Model Optimisasi untuk Penjadwalan Ulang Perjalanan Kereta Api

Suprayogi1*, Hery Ramdhani2

Abstract: This paper discusses the train rescheduling problem due to disturbances. The train rescheduling problem discussed in this paper is taken from a real train network of DAOP II Bandung in Jawa, Indonesia. The train network consists of block sections including unidirectional double-tracks and bidirectional single-tracks. There are some connections among trains because they use same rolling stocks. A mixed integer linear programming model is formulated to represent the problem. Main decision variables of the model are new departure and arrival times due to the disturbance. The objective function to be minimized is the total weighted delay. The model is examined using a hypothetical instance for four disturbance cases. Numerical experiments show that the model can represent the problem under study.

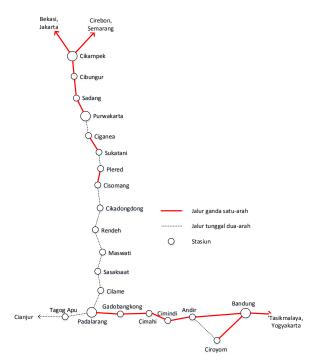
Keywords: Train rescheduling problem, disturbance, time-space diagram, mixed integer linear programming model.

Pendahuluan

Rencana perjalanan kereta api secara umum digambarkan dalam suatu Grafik Perjalanan Kereta Api (Gapeka). Gapeka pada dasarnya merupakan diagram waktu-ruang (time-space diagram) yang memuat informasi tentang jadwal baku dari perjalanan seperti saat keberangkatan, saat kedatangan, waktu tempuh dan waktu berhenti komersial. Dalam pelaksanaannya, adakalanya terjadi penyimpangan pada jadwal baku akibat adanya beberapa gangguan (disturbance). Gangguan-ganguan yang terjadi dapat mencakup adanya gangguan pada infrastruktur (jalur rel dan persinyalan) dan sarana (lokomotif dan kereta/gerbong). Adanya perubahan kondisi operasional seperti pengoperasi kereta api luar biasa (KLB) juga dapat menyebabkan adanya penyimpangan pada jadwal baku. Gangguan lain yang dapat terjadi adalah gangguan eksternal seperti kejadian longsor, banjir dan kecelakaan. Timbulnya gangguan ini menyebabkan perlu dilakukan penjadwalan ulang (rescheduling) dari kereta api.

Masalah penjadwalan ulang kereta api yang dibahas dalam makalah ini diambil dari sistem nyata jaringan kereta api DAOP II Bandung di Jawa, Indonesia pada tahun 2010 seperti ditunjukkan pada Gambar 1. Jalur (track) dari jaringan kereta api ini terdiri dari petak-petak yang memiliki jalur tunggal dua-arah (bidirectional single track) dan jalur ganda satu-arah (unidirectional double track). Dalam jaringan ini, terdapat 21 stasiun. Lintasan utama dari jaringan ini adalah antara Bandung

Makalah ini membahas masalah penjadwalan ulang untuk kereta api akibat adanya gangguan. Masalah penjadwalan ulang kereta api telah banyak dibahas dalam literatur. Cacchiani et al. [1] memberikan suatu telaahan terhadap model-model dan algoritmaalgoritma pemulihan untuk manajemen gangguan kereta api. Pembahasan masalah penjadwalan ulang kereta api dalam berbagai literatur secara umum dibedakan atas dua hal, yaitu karakteristik masalah dan metode pemecahan. Karakteristik masalah dicirikan antara lain oleh kondisi petak dalam jaringan kereta api dan fungsi tujuan yang dilibatkan. Beberapa literatur yang membahas masalah penjadwalan ulang kereta api yang ditinjau dari kondisi petak dalam jaringan kereta api dan fungsi tujuan yang dilibatkan ditunjukkan pada Tabel 1.


Email: heryramdhani@gmail.com

dan Cikampek yang menghubungkan Bandung dan Jakarta. Lintasan ini juga merupakan penghubung antara Bandung dan Cianjur. Beberapa kereta api dari Jakarta menuju daerah Tasikmalaya juga melewati lintasan ini. Setiap harinya ada 74 kereta api yang melintasi jaringan ini. Kereta api tersebut terdiri dari kereta api cepat, kereta api antar kota, kereta api lokal, kereta api barang dan lokomotif dinas. Pada lintasan ini tidak terdapat hubungan kereta api feeder. Hanya saja, beberapa perjalanan kereta api saling berhubungan karena menggunakan rangkaian kereta api yang sama. Dalam jaringan ini, terdapat beberapa kereta api dengan berbagai kelas dan jenis kereta api. Kereta api cepat terdiri dari kelas eksekutif argo, eksekutif, bisnis, dan ekonomi. Sementara itu, kereta api lokal terdiri dari kereta api lokal ekonomi dan patas. Sistem persinyalan yang digunakan adalah sistem persinyalan stasiun. Sistem persinyalan ini merupakan sistem persinyalan konvensional dengan sinyal dikendalikan oleh stasiun.

¹ Kelompok Keahlian Sistem Industri dan Tekno Ekonomi, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung, Indonesia. Email: yogi@mail.ti.itb.ac.id

² Program Studi Sarjana Teknik Industri, Fakultas Teknologi Industri, Institut Teknologi Bandung, Bandung, Indonesia.

^{*} Corresponding author

Gambar 1. Jaringan jalur kereta api bagian barat DAOP II Bandung.

Tabel 1. Beberapa literatur yang membahas masalah penjadwalan ulang kereta api.

Literatur	Petak dalam	Fungsi tujuan yang			
Literatur	jaringan	diminimumkan			
Törnquist dan	Jalur tunggal	Total keterlambatan			
Persson [2]					
Törnquist dan	Jalur	Total keterlambatan			
Persson [3]	majemuk				
Corman et al. [4]	Jalur ganda	Total keterlambatan			
Albrecht et al. [5]	Jalur tunggal	Total keterlambatan kereta dan			
		pemeliharaan			
Narayanaswami dan	Jalur tunggal	Total keterlambatan			
Rangaraj [6]					
Dündar dan Şahin	Jalur tunggal	Total keterlambatan			
[7]					
Sato <i>et al</i> . [8]	Jalur ganda	Total keterlambatan,			
		total ketidak-			
		nyamanan			
		penumpang			
Meng dan Jia [9]	Jalur tunggal	Total keterlambatan,			
		stabilitas jadwal			
Meng dan Zhou [10]	Jalur	Total waktu			
	majemuk	penyelesaian			
Pellegrini <i>et al</i> . [11]	Jalur tunggal	Maksimum			
		keterlambatan, total			
		keterlambatan			
		tertimbang			
Zhan <i>et al</i> . [12]	Jalur ganda	Total kereta yang			
		dibatalkan, total			
		keterlambatan			

Masalah penjadwalan ulang kereta api dalam makalah ini dirumuskan dalam suatu model optimisasi yang berupa model pemrograman linier bilangan bulat tercampur (*mixed integer linear programming model*). Variabel-variabel keputusan utama

dalam model adalah saat-saat keberangkatan dan kedatangan yang baru akibat adanya gangguan. Fungsi tujuan yang diminimumkan adalah total keterlambatan tertimbang (total weighted delay). Dalam makalah ini, model dari Törnquist dan Persson [2] digunakan sebagai acuan. Modifikasi dilakukan disesuaikan masalah yang dibahas.

Masalah dan model optimisasi

Definisi masalah

Dalam suatu jaringan kereta api, terdapat himpunan dari kereta api (train) T dan himpunan dari petak (block section) B. Petak merupakan bagian dari jalur rel (rail track) yang dikendalikan oleh suatu peralatan sinyal yang hanya dapat digunakan oleh sebuah kereta api pada suatu waktu tertentu. Pada sistem yang diamati, petak ganda menerapkan aturan satu-arah dengan jalur yang digunakan adalah sebelah kanan arah kereta. Sementara itu, petak tunggal menerapkan aturan dua-arah. Karena sistem yang dikaji adalah sistem persinyalan stasiun, maka segmen antara dua stasiun direpresentasikan dengan suatu petak. Terdapat asumsi bahwa: (1) jumlah jalur belok di setiap stasiun adalah tak terbatas, (2) panjang jalur belok di setiap stasiun adalah mencukupi untuk setiap rangkaian kereta api, dan (3) segmen antara dua stasiun dengan jalur ganda satu-arah direpresentasikan menjadi dua petak dengan arah yang saling berlawanan.

Terdapat himpunan dari seluruh perjalanan (event) E. Suatu perjalanan didefinisikan sebagai kejadian suatu kereta api yang menempati suatu petak tertentu. Himpunan perjalanan yang dilakukan oleh kereta api $i \in T$ dinyatakan dengan K_i . Sementara itu, himpunan perjalanan yang dilakukan pada petak $j \in B$ dinyatakan sebagai L_j .

Untuk setiap petak $j \in B$, terdapat waktu separasi petak yang dinyatakan dengan hw_i. Waktu separasi petak ini menggambarkan waktu untuk melepaskan *interlocking*. Untuk tiap perjalanan $k \in K$ yang menggunakan kereta api dan petak tertentu, berdasarkan Grafik Perjalanan Kereta Api (Gapeka), terdapat informasi jadwal baku dari perjalanan yang mencakup saat keberangkatan baku at_k , saat kedatangan baku dt_k , waktu tempuh baku tt_k dan waktu berhenti komersial dw_k . Saat keberangkatan dan saat kedatangan masing-masing menunjukkan saat mulai dan selesai dari perjalanan yang menggunakan kereta api dan petak tertentu. Waktu tempuh menunjukkan waktu yang dibutuhkan perjalanan yang menggunakan kereta dan petak tertentu. Sementara itu, waktu berhenti komersial

merupakan waktu yang dibutuhkan oleh suatu perjalanan yang menggunakan kereta api dan petak tertentu untuk berhenti di stasiun baik untuk menaikkan dan menurunkan serta untuk pemeriksaan terjadwal.

Himpunan perjalanan yang memiliki hubungan perjalanan dinyatakan dengan H. Di sini, hubungan perjalanan dinyatakan sebagai hubungan perjalanan induk dan perjalanan terusan. Suatu perjalanan yang menjadi terusan hanya dapat dimulai setelah perjalanan induknya telah selesai. Dalam sistem yang dibahas, hubungan perjalanan ini menggambarkan hubungan perjalanan yang menggunakan rangkaian kereta api yang sama. Indeks perjalananperjalanan induk dan terusan dari hubungan $h \in H$ masing-masing dinyatakan sebagai H_l^1 dan H_l^2 dengan $H^1_l \in K$ dan $H^2_l \in K.$ Waktu separasi pada perjalanan-perjalanan yang memiliki hubungan perjalanan $h \in H$ dinyatakan g_h . Waktu separasi ini menunjukkan waktu yang dibutuhkan untuk penyiapan rangkaian seperti pembersihan.

Untuk setiap kereta api $i \in T$, bobot penalti keterlambatan per menit untuk saat kedatangan yang baru terhadap saat kedatangan baku pada perjalanan terakhir dinyatakan dengan c_i^1 . Bobot penalti keterlambatan per menit untuk panjang waktu keterlambatan yang melebihi panjang waktu toleransi pada perjalanan terakhir dari kereta api $i \in T$ dinyatakan dengan c_i^2 . Di sini, c_i^1 dan c_i^2 didefinisikan sebagai bobot-bobot penalti keterlambatan primer dan sekunder.

Timbulnya gangguan menyebabkan perlu dilakukan penjadwalan ulang. Penjadwalan ulang ini terkait dengan penentuan saat-saat keberangkatan dan kedatangan yang baru dari tiap perjalanan yang meminimumkan total keterlambatan tertimbang Z yang mencakup keterlambatan primer dan sekunder untuk perjalanan terakhir dari seluruh kereta api.

Notasi-notasi

Notasi-notasi yang digunakan dalam model optimisasi adalah berikut ini.

Himpunan-himpunan:

- T himpunan kereta api
- B himpunan petak
- E himpunan perjalanan
- H himpunan hubungan perjalanan
- K_i himpunan perjalanan yang dilakukan oleh kereta api $i \in T$
- L_j himpunan perjalanan yang dilakukan pada petak $j \in B$

Parameter-parameter:

- c_i^1 bobot penalti keterlambatan per menit untuk saat kedatangan yang baru terhadap saat keberangkatan baku (bobot penalti keterlambatan primer) untuk perjalanan terakhir dari kereta api $i \in T$
- c_i^2 bobot penalti keterlambatan per menit untuk lama waktu keterlambatan yang melebihi waktu toleransi (bobot penalti keterlambatan sekunder) untuk perjalanan terakhir dari kereta api $i \in T$
- w_i panjang waktu toleransi keterlambatan pada perjalanan terakhir dari kereta api $i \in T$
- FLE_i indeks perjalanan pertama dari kereta api $i \in T$
- TLE_i indeks perjalanan terakhir dari kereta api $i \in T$
- hw_i waktu separasi petak $j \in B$
- g_h waktu separasi antar perjalanan yang berhubungan pada hubungan $h \in H$
- H_l^1 indeks perjalanan induk pada hubungan $h \in H$
- H_l^2 indeks perjalanan terusan pada hubungan $h \in H$
- at_k saat keberangkatan baku perjalanan $k \in E$
- dt_k saat kedatangan baku perjalanan $k \in E$
- tt_k waktu tempuh dari perjalanan $k \in E$
- dw_k waktu berhenti komersial dari perjalanan $k \in E$
- M bilangan positif yang sangat besar

Ukuran kinerja (fungsi tujuan):

Z total keterlambatan tertimbang

Variabel-variabel keputusan:

- a_k saat keberangkatan yang baru untuk perjalanan $k \in E$
- d_k saat kedatangan yang baru untuk perjalanan $k \in F$
- z_i panjang keterlambatan dengan saat kedatangan yang baru melebihi saat kedatangan baku pada perjalanan terakhir untuk kereta api $i \in T$
- e_i panjang keterlambatan yang melebih panjang toleransi pada perjalanan terakhir untuk kereta api $i \in T$
- $x_{kk'}$ variabel biner yang bernilai 1 jika perjalanan $k \in E$ didahului oleh perjalanan $k' \in E$ dan bernilai 0 jika sebaliknya

Rumusan Model Optimisasi

Model optimisasi untuk merepresentasikan masalah penjadwalan ulang kereta api dirumuskan dalam bentuk model pemrograman linier bilangan bulat tercampur berikut ini:

Meminimumkan

$$Z = \sum_{i \in T} (z_i c_i^1 + e_i c_i^2)$$
 (1)

dengan pembatas-pembatas:

$$\begin{aligned} &d_k \geq a_k + tt_k; \ \forall \ k \in E \\ &a_k \geq d_l + dw_l; \ \forall \ k, l \in K_i \ , k > 1, l = k-1 \\ &a_k \geq at_k; \forall \ k \in E \end{aligned} \tag{3}$$

$$a_{H_h^2} - d_{H_h^1} \ge g_h; \forall h \in H \tag{5}$$

$$z_i \ge d_i - dt_{TLE_i}; \forall i \in T$$
 (6)

$$e_i \ge z_i - w_i; \forall i \in T \tag{7}$$

$$a_k - d_{k'} \ge h w_j \cdot x_{kk'} - M \cdot (1 - x_{kk'}); \forall \\ \in B, \forall k, k' \in L_j, k \ne k'$$
(8)

$$x_{kk'} + x_{k'k} = 1; \forall j \in B, \forall k, k' \in L_j, k \neq k'$$
 (9)

$$x_{kk'} \in \{0,1\}; \forall j \in B, \forall k, k' \in L_i, k \neq k'$$
 (10)

$$z_i, e_i \ge 0; \forall i \in T \tag{11}$$

$$d_k, a_k \ge 0; \forall \ k \in E \tag{12}$$

Persamaan (1) menunjukkan fungsi tujuan yang diminimumkan, yaitu total keterlambatan tertimbang yang mencakup keterlambatan primer dan sekunder pada perjalanan terakhir dari seluruh kereta. Tiap pertidaksamaan (2) menjamin bahwa, untuk setiap perjalanan $k \in K$, saat kedatangan yang baru adalah lebih besar atau sama dengan saat keberangkatan yang baru ditambah dengan waktu tempuh. Tiap pertidaksamaan (3) menjamin bahwa, untuk perjalanan $k \in K$ yang berasosiasi dengan kereta api tertentu, saat keberangkatan yang baru dari perjalanan berikutnya adalah lebih besar atau sama dengan saat kedatangan yang baru dari perjalanan sebelumnya ditambah dengan waktu berhenti komersialnya. Untuk tiap perjalanan, saat keberangkatan yang baru adalah lebih besar atau sama dengan saat keberangkatan baku dijamin dengan pertidaksamaan (4). Pembatas (5) menunjukkan pembatas hubungan perjalanan-perjalanan induk dan terusan. Untuk tiap hubungan perjalanan $h \in H$, saat keberangkatan yang baru dari perjalanan terusan adalah lebih besar atau sama dengan saat kedatangan yang baru dari perjalanan induk ditambah dengan waktu separasi antar perjalanan. Tiap pertidaksamaan (6) mendefinisikan keterlambatan primer untuk tiap kereta api $i \in T$. Untuk tiap kereta $i \in T$, pertidaksamaan ini menyatakan bahwa panjang keterlambatan primer merupakan selisih antara saat kedatangan yang baru dengan saat kedatangan baku dari perjalanan terakhir. Tiap pertidaksamaan (7) menunjukkan pembatas yang mendefinisikan keterlambatan sekunder untuk tiap kereta api $i \in T$. Untuk tiap kereta $i \in T$, pembatas ini menyatakan bahwa panjang keterlambatan sekunder merupakan selisih antara panjang keterlambatan primer dengan panjang toleransi keterlambatan. Aturan penggunaan tiap petak direpresentasikan pada pembataspembatas (8) dan (9). Pembatas (8) menentukan apakah suatu perjalanan yang menggunakan suatu petak mendahului atau didahului oleh perjalanan yang lain. Berdasarkan pembatas (9), jika $x_{kk'} = 1$,

maka $x_{k'k} = 0$. Akibatnya, pembatas (8) menjadi $a_k - d_{k'} \ge hw_j$ dan $a_{k'} - d_k \ge -M$. Pembatas $a_k - d_{k'} \ge hw_j$ menjadi pembatas yang aktif. Ini berarti bahwa perjalanan perjalanan $k \in L_j$ didahului oleh perjalanan perjalanan $k' \in L_j$. Saat keberangkatan yang baru dari perjalanan $k \in L_j$ adalah lebih besar atau sama dengan saat kedatangan yang baru dari perjalanan $k' \in L_j$ ditambah dengan waktu separasi petak. Pembatas (10) merupakan pembatas bilangan biner dari variabel-keputusan. Pembatas-pembatas (11) dan (12) merupakan pembatas nilai tak negatif dari variabel-variabel keputusan.

Percobaan Numerik

Contoh Hipotetik

Contoh hipotetik memiliki 6 kereta api yang beroperasi pada jaringan kereta api yang terdiri dari 6 stasiun dengan jaringan kereta api ditunjukkan pada Gambar 2. Lintasan utama dari jaringan adalah lintasan antara stasiun-stasiun 1 dan 5. Petak antara stasiun 1 dan 2 dan antara stasiun 2 dan 3 adalah petak dengan jalur ganda satu-arah, sementara petak yang lain adalah petak dengan jalur tunggal dua-arah. Tabel-tabel 2 s/d 5 masing-masing menunjukkan data kereta, petak, perjalanan dan hubungan perjalanan dari contoh hipotetik. Gambar 3 menunjukkan diagram waktu-ruang (Gapeka) untuk jadwal baku.

Kasus-kasus Gangguan dan Hasil Penjadwalan Ulang

Kasus-kasus gangguan yang diuji coba ditunjukkan pada Tabel 6. Kasus 0 merupakan kasus pada kondisi normal (tanpa gangguan). Untuk setiap kasus, model dipecahkan menggunakan piranti lunak komersial LINGO 11. Tabel 7 menunjukkan hasil pemecahan model untuk setiap kasus. Berdasarkan Tabel 6, terlihat bahwa jadwal yang baru untuk kasus 0 adalah sesuai dengan jadwal baku yang ditunjukkan pada Tabel 4. Diagram waktu-ruang (Gapeka) untuk kasus-kasus gangguan ditunjukkan pada Gambar 4.

Tabel 2. Data kereta api untuk contoh hipotetik

i	c_i^1	c_i^2	w_i	TFE_i	TLE_i	Nama kereta api
1	2	5	5	1	1	Ekspres 1
2	2	5	5	5	2	Ekspres 2
3	1	2	5	9	3	Lokal 1
4	1	2	5	13	4	Lokal 2
5	1	2	5	17	5	Lokal 3
6	1	2	5	20	6	Lokal 4

Tabel 3. Data petak untuk contoh hipotetik

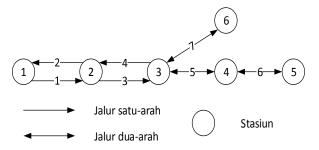
i	hw_i	Stasiun	Stasiun	Nama	Nama stasiun
	ittij	kiri	kanan	stasiun kiri	kanan
1	2	1	2	Station 1	Station 2
2	2	2	1	Station 2	Station 1
3	2	2	3	Station 2	Station 3
4	2	3	2	Station 3	Station 2
5	2	3	4	Station 3	Station 4
6	2	4	5	Station 4	Station 5
7	2	3	6	Station 3	Station 6

Tabel 4. Data perjalanan untuk contoh hipotetik

$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>k</u>	Tr_k	Pt_k	tt_k	at_k	dt_k	dw_k
3 1 5 15 190 205 0 4 1 6 15 205 220 0 5 2 6 15 25 40 0 6 2 5 15 40 55 0 7 2 4 15 55 70 0 8 2 2 15 70 85 0 9 3 1 30 25 55 5 10 3 3 30 60 90 5 11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5	1	1			160	175	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1	3	15	175	190	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	5	15	190	205	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1	6	15	205	220	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2	6	15	25	40	0
8 2 2 15 70 85 0 9 3 1 30 25 55 5 10 3 3 30 60 90 5 11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	6	2	5	15	40	55	0
9 3 1 30 25 55 5 10 3 3 30 60 90 5 11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	7	2	4	15	55	70	0
10 3 3 30 60 90 5 11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	8	2	2	15	70	85	0
10 3 3 30 60 90 5 11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	9	3	1	30	25	55	5
11 3 5 30 95 125 5 12 3 6 30 130 160 5 13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	10	3	3	30	60	90	
13 4 6 30 250 280 5 14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	11	3	5	30	95	125	5
14 4 5 30 285 315 5 15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	12	3	6	30	130	160	5
15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	13	4	6	30	250	280	5
15 4 4 30 320 350 5 16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	14	4	5	30	285	315	5
16 4 2 30 355 385 5 17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	15	4	4	30	320	350	
17 5 1 30 75 105 5 18 5 3 30 110 140 5 19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	16	4	2	30	355	385	
19 5 7 30 145 175 5 20 6 7 30 235 265 5 21 6 4 30 270 300 5	17	5	1	30	75	105	
20 6 7 30 235 265 5 21 6 4 30 270 300 5	18	5	3	30	110	140	5
20 6 7 30 235 265 5 21 6 4 30 270 300 5	19	5	7	30	145	175	
21 6 4 30 270 300 5	20	6	7	30	235	265	
	21	6	4	30	270	300	
22 0 2 30 303 33	22	6	2	30	305	335	5

 Tr_k : indeks kereta api untuk perjalanan k

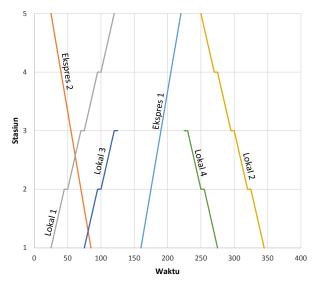
 Pt_k : indeks petak untuk perjalanan k

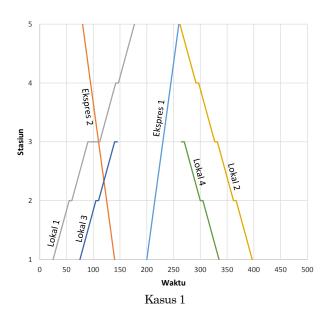

Tabel 5. Data hubungan perjalanan

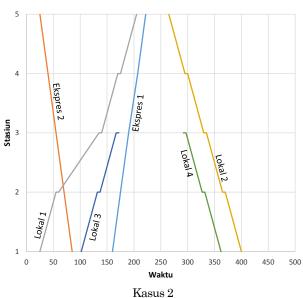
h	H_h^1	H_h^2	g_h
1	8	1	60
2	12	13	60
3	19	20	60

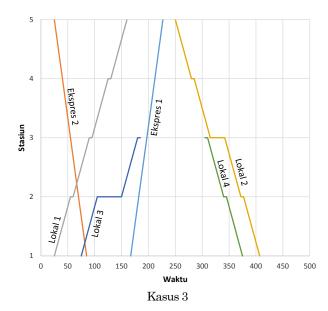
Tabel 6. Kasus-kasus gangguan

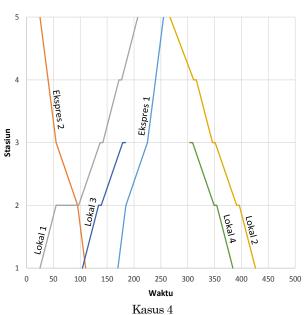
Kasus	Gangguan	


- 0 Kondisi normal (tanpa gangguan)
- 1 Keberangkatan Ekspres 2 di stasiun 1 terlambat selama 55 menit dari jadwal
- 2 Lokal 1 mengalami gangguan antara stasiun 2 dan 3 sehinga waktu temput bertambah menjadi 75 menit
- 3 Lokal 3 mengalami gangguan di stasiun 2 sehingga waktu berhentinya menjadi 45 menit
- 4 Petak antara stasiun 2 dan 3 menjadi jalur tunggal dua-arah karena salah satu jalur sedang dalam perbaikan. Waktu tempuh untuk perjalanan pada petak ini menjadi dua kali lipat.


Gambar 2. Jaringan jalur kereta api dari contoh hipotetik


Tabel 7. Hasil pemecahan model untuk contoh hipotetik


Indeks	Indeks	Kasu	s 0	Kasu	s 1	Kasu	s 2	Kasu	s 3	Kasu	s 4
perjalanan <i>k</i>	kereta api i	a_k	d_k								
1	1	160	175	200	215	160	175	167	182	170	185
2	1	175	190	215	230	175	190	182	197	185	225
3	1	190	205	230	245	190	207	197	212	225	240
4	1	205	220	245	260	207	222	212	227	240	255
5	2	25	40	80	95	25	40	25	40	25	40
6	2	40	55	95	110	40	55	40	55	40	55
7	2	55	70	110	125	55	70	55	70	55	95
8	2	70	85	125	140	70	85	70	85	95	110
9	3	25	55	25	55	25	55	25	55	25	55
10	3	60	90	60	90	60	135	60	90	97	137
11	3	95	125	112	142	140	170	95	125	142	172
12	3	130	160	147	177	175	205	130	160	177	207
13	4	250	280	262	292	265	295	250	280	267	311
14	4	285	315	297	327	300	330	285	315	316	346
15	4	320	350	332	362	335	365	342	372	351	391
16	4	355	385	367	397	370	400	377	407	396	426
17	5	75	105	75	105	102	132	75	105	104	134
18	5	110	140	110	140	137	167	150	180	139	179
19	5	145	175	145	175	172	202	185	215	184	214
20	6	235	265	235	265	262	292	275	305	274	304
21	6	270	300	270	300	297	327	310	340	309	349
22	6	305	335	305	335	332	362	345	375	354	384
Nilai fung	gsi tujuan	0		682	2	306	3	300)	858	3



Gambar 3. Diagram waktu-ruang untuk jadwal baku

Gambar 3. Diagram waktu-ruang pada lintasan utama untuk kasus-kasus gangguan

Simpulan

Makalah ini membahas masalah penjadwalan ulang kereta api akibat adanya gangguan. Masalah yang dibahas diambil dari kasus nyata pada jaringan kereta api di Pulau Jawa DAOP II Bandung. Model optimisasi berbentuk model pemrograman linier bilangan bulat tercampur telah dirumuskan untuk mepresentasikan masalah tersebut. Model telah diimplementasikan menggunakan contoh hipotetik dengan empat kasus gangguan. Berdasarkan percobaan, terlihat bahwa model yang dirumuskan dapat merepresentasikan situasi nyata dari jaringan kereta api yang dikaji.

Kelemahan pemecahan model optimisasi adalah dalam hal waktu komputasi yang sangat lama jika ukuran masalah (jumlah petak, jumlah kereta api, jumlah hubungan perjalanan dan jumlah perjalanan) semakin besar. Untuk itu, penelitian lanjutan dapat dilakukan dengan mengembangkan teknik pemecahan heuristik untuk mengatasi permasalahan waktu komputasi untuk memenuhi kebutuhan praktis di lapangan.

Daftar Pustaka

- Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wagenaar, J., An Overview of a Recovery Models and Algorithms for a Real-Time Railway Scheduling, *Transportation Research Part B*, 63, 2014, pp. 15-37.
- 2. Törnquist, J., and Persson, J.A., Train Traffic Deviation Handling using Tabu Search and Simulated Annealing, *Proceeding of The 38th Hawaii International Conference on System Science (HICSS'38)*, *IEEE*, *Hawaii*, 2005.
- 3. Törnquist, J., and Persson, J.A., N-Tracked Railway Traffic Re-Scheduling During Disturbance: Theoretical and Practical Implications, *Transportation Research Part B*, 41 (3), 2007, pp. 342-362.
- Corman, F., D'Ariano, A. Pacciarelli, D., and Pranzo, M., Centralized Versus Distributed Systems to Reschedule Trains in Two Dispatching Areas, *Public Transport*, 2 (3), 2010, pp. 219-247.
- Albrecht, A.R., Panton, D.M., and Lee, D.H., Rescheduling Rail Networks with Maintenance Disruption using Problem Space Search, Computers and Operations Research, 40, 2013, pp. 703-712.

- Narayanaswami, S., and Rangaraj, N., Modelling Disruptions and Resolving Conflicts Optimally in a Railway Schedule, Computers and Industrial Engineering, 64, 2013, pp. 469–481
- Dündar, S., and Şahin, I., Train Re-Scheduling with Genetic Algorithms and Artificial Neural Networks for Single-Track Railways, *Transportation Research Part C*, 27, 2013, pp. 1-15.
- 8. Sato, K., Tamura, K., and Tomii, N., A MIP-Based Timetable Rescheduling Formulation and Algorithm Minimizing Further Incovenience to Passengers, *Journal of Rail Transport Planning and Management*, 3, 2013, 38-53.
- Meng, X., and Jia, L., Train Rescheduling on Single-Track Railway Model Based on Fuzzy Comprehensive Optimization, *Journal of Infor*mation and Computational Science, 11 (5), 2014, 1597-1603.
- Meng, L., and Zhou, X., Simultaneous Train Rerouting and Rescheduling on an N-Track Network: A Model Reformulation with Network-Based Cumulative Flow Variables, Transportation Research Part B, 67, 2014, pp. 208-234.
- Pellegrini, P., Marlière, G., and Rodriguez, J., Optimal Train Routing and Scheduling for Managing Traffic Pertubations in Complex Junctions, *Transportation Research Part B*, 59, 2014, pp. 58–80.
- Zhan, S., Kroon, L.G., Veelenturf, L.P., and Wagenaar, J.C., Real-Time High-Speed Train Scheduling in Case of a Complete Blockage, *Transportation Research Part B*, 78, 2015, pp. 182–201.