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Abstract. Since the appearance of the first paper on fuzzy sets proposed by  
Zadeh in 1965, the relationship between probability and fuzziness in the represen-
tation of uncertainty has been discussed among many people. The question is 
whether probability theory itself is sufficient to deal with uncertainty. In this paper 
the relationship between probability and fuzziness is analyzed by the process of 
perception to simply understand the relationship between them. It is clear that 
probability and fuzziness work in different areas of uncertainty. Here, fuzzy event 
in the presence of probability theory provides probability of fuzzy event in which 
fuzzy event could be regarded as a generalization of crisp event. Moreover, in 
rough set theory, a rough event is proposed representing two approximate events, 
namely lower approximate event and upper approximate event. Similarly, in the 
presence of probability theory, rough event can be extended to be probability of 
rough event. Finally, the paper shows and discusses relation among lower-upper 
approximate probability (probability of rough events), belief-plausibility measures 
(evidence theory), classical probability measures, probability of generalized 
fuzzy-rough events and probability of fuzzy events. 
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1 Introduction 

Since the appearance of the first paper on fuzzy sets proposed by Zadeh in 1965, the 
relationship between probability and fuzziness in the representation of uncertainty has 
been discussed among many people. The main problem is whether probability theory 
itself is sufficient to deal with uncertainty. This issue has been widely discussed in 
many papers and written by Nguyen [15], Kosko [14] Zadeh [20], [21] and so on. 

In this work, again just try to understand the relationship between probability and 
fuzziness using the process of perception by humans. In the process of perception, the 
subject (human, computer, robot, etc.) tries to recognize and describe a given object 
(anything, like human, plant, animal, event, condition, etc.). 

To conduct a successful process of perception, subject requires adequate knowledge. 
On the other hand, object requires a clear definition. However, human (as subject) do not 
know what happens in the future and has also limited knowledge. In other words, humans 
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are not omniscient. In this case, the subject is in a non-deterministic situation in perform-
ing a perception. On the other hand, most objects (shape, feeling, emotion, etc.) cannot 
generally be clearly defined. Therefore, the perception process is in uncertain situation. 

To summarize the relationship between subject and object in the process of percep-
tion, there are four possible situations as follows [10]. 
• If the subject has sufficient knowledge and the object has a clear definition, it 

becomes a certainty. 
• If the subject has sufficient knowledge and object has unclear definition, it comes 

to the situation of fuzziness. In general, fuzziness, also called deterministic uncer-
tainty, may occur in the situation when one is able to subjectively determine or 
describe a given object, but somehow the object does not have a specific or clear 
definition. For example, a man describes a woman as a beautiful woman. Ob-
viously definition of a beautiful woman is unclear, uncertain and subjective. The 
man, however is convinced of what he describes someone as a pretty woman. 

• If the subject is not in having sufficient knowledge and object has a clear defini-
tion, it comes to the situation of randomness. Randomness is usually called non-
deterministic uncertainty because subject cannot determine or describe a given 
object clearly although the object has a clear definition. Here, probability theory 
was developed for dealing with the random experiment. For example, in throwing 
a dice, even though there are six possible defined result of outcomes, one cannot 
ensure outcome of dice. Another example, in solving multiple choice problem, 
because of his limited knowledge, a student may not be assured to choose an an-
swer out of 4 possible answers. 

• If the subject is in insufficient knowledge and object definition is unclear, it comes 
to be a probability of fuzzy event [20]. In this situation, both the probability and 
fuzziness are combined. For example, how to predict an ill-defined event: "Tomor-
row will be a warm day." Speaking of morning is talk about a future in which the 
subject cannot determine what happens in the future. The situation must be ad-
dressed by probability. However, "hot" is a subjectively defined event (called 
fuzzy event). Therefore, the event is regarded to be a probability of fuzzy event. 

From these four situations obviously seen that the probability and the fuzziness in 
work in different areas of uncertainty. Probability theory itself is not sufficient to deal 
with ill-defined event or fuzzy event. Instead, probability and Fuzziness should be 
considered as a complementary tool. 

In probability, set theory is used to provide a language for modeling and describing 
random experiments. In (classical) theory of sets, subsets of the sample space of an 
experiment are referred to as crisp events. Fuzzy set theory proposed by Zadeh in 
1965, is regarded as a generalization of (classical) set theory in which fuzzy sets is to 
represent deterministic uncertainty by a class or classes that do not have sharp defined 
boundary [21]. 

In fuzzy set theory, an ill-defined event, called fuzzy event can be described in the 
presence of probability theory called probability of fuzzy event [20] in which fuzzy 
event could be regarded as a generalization of crisp event. Conditional probability as an 
important property in the theory of probability usually used in generating inference rule 
can be extended to the conditional probability of fuzzy event. In the situation of uniform 
distribution probability, conditional probability of fuzzy event can be simplified to be 
what we call fuzzy conditional probability relations as proposed in [3] and [4] to calcu-
late the similarity of two fuzzy labels (sets). 
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Similarly, rough sets theory generalizes the classical set theory by studying sets with 
imprecise boundaries. A rough set [16], which is characterized by a pair of approxima-
tions, can be seen as an approximate representation of a given classical set in terms of 
two subsets derived from a partition in the universe as proposed in [12], [13], [16] and 
[19]. By the theory of rough sets, rough event which is consists of lower approximate 
event and upper approximate event, in the presence of probability theory provides 
probability of rough event. Therefore, rough event could be also considered as an ap-
proximation of a given crisp event. Moreover, the probability of rough event presents a 
semantic formulation to what called the interval probability. Formulation of the inter-
val probability is useful to represent the worst and the best probabilities of an event for 
supporting decision making process. In this paper, special attention is focused to dis-
cuss conditional probability of rough event and proved that it satisfied some properties. 

In addition, a generalized fuzzy rough set as proposed in [5] and [7] is considered 
as an approximation of a given fuzzy set on a given fuzzy covering. Since fuzzy set 
and fuzzy covering generalize crisp set and crisp partition respectively, the genera-
lized fuzzy rough set is regarded as a generalization of rough fuzzy sets and rough 
fuzzy sets as proposed by Dubois and Prade in [2]. Therefore, a generalized fuzzy 
rough event represented by generalized fuzzy rough set, in the presence of probabili-
ty, provides probability of generalized fuzzy rough event. The generalized fuzzy-
rough event is represented in four approximates, namely lower maximum of fuzzy 
event, lower minimum of fuzzy event, upper maximum of fuzzy event and upper min-
imum of fuzzy event. 

Finally, we show and discuss relation among lower-upper approximate probability 
(probability of rough events), belief-plausibility measures (evidence theory), classical 
probability measures, probability of generalized fuzzy-rough events and probability of 
fuzzy events. 

2 Probability of Fuzzy Event 

Probability theory is based on the paradigm of a random experiment in which out-
come of the experiment cannot be predicted with certainty, before running the expe-
riment. In other words, as discussed in the previous section, in the situation of proba-
bility, subject does not have sufficient knowledge to determine outcome of the expe-
riment. In probability, set theory is used to provide a language for modeling and de-
scribing random experiments. The sample space of a random experiment corresponds 
to the universal set. In (classical) theory of sets, subsets of the sample space of an 
experiment are used to represent crisp events. 

To represent an ill-defined event, crisp event should be generalized to the fuzzy 
event in which the fuzzy sets used to represent fuzzy event. Formally, probability of 
fuzzy event is showed in the following definition [20]. 
 
Definition 1. Let (U,F,P) be regarded as a probability space in which U is the sample 
space, F presents sigma algebra of events and P is a probability of an event over U. 
Then, a fuzzy event A ∈ F is represented by a fuzzy set A on U whose membership 
function given by µA : U → [0, 1]. The probability of fuzzy event A is defined by the 
following equations: 
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─ continuous sample space:  

 ܲሺܣሻ ൌ ׬ ሻ݀ܲݑ஺ሺߤ ൌ௎ ׬ ሻݑ஺ሺߤ · ௎ݑሻ݀ݑሺ݌  (1) 

─ discrete sample space: 

 ܲሺܣሻ ൌ ∑ ሻݑ஺ሺߤ · ሻ௎ݑሺ݌  (2)         

where p(u) is a probability distribution function of an element u ∈ U.  
For example, arbitrarily given a sentence “John ate a few eggs for breakfast”. Here, 

we have insufficient knowledge to know exactly how many eggs John ate for break-
fast. Instead, probability distribution function of “John ate u ∈ U egg(s) for breakfast” 
is arbitrarily shown by Table 1.  

Table 1. Probability Distribution of u 

U 1 2 3 4 5 6 • • • 
p(u) 0.33 0.27 0.2 0.13 0.07 0 • • • 

 
A meaningful fuzzy label, “a few” represented by a fuzzy event is arbitrarily given 

by a fuzzy set, µafew = {1/1, 0.6/2, 0.2/3}, where µafew (2) = 0.6. Probability of “John 
ate a few eggs for breakfast”, denoted by P (a few), is calculated as follow. 

 P (a few) = 1 × 0.33 + 0.6 × 0.27 + 0.2 × 0.2 = 0.532. 

Some basic concepts and operations relating to the fuzzy sets are given by the follow-
ing operations. Given A and B are two fuzzy sets on U [21], 

• Union:   µA∪B (u) = max[µA(u), µB (u)], 
• Complement:  B = ¬A ⇔ µB (u) = 1 − µA(u), ∀u, 
• Intersection:   µA∩B (u) = min[µA(u), µB (u)], 
• Sum:    µA⊕B (u) = µA(u) + µB (u) − µA(u) ·µB (u). 
• Equality:   A = B ⇔ µA(u) = µB (u), ∀u, 
• Containment:   A ⊂ B ⇔ µA(u) ≤ µB (u), ∀u, 
• Product:   µAB (u) = µA(u)·µB (u), 

It can be verified obviously that the probability of fuzzy event satisfies certain proper-
ties. Given A and B are two fuzzy sets on U, 

1. P(A ⊕ B) = P(A) + P(B) − P(A·B), 
2. A ⊂ B ⇒ P(A) ≤ P(B), 
3. P(A ∪ B) = P(A) + P(B) − P(A ∩ B), 
4. P(A ∩ ¬A) ≥ 0. 
5. P(A ∪ ¬A) ≤ 1, 

1, 2 and 3 prove that probability of fuzzy event satisfies additivity axiom of sum, 
monotonicity and additivity axiom of union, respectively. However, it does not satisfy 
law of non-contradiction and law of excluded middle as clearly seen in (4) and (5). 
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We now turn to the notion of conditional probability of fuzzy events. Conditional 
probability of an event is the probability of the event given that another event has 
already occurred. The following equation show relationship between the conditional 
and unconditional probability. 

 P(A|B) = P(A ∩ B)/P(B), 

where B is an event such that P(B) ≠ 0. 
In discrete sample space, the conditional probability of fuzzy event could be de-

fined as follows. Given A and B are two fuzzy sets on U, 

 ܲሺܤ|ܣሻ ൌ ∑ ୫୧୬ ሾఓಲሺ௨ሻ,ఓಳሺ௨ሻሿ·௣ሺ௨ሻೆ ∑ ఓಳሺ௨ሻ·௣ሺ௨ሻೆ , ݑ∀ ∈ ܷ, (3) 

where ∑ ሻݑ஻ሺߤ · ሻ௎ݑሺ݌ ൐ 0. It can be proved that several properties are satisfied in 
the conditional probability of fuzzy event. Given A and B be two fuzzy sets on U, 

1. Normalization: P(A|B) + P(¬A|B) ≥ 1,  
2. Total Probability: If {Bk |k ∈ Nn} are pairwise disjoint, crisp and exhaustive events,  

i.e., P(Bi ∩ Bj) = 0 for i ≠ j and   ∪Bk = U, then: 

 ܲሺܣሻ ൌ ∑ ܲሺܤ௞ሻ · ܲሺܤ|ܣ௞ሻ,௞  

3. Bayes Theorem: 

 ܲሺܤ|ܣሻ ൌ ௉ሺ஻|஺ሻ·௉ሺ஺ሻ௉ሺ஻ሻ . 
Furthermore, the relationship between A and B in conditional probability of fuzzy 
event can be represented in three conditions as follows. 

• Negative correlation:  

 P (A|B) < P (A) ⇔ P (B|A) < P (B) ⇔ P (A ∩ B) < P (A) × P (B),  

• Positive correlation:  

 P (A|B) > P (A) ⇔ P (B|A) > P (B) ⇔ P (A ∩ B) > P (A) × P (B),  

• Independent correlation:  

 P (A|B) = P (A) ⇔ P (B|A) = P (B) ⇔ P (A ∩ B) = P (A) × P (B).  

In the situation of uniform distribution, the probability distribution function p(u) = 1 / 
|U|, is considered as a constant variable. Therefore, the conditional probability of A 
given B is more simply defined by eliminating p(u) as given by: 

 ܲሺܤ|ܣሻ ൌ ∑ ୫୧୬ ሾఓಲሺ௨ሻ,ఓಳሺ௨ሻሿೆ ∑ ఓಳሺ௨ሻೆ , ݑ∀ ∈ ܷ, (4) 

In [3] and [4], the Equation (4) called fuzzy conditional probability relation is used to 
calculate degree of similarity relationship between two fuzzy labels (sets). 
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3 Probability of Rough Event 

Rough set is considered as a generalization of crisp set by studying sets with impre-
cise boundaries. A rough set, characterized by a pair approximations, called lower 
approximation and upper approximation, can be seen as an approximate representa-
tion of a given crisp set in terms of two subsets derived from a partition in the un-
iverse as explained in [12], [13], [16] and [19]. 

The concept of rough sets can be defined precisely as follows. Let U denotes a fi-
nite and non-empty universe, and let R be an equivalence relation on U. The equiva-
lence relation R induces a partition of the universe. The partition is also referred to as 
the quotient set and is denoted by U/R. Suppose [u]R is the equivalence class in U/R 
that contains u ∈ U. A rough set approximation of a subset A ⊆ U is a pair of lower 
and upper approximations.  

Formally, rough sets may be defined precisely as follows. Let U denotes a non-
empty and finite universe. R is an equivalence relation on U. The equivalence relation 
R induces a partition of the universe. The partition is also known as the quotient set, 
and it is denoted by U/R.  Given [u]R is the equivalence class in U/R that consists of u ∈ U. A rough set of a subset A ⊆ U is represented by a pair of lower and upper ap-
proximations as given by the following equations. The lower approximation, 

ሻܣሺ݋ܮ  ൌ ሼݑ ∈ ܷ|ሾݑሿோ ⊆ ሽܣ ൌ ሿோݑሼሾڂ ∈ ܷ/ܴ|ሾݑሿோ ⊆  ,ሽܣ
is the union of all equivalence classes in U/R that are subsets of A. The upper approx-
imation, 

ሻܣሺ݌ܷ  ൌ ሼݑ ∈ ܷ|ሾݑሿோ ת ܣ ് ∅ሽ ൌ ሿோݑሼሾڂ ∈ ܷ/ܴ|ሾݑሿோ ת ܣ ് ∅ሽ, 
is the union of all equivalence classes in U/R that overlap with A. Similarly, by rough 
set, an event can be described into two approximate rough events, namely lower ap-
proximate event and upper approximate event. Rough event can be considered as the 
generalization and approximation of a given crisp event. Probability of rough event is 
then defined by the following equations. 
 

Definition 2. Let (U,F,P) be regarded as a probability space in which U is the sample 
space. F represents sigma algebra of events, and P is a probability measure over U. 
Then, a rough event of A = [Lo(A), Up(A)] ∈ F2 is given by a pair of approximations, 
called lower approximation and upper approximation of A ⊆ U. The probability of 
rough event A is defined by an interval probability [P(Lo(A)), P(Up(A))], where 
P(Lo(A)) and P(Up(A)) are lower probability and upper probability, respectively.  

─ Lower probability: 

 ܲሺ݋ܮሺܣሻሻ ൌ ∑ ሻݑሺ݌ ൌሼ௨∈௎|ሾ௨ሿೃ⊆஺ሽ ∑ ܲሺሾݑሿோሻ,∪ሼሾ௨ሿೃ∈௎/ோ|ሾ௨ሿೃ⊆஺ሽ  (5) 

─ Upper probability: 

 ܲሺܷ݌ሺܣሻሻ ൌ ∑ ሻݑሺ݌ ൌሼ௨∈௎|ሾ௨ሿೃת஺ஷ∅ሽ ∑ ܲሺሾݑሿோሻ,∪ሼሾ௨ሿೃ∈௎/ோ|ሾ௨ሿೃת஺ஷ∅ሽ  (6) 

where p(u) is a probability distribution function of element u ∈ U . 
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Lower and upper probabilities in Definition 2 can be regarded as an interval proba-
bility. By combining with other set-theoretic operators such as ¬, ∪ and ∩, we have 
the following results of properties: 

1. P(Lo(A)) ≤ P(A) ≤ P(Up(A)), 
2. A ⊆ B ⇔ [P(Lo(A)) ≤ P(Lo(B)), P(Up(A) ≤P(Up(B))], 
3. P(Lo(¬A)) = 1 − P (Lo(A)), P (Up(¬A)) = 1 − P (Up(A)), 
4. P(¬Lo(A)) = P (Up(¬A)), P (¬Up(A)) = P (Lo(¬A)), 
5. P(Lo(U) ) = P (U ) = P (Up(U) ) = 1, P (Lo(∅)) = P (∅) = P (Up(∅)) = 0, 
6. P (Lo(A ∩ B)) = P (Lo(A) ∩ Lo(B)), P (Up(A ∩ B)) ≤ P (Up(A) ∩ Up(B)), 
7. P(Lo(A ∪ B)) ≥ P(Lo(A)) + P(Lo(B)) − P(Lo(A ∩ B)), 
8. P(Up(A ∪ B)) ≤ P(Up(A)) + P(Up(B)) − P(Up(A ∩ B)), 
9. P(A) ≤ P(Lo(Up(A))), P(A) ≥ P(Up(Lo(A))), 

10. P(Lo(A)) = P(Lo(Lo(A))), P(Up(A)) = P(Up(Up(A))), 
11. P(Lo(A) ∪ Lo(¬A)) ≤ 1, P(Up(A) ∪Up(¬A)) ≥ 1, 
12. P(Lo(A) ∩ Lo(¬A)) = 0, P(Up(A) ∩ Up(¬A)) ≥ 0. 

Conditional probability of rough event could be considered in the following four 
combinations of formulations: Given A, B ⊆ U, conditional probability of A given B 
is given by 

 ܲሺ݋ܮሺܣሻ|݋ܮሺܤሻሻ ൌ ௉ሺ௅௢ሺ஺ሻת௅௢ሺ஻ሻሻ௉ሺ௅௢ሺ஻ሻሻ , (7) 

 ܲሺ݋ܮሺܣሻ|ܷ݌ሺܤሻሻ ൌ ௉ሺ௅௢ሺ஺ሻת௎௣ሺ஻ሻሻ௉ሺ௎௣ሺ஻ሻሻ , (8) 

 ܲሺܷ݌ሺܣሻ|݋ܮሺܤሻሻ ൌ ௉ሺ௎௣ሺ஺ሻת௅௢ሺ஻ሻሻ௉ሺ௅௢ሺ஻ሻሻ , (9) 

 ܲሺܷ݌ሺܣሻ|ܷ݌ሺܤሻሻ ൌ ௉൫௎௣ሺ஺ሻת௎௣ሺ஻ሻ൯௉ሺ௎௣ሺ஻ሻሻ . (10) 

It can be proved that the equations are also satisfied some relations as given by: ܲ൫݋ܮሺܣሻ ת ሻ൯ܤሺ݋ܮ ൑ ܲ൫ܷ݌ሺܣሻ ת ሻ൯ܤሺ݋ܮ ⇒ ܲሺ݋ܮሺܣሻ|݋ܮሺܤሻሻ ൑ ܲሺܷ݌ሺܣሻ|݋ܮሺܤሻሻ ܲሺ݋ܮሺܣሻ ת ሻሻܤሺ݌ܷ ൑ ܲሺܷ݌ሺܣሻ ת ሻሻܤሺ݌ܷ ⇒ ܲሺ݋ܮሺܣሻ|ܷ݌ሺܤሻሻ ൑ ܲሺܷ݌ሺܣሻ|ܷ݌ሺܤሻሻ 
 
Similarly, it can also be verified that they satisfy some properties: 

1. Normalization: 

─ P (Lo(A)|Lo(B)) + P (Lo(¬A)|Lo(B)) ≤ 1, 
─ P (Lo(A)|Up(B)) + P (Lo(¬A)|Up(B)) ≤ 1, 
─ P (Up(A)|Lo(B)) + P (Up(¬A)|Lo(B)) ≥ 1, 
─ P (Up(A)|Up(B)) + P (Up(¬A)|Up(B)) ≥ 1. 

2. Total Probability If {Bk |k ∈ Nn} are pairwise disjoint, crisp and exhaustive events, 
i.e., P (Bi ∩ Bj) = 0 for i ≠ j and   ∪Bk = U, then: 
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─ ܲሺ݋ܮሺܣሻሻ ൒ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ܲ൫݋ܮሺܣሻห݋ܮሺܤ௞ሻ൯,௞  
─ ܲሺ݋ܮሺܣሻሻ ൑ ∑ ܲ൫ܷ݌ሺܤ௞ሻ൯ · ܲ൫݋ܮሺܣሻหܷ݌ሺܤ௞ሻ൯,௞  
─ ܲሺܷ݌ሺܣሻሻ ൒ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ܲ൫ܷ݌ሺܣሻห݋ܮሺܤ௞ሻ൯,௞  
─ ܲ൫ܷ݌ሺܣሻ൯ ൑ ∑ ܲ൫ܷ݌ሺܤ௞ሻ൯ · ܲ൫ܷ݌ሺܣሻหܷ݌ሺܤ௞ሻ൯.௞  

3. Bayes Theorem: 

 ܲ൫݋ܮሺܣሻห݋ܮሺܤሻ൯ ൌ ௉ሺ௅௢ሺ஻ሻ|௅௢ሺ஻ሻሻ·௉ሺ௅௢ሺ஺ሻሻ௉ሺ௅௢ሺ஻ሻሻ , 
 ܲ൫݋ܮሺܣሻหܷ݌ሺܤሻ൯ ൌ ௉ሺ௎௣ሺ஻ሻ|௅௢ሺ஺ሻሻ·௉ሺ௅௢ሺ஺ሻሻ௉ሺ௎௣ሺ஻ሻሻ , 
 ܲ൫ܷ݌ሺܣሻห݋ܮሺܤሻ൯ ൌ ௉ሺ௅௢ሺ஻ሻ|௎௣ሺ஺ሻሻ·௉ሺ௎௣ሺ஺ሻሻ௉ሺ௅௢ሺ஻ሻሻ , 
 ܲ൫ܷ݌ሺܣሻหܷ݌ሺܤሻ൯ ൌ ௉ሺ௎௣ሺ஻ሻ|௎௣ሺ஺ሻሻ·௉ሺ௎௣ሺ஺ሻሻ௉ሺ௎௣ሺ஻ሻሻ . 
We may also consider other definitions of conditional probability of rough event as 
given by the following equations. Given A, B ⊆ U, conditional probability of A given 
B can be also defined by 

 ଵܲሺܤ|ܣሻ ൌ ௉ሺ௅௢ሺ஺ת஻ሻሻ௉ሺ௅௢ሺ஻ሻሻ , (11) 

 ଶܲሺܤ|ܣሻ ൌ ௉ሺ௅௢ሺ஺ת஻ሻሻ௉ሺ௎௣ሺ஻ሻሻ , (12) 

 ଷܲሺܤ|ܣሻ ൌ ௉ሺ௎௣ሺ஺ת஻ሻሻ௉ሺ௅௢ሺ஻ሻሻ , (13) 

 ସܲሺܤ|ܣሻ ൌ ௉ሺ௎௣ሺ஺ת஻ሻሻ௉ሺ௎௣ሺ஻ሻሻ . (14) 

Also, it can be proved that the above equations satisfy some relations as follows. 

• P2(A|B) ≤ P1(A|B) ≤ P3(A|B),  
• P4(A|B) ≤ P3(A|B),  
• P2(A|B) ≤ P4(A|B),  
• P (Lo(A ∩ B)) = P (Lo(A) ∩ Lo(B)) ⇒ P1(A|B) = P (Lo(A)|Lo(B)).  

Moreover, they also satisfy some properties of conditional probability: 

1. Normalization: 

─ P1(A| B) + P1(¬A| B) ≤ 1, 
─ P2(A| B) + P2(¬A| B) ≤ 1, 
─ P3(A| B) + P3(¬A| B) ≥ 1, 
─ P4(A| B) + P4(¬A| B) ≥ 1. 

2. Total Probability If {Bk |k ∈ Nn} are pairwise disjoint, crisp and exhaustive events,  

i.e., P (Bi ∩ Bj) = 0 for i ≠ j and   ∪Bk = U, then: 
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─ ܲሺ݋ܮሺܣሻሻ ൒ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ଵܲሺܤ|ܣ௞ሻ,௞  
─ ܲሺ݋ܮሺܣሻሻ ൒ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ଶܲሺܤ|ܣ௞ሻ,௞  
─ ܲሺ݋ܮሺܣሻሻ ൑ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ଷܲሺܤ|ܣ௞ሻ,௞  
─ ܲ൫݋ܮሺܣሻ൯ ൑ ∑ ܲ൫݋ܮሺܤ௞ሻ൯ · ସܲሺܤ|ܣ௞ሻ.௞  

3. Bayes Theorem: 

 ଵܲሺܤ|ܣሻ ൌ ௉భሺ஻|஺ሻ·௉ሺ௅௢ሺ஺ሻሻ௉ሺ௅௢ሺ஻ሻሻ , 
 ଶܲሺܤ|ܣሻ ൌ ௉మሺ஻|஺ሻ·௉ሺ௅௢ሺ஺ሻሻ௉ሺ௎௣ሺ஻ሻሻ , 
 ଷܲሺܤ|ܣሻ ൌ ௉యሺ஻|஺ሻ·௉ሺ௎௣ሺ஺ሻሻ௉ሺ௅௢ሺ஻ሻሻ , 
 ସܲሺܤ|ܣሻ ൌ ௉రሺ஻|஺ሻ·௉ሺ௎௣ሺ஺ሻሻ௉ሺ௎௣ሺ஻ሻሻ . 
4 Probability of Generalized Fuzzy-Rough Event 

A generalized fuzzy rough set is an approximation of a given fuzzy set on a given 
fuzzy covering. Since fuzzy set generalizes crisp set and covering generalizes parti-
tion, fuzzy covering is regarded as the most generalized approximation space. Fuzzy 
covering might be considered as a case of fuzzy granularity in which similarity classes 
as a basis of constructing the covering are regarded as fuzzy sets. Alternatively, a 
fuzzy covering might be constructed and defined as follows [6]. 

A generalized fuzzy rough set is an approximation of a given fuzzy set in a given 
fuzzy covering. Since fuzzy set and covering generalized crisp set and partition, re-
spectively, fuzzy covering is considered the most generalized approximation space. 
Fuzzy covering can be considered as a case of fuzzy granularity. In this case, similari-
ty classes as used in constructing the covering are considered as fuzzy sets. The fol-
lowing definition shows an alternative definition in constructing a fuzzy covering [6]. 

 

Definition 3. Let U = {u1, ..., un} be regarded as a universe. A fuzzy covering of U is 
defined by a family of fuzzy subsets or fuzzy classes of C, denoted by C = {C1, C2, ..., 
Cm}, and it satisfies 

 ∑ ௞ሻݑ஼೔ሺߤ ൒ 1, ∀݇ ∈ ௡ܰ௠௜ୀଵ  (15) 

 0 ൏ ∑ ௞ሻݑ஼೔ሺߤ ൏ ݊, ∀݅ ∈ ܰ௠௡௞ୀ௜  (16) 

where µCi(uk) ∈ [0, 1]  and m is a positive integer. 
Let A be a fuzzy set on fuzzy covering as defined in Definition 3. A generalized 

fuzzy rough set A is then defined by the following definition. 
 

Definition 4. Let U be regarded as a non-empty universe. C = {C1, C2, ..., Cm} is a 
fuzzy covering on U. Given A be a fuzzy set on U, Lo(A)M , Lo(A)m, Up(A)M and 
Up(A)m are defined as minimum lower approximate, maximum lower approximate, 
minimum upper approximate and maximum upper approximate fuzzy set of A, re-
spectively, as follows. 
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ሻݕ௅௢ሺ஺ሻ೘ሺߤ  ൌ infሼ௜|ఓ಴೔ሺ௬ሻவ଴ሽ infሼ௭∈௎|ఓ಴೔ሺ௭ሻவ଴ሽሼߖሺ݅,  ሻሽ, (17)ݖ

ሻݕ௅௢ሺ஺ሻಾሺߤ  ൌ supሼ௜|ఓ಴೔ሺ௬ሻவ଴ሽ infሼ௭∈௎|ఓ಴೔ሺ௭ሻவ଴ሽሼߖሺ݅,  ሻሽ, (18)ݖ

ሻݕ௎௣ሺ஺ሻ೘ሺߤ  ൌ infሼ௜|ఓ಴೔ሺ௬ሻவ଴ሽ supሼ௭∈௎ሽሼߖሺ݅,  ሻሽ, (19)ݖ

ሻݕ௎௣ሺ஺ሻಾሺߤ  ൌ supሼ௜|ఓ಴೔ሺ௬ሻவ଴ሽ supሼ௭∈௎ሽሼߖሺ݅,  ሻሽ, (20)ݖ

where ߖሺ݅, ሻݖ ൌ min ሺߤ஼೔ሺݖሻ,  .ሻሻ, for shortݖ஺ሺߤ
Therefore, a given fuzzy set A is approximated into four approximate fuzzy sets. It 

can be proved that relationship among these approximations satisfy a partial order as 
follows. 

ሻ௠ܣሺ݋ܮ  ⊆ ሻெܣሺ݋ܮ ⊆ ,ሻெܣሺ݌ܷ ሻ௠ܣሺ݋ܮ ⊆ ሻ௠ܣሺ݌ܷ ⊆ ,ሻெܣሺ݌ܷ ሻெܣሺ݋ܮ ⊆  ܣ

The property of iterative is also applied for almost all approximate fuzzy sets except 
for Lo(A)M  as shown in the following relations. 

∗ሻ௠ܣሺ݋ܮ • ⊆ ڮ ⊆ ሻ௠ሻ௠ܣሺ݋ܮሺ݋ܮ ⊆  ,ሻ௠ܣሺ݋ܮ
ሻ௠ܣሺ݌ܷ • ⊆ ሻ௠ሻ௠ܣሺ݌ሺܷ݌ܷ ⊆ ڮ ⊆  ,∗ሻ௠ܣሺ݌ܷ
ሻெܣሺ݌ܷ • ⊆ ሻெሻெܣሺ݌ሺܷ݌ܷ ⊆ ڮ ⊆  ,∗ሻெܣሺ݌ܷ
where Lo(A)m∗, Up(A)m∗ and Up(A)M∗ are regarded as the lowest approximation of 
Lo(A)m, the uppermost approximation of Up(A)m and the uppermost approximation of 
Up(A)M , respectively. Thus, in our concept of the generalized fuzzy rough set, a given 
fuzzy event can be represented into four fuzzy events, called generalized fuzzy-rough 
event. In the relation to probability theory, probability of generalized fuzzy-rough 
event is then defined in Definition 5 as follows. 
 
Definition 5. Let (U, F, P) be regarded as a probability space in which U is the sam-
ple space, F is defined as sigma algebra of events, and P is a probability measure over 
U. Then, a generalized fuzzy-rough event of A = [Lo(A)m, Lo(A)M, Up(A)m, Up(A)M] ∈ 
F4 are considered as fuzzy approximate events of A, where A is a given fuzzy set on U 
. The probability of generalized fuzzy-rough event A is then defined by a quadruplet 
[P(Lo(A)m), P(Lo(A)M), P(Up(A)m), P(Up(A)M)] as given by the following equations. 

 ܲሺ݋ܮሺܣሻ௠ሻ ൌ ∑ ሻݑ௅௢ሺ஺ሻ೘ሺߤ · ሻ,௎ݑሺ݌  (21) 

 ܲሺ݋ܮሺܣሻெሻ ൌ ∑ ሻݑ௅௢ሺ஺ሻಾሺߤ · ሻ,௎ݑሺ݌  (22) 

 ܲሺܷ݌ሺܣሻ௠ሻ ൌ ∑ ሻݑ௎௣ሺ஺ሻ೘ሺߤ · ሻ,௎ݑሺ݌  (23) 

 ܲሺܷ݌ሺܣሻெሻ ൌ ∑ ሻݑ௎௣ሺ஺ሻಾሺߤ · ሻ,௎ݑሺ݌  (24) 

where p(u) is defined as a probability distribution function of element u ∈ U. 
By combining with other set-theoretic operators such as ¬, ∪ and ∩, we have the 

following results of properties: 
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• P(Lo(A)m) ≤ P(Lo(A)M) ≤ P(Up(A)M),  
• P(Lo(A)M) ≤ P(A), 
• P(Lo(A)m) ≤ P(Up(A)m) ≤ P(Up(A)M), 
• A⊆B⇒[P(Lo(A)m) ≤ P(Lo(B)m), P(Lo(A)M) ≤ P(Lo(B)M), P(Up(A)m) ≤ P(Up(B)m), 

P(Up(A)M) ≤ P(Up(B)M)], 
• P(Lo(U)λ) ≤ 1, P(Up(U)λ) ≤ 1,  
• P(Lo(∅)λ) = P(Up(∅)λ)= 0, 
• P(Lo(A∩B)λ) ≤ P(Lo(A)λ ∩ Lo(B)λ), 
• P(Up(A∩B)λ) ≤ P(Up(A)λ ∩ Up(B)λ), 
• P(Lo(A∪B)λ) ≥ P(Lo(A)λ)+P(Lo(B)λ))- P(Lo(A∩B)λ), 
• P(Up(A∪B)λ) ≤  P(Up(A)λ)+P(Up(B)λ))- P(Up(A∩B)λ), 
• P(Lo(A)m*) ≤ ڮ ≤ P(Lo(Lo(A)m) m) ≤ P(Lo(A)m), 
• P(Lo(A)M) =P(Lo(Lo(A)M) M), 
• P(Up(A)m) ≤ P(Up(Up(A)m) m) ≤ ڮ  ≤ P(Up(A)m*), 
• P(Up(A)M) ≤ P(Up(Up(A)M) M) ≤ ڮ  ≤ P(Up(A)M*), 
• ܲሺ݋ܮሺܣሻఒ ∪ ሻఒሻܣሺ൓݋ܮ ൑ 1, 
• ܲሺ݋ܮሺܣሻఒ ת ሻఒሻܣሺ൓݋ܮ ൒ 0, 
• ܲሺܷ݌ሺܣሻఒ ת ሻఒሻܣሺ൓݌ܷ ൒ 0, 
where λ ∈ {m, M }, for short. 

5 Belief and Plausibility Measures 

In evidence theory, belief and plausibility measures originally introduced by Glenn 
Shafer in 1976 [17] are mutually dual functions in evidence theory. This concept was 
strongly motivated and related to lower probability and upper probability proposed by 
Dempster in 1967 [1] in which all measures are subsumed in the concept of fuzzy 
measure proposed by Sugeno in 1977 [18]. Belief and plausibility Measures can be 
represented by a single function, called basic probability assignment, providing evi-
dence grades for specific subsets of the universal set. In a special case when the subsets 
of the universal set are disjoint and each subset represents elementary set of indiscerni-
ble space, we can consider belief and plausibility measures as lower approximate prob-
ability and upper approximate probability in terms of probability of rough events as 
proposed in [8] and [9]. Here, lower approximate probability and upper approximate 
probability are considered as a special case of belief and plausibility measures, respec-
tively in which probability of elementary set is considered as a special case of basic 
probability assignment. In other words, belief and plausibility measures are based on 
crisp-granularity in terms of a covering. On the other hand, lower approximate proba-
bility and upper approximate probability are defined on crisp-granularity in terms of 
disjoint partition. Here, when every elementary set has only one element of set, every 
probability of elementary set will be equal to probability of an element called probabil-
ity distribution function as usually used in representing probability measures. There-
fore, it can be verified that lower approximate probability and upper approximate prob-
ability of a given rough event will be clearly reduced into a single value of probability. 
Lower approximate probability and upper approximate probability as well as belief and 
plausibility measures are also regarded as generalization of probability measures in the 
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presence of crisp granularity of sample space. We may consider another generalization 
when the membership degree of every element of sample space in representing an 
event is regarded from 0 to 1. The generalization provides a concept called probability 
measures of fuzzy events as proposed by Zadeh in 1968 [20]. Moreover, it may then 
propose a more generalized probability measures by given a fuzzy event in the pres-
ence of fuzzy-granularity of sample space. The generalization called probability meas-
ures of generalized fuzzy-rough events as already discussed in previous section [5] and 
[7]. Belief and plausibility measures can be also represented by a single function called 
basic probability assignment as defined by the following [11]: 
 

Definition 6. Given U be regarded as a universal sample space and ࣪(U) be a power 
set of U, 

 m : ࣪(U ) → [0, 1] (25) 

such that ∑ ݉ሺܧሻா∈࣪ሺ௎ሻ ൌ 1 and ݉ሺ∅ሻ  ൌ  0 , where m(E) expresses the degree of 
evidence supporting the claim that a specific element of U belongs to the set E but not 
to any special subset of E. There are three properties considering the definition of 
basic probability assignment. 

1. It is not necessary that m(U ) = 1.  
2. It is not necessary that E1 ⊂ E2 ⇒ m(E1) ≤ m(E2).  
3. There is no relationship between m(E) and m(¬E).  

Every E ∈ ࣪(U) is called a focal element iff m(E) > 0. It is possible that focal ele-
ments may take overlap one to each other. Belief and Plausibility measures are then 
given by Equation (26) and (27), respectively. For A ∈ ࣪(U ), 

ሻܣሺ݈݁ܤ  ൌ ∑ ݉ሺܧሻ,ா⊆஺  (26) 

 ݈ܲሺܣሻ ൌ ∑ ݉ሺܧሻ.ாת஺ஷ∅  (27) 

It can be also verified that for all A ∈ ࣪(U ), Bel(A) ≤ Pl(A). As mention before, it can 
be proved that belief and plausibility measures are mutually dual functions as shown 
in the following equations. 
    Pl(A) = 1 −Bel(¬A).  
Similarly,  
    Bel(A) = 1 − Pl(¬A). 
Belief and plausibility measures are defined on a covering. Therefore, some properties 
are not satisfied, especially iterative properties of lower approximate probability and 
upper approximate probability such as given by P(A) ≤ P(Lo(Up(A))), P(A) ≥ 
P(Up(Lo(A))) and P(Lo(A)) = P(Lo(Lo(A))), P(Up(A)) = P(Up(Up(A))) as also men-
tioned in Section 3. Let consider, 

 ݈ܲିଵሺܣሻ ൌ ڂ ∅஺ஷתா∈࣪ሺ௎ሻ,ாܧ   and  ି݈݁ܤଵሺܣሻ ൌ ڂ ா∈࣪ሺ௎ሻ,ா⊆஺ܧ , 

where Pl(A) and Pl−1(A) correspond to P(Up(A)) and Up(A), respectively. Similarly, 
Bel(A) and Bel−1(A) correspond to P(Lo(A)) and Lo(A), respectively. Hence, property of 
P(Up(A)) = P(Up(Up(A))) can be represented as Pl(A) = Pl(Pl−1(A)) by using expression 
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of plausibility measures. It can be easily verified that the property is not satisfied instead 
Pl(A) ≤ Pl(Pl−1(A)). Also, P(A) ≥ Pl(Bel−1(A)) in the relation to P(A) ≥ P(Up(Lo(A))), 
cannot be verified. When every elementary set has only one element, the probability of 
elementary set is equal to probability of the element represented by a function called 
probability distribution function, p : U → [0,1], which is defined on set U as usually used 
in probability measures. Here, lower approximate probability and upper approximate 
probability fuse into a single value of probability in which probability satisfies additivity 
axiom as an intersection area between supperadditive property of lower approximate 
probability and subadditive property of upper approximate probability as respectively 
given by the equations, P(Lo(A ∪ B)) ≥ P(Lo(A)) + P(Lo(B)) − P(Lo(A ∩ B)) and P(Up(A ∪ B)) ≤ P(Up(A)) + P(Up(B)) − P(Up(A ∩ B)) as also already mentioned in Section 3. 

6 Conclusion 

The relationship between probability and fuzziness was discussed clearly based on the 
process of perception. Probability and fuzziness work in different areas of uncertain-
ty; therefore, probability theory itself is not sufficient to deal with the uncertainty in 
real world application. Instead, fuzziness and probability must be regarded as a com-
plementary concepts to represent various type of uncertainty.  For instance, relation 
between fuzziness and probability may provide a concept, called probability of fuzzy 
event in which fuzzy event was represented by a given fuzzy set. Here, fuzzy event 
and fuzzy set are considered as a generalization of crisp event and crisp set, respec-
tively. Similarly, rough set, as another generalization of crisp set, is used to represent 
rough event. In the presence of probability theory, probability of rough event was also 
proposed as another generalization of probability measure. Conditional probability of 
fuzzy event and conditional probability of rough event were examined together with 
their some properties. A more generalized fuzzy rough set is then proposed as an ap-
proximation of a given fuzzy set in a given fuzzy covering.  

Therefore, using the concept of generalized fuzzy rough set, a generalized fuzzy-
rough event was proposed as the most generalization of fuzzy event as well as rough 
event. Probability of the generalized fuzzy-rough event was introduced along with its 
properties. Figure 1 shows summary of relationship among all the concepts.  

 

    Belief and Plausibility Measures 
 
    Probability of Rough Events 
     
    Probability 
    Measures 
  Probability of Fuzzy Events 
 
 Probability of Generalized 
 Fuzzy-Rough Events 

Fig. 1. Generalization based on Crisp-Granularity and Membership Function 
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