) and clustered using hierarchical methods and non-hierarchical method. Hierarchy has five different methods of linkage which often used for complete linkage, single linkage, average linkage, wards, and centroid. These five methods will be selected based on the highest similarity value.

Clustering analysis aims to classify the activities contained in the DSM with a number of specific groups. Grouping is done based on distance data, which will make the flow of information between departments optimally. The method used to determine which group has a high value and the closeness low in the analysis of the distance is squared Euclidean distance. Finally, selection the best method of clustering analysis is done by considering the current conditions.

4. ANALYSIS

After collecting data, design structure matrix (DSM) is built. The activities of two departments can be classified into 129 elements. The interaction values in each cell are obtained from number of transactions in raw material store department and number of daily activities in planning department. The example of DSM is shown in figure 2.

\[
\begin{array}{cccccc}
\text{Element} & \text{T-1} & \text{T-2} & \text{T-3} & \text{T-4} & \text{WOP-1} & \text{WOP-2} \\
\text{T-1} & - & 756 & 0 & 0 & 0 & 0 \\
\text{T-2} & 4190 & - & 112 & 0 & 0 & 0 \\
\text{T-3} & 0 & 112 & - & 0 & 0 & 0 \\
\text{T-4} & 3895 & 756 & 108 & - & 105 & 0 \\
\text{WOP-1} & 0 & 0 & 0 & 0 & - & 0 \\
\text{WOP-2} & 0 & 0 & 0 & 0 & - & - \\
\end{array}
\]

Figure 2. The example of DSM

Improving supply chain in this research is done by classifying the activities that have the same number of interactions (in one group). A group is expected to enlarge the company performance since they can communicate and inform the information effectively. Clustering analysis is accomplished using Minitab software. Clustering methods used there are two, namely, hierarchical methods and non-hierarchical method. Hierarchy has five different methods of linkage which often used for complete linkage, single
linkage, average linkage, wards, and centroid. These five methods will be selected based on the highest similarity value. The similarity level of each method and each clustering can be seen in table 1.

The result shows that single linkage method gives the highest similarity value. After calculating single linkage, the best clustering is determined through a combination of the computation RMSSTD with the company’s current condition.

Similarity Hierarchical method is an appropriate method because all elements have relationships with one another. Value of RMSSTD for each number of groups can be seen in table 2. The result shows that 10 groups give the smallest RMSSTD. But, this classification does not fit with the company’s condition and consideration. After discussing and interviewing the company’s expert about the classification each number of groups, we can get the result that the best number of cluster is three groups.

In this research, clustering analysis is also applied to group the activities in Planning Department and Raw Material Store Department. The number of the selected group in Planning Department is 14. The result shows the single linkage clustering method is the highest in term of similarity value. Unfortunately, it is not suitable for company’s current condition. Wards linkage clustering method gives an appropriate number of groups in term of company’s current condition (figure 3). Group activity was initially assessed based on the type of product, whereas proposed group is classified based on the closeness activities of the group.

Table 1. Similarity Level using Hierarchical Methods

<table>
<thead>
<tr>
<th>Clustering</th>
<th>Single linkage</th>
<th>Centroid</th>
<th>Complete</th>
<th>Average</th>
<th>Ward</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80.673</td>
<td>58.28</td>
<td>0</td>
<td>40.067</td>
<td>-285.258</td>
</tr>
<tr>
<td>2</td>
<td>86.798</td>
<td>76.163</td>
<td>52.809</td>
<td>73.596</td>
<td>27.457</td>
</tr>
<tr>
<td>3</td>
<td>86.798</td>
<td>79.829</td>
<td>58.985</td>
<td>78.388</td>
<td>35.904</td>
</tr>
<tr>
<td>4</td>
<td>86.798</td>
<td>83.247</td>
<td>60.394</td>
<td>79.178</td>
<td>51.162</td>
</tr>
<tr>
<td>5</td>
<td>86.798</td>
<td>83.497</td>
<td>62.63</td>
<td>82.346</td>
<td>60.114</td>
</tr>
<tr>
<td>6</td>
<td>86.798</td>
<td>86.798</td>
<td>73.538</td>
<td>86.546</td>
<td>60.394</td>
</tr>
<tr>
<td>7</td>
<td>90.827</td>
<td>86.798</td>
<td>81.513</td>
<td>86.798</td>
<td>77.566</td>
</tr>
<tr>
<td>8</td>
<td>90.899</td>
<td>86.852</td>
<td>86.798</td>
<td>86.798</td>
<td>82.105</td>
</tr>
<tr>
<td>9</td>
<td>92.919</td>
<td>88.221</td>
<td>86.798</td>
<td>86.798</td>
<td>86.646</td>
</tr>
<tr>
<td>10</td>
<td>93.166</td>
<td>90.911</td>
<td>86.798</td>
<td>90.337</td>
<td>86.798</td>
</tr>
</tbody>
</table>

Table 2 Value of RMSSTD from 1 to 10 groups

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>RMSSTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>451.1007</td>
</tr>
<tr>
<td>2</td>
<td>440.1591</td>
</tr>
<tr>
<td>3</td>
<td>394.4475</td>
</tr>
<tr>
<td>4</td>
<td>350.8927</td>
</tr>
<tr>
<td>5</td>
<td>310.8812</td>
</tr>
<tr>
<td>6</td>
<td>276.2852</td>
</tr>
</tbody>
</table>

For Raw Material Store Department, the single linkage clustering method gives the highest similarity value. Indeed, it is not appropriate with the company’s condition. Therefore, wards linkage clustering with number of groups is eight can be applied in term of company’s condition. Currently, the group activity is classified based on the early function of each part (receiving, storing, shipping, etc.). The proposed group attempts to combine the administration activities on any part of the RMS.

Table 2 Value of RMSSTD from 1 to 10 groups

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>RMSSTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>250.2835</td>
</tr>
<tr>
<td>8</td>
<td>232.0255</td>
</tr>
<tr>
<td>9</td>
<td>216.6936</td>
</tr>
<tr>
<td>10</td>
<td>208.5315</td>
</tr>
</tbody>
</table>

5. CONCLUSION

The result of clustering analysis interdepartmental planning and RMS differs from the grouping prior to the DSM. Total group originally owned by the company prior to using the DSM is the eight groups, after performing clustering analysis with the DSM has been reduced to three groups. The closeness relationship between the planning department and department RMS makes both departments need to be placed together or into one large department.

Clustering analysis of intra-departmental planning has brought changes in the group activities held by the department. The first group owned by the department is planning three groups, after performing clustering analysis of these groups has increased to fourteen groups.

Analysis of intra-departmental grouping of RMS has brought changes in the group activities held by the department. Total group originally owned by the department RMS are five groups, after analyzing the grouping of these groups has been increased to eight groups.
6. REFERENCES