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Abstract—Parallel Discrete-Manipulators are a special kind 

of force regulated manipulators which can undergo continuous 

motions despite being commanded through a large but finite 

number of states only. Real-time control of such systems requires 

very fast and efficient methods for solving their inverse static 

analysis. In this paper, artificial intelligence techniques (AI) are 

investigated for addressing the inverse static analysis of a planar 

parallel array featuring ten three-state force actuators and two 

applications using 3D Massively Parallel Robots (MPRs) with one 

and two layers. In particular, the research method used 

simulation software and hardware testing with the case of 

parallel manipulator with two level discrete pneumatic actuators. 

Simulations with typical desired displacement inputs are 

presented and a good performance of the results compared to AI 

is obtained. The comparison showed that the parallel 

manipulator has the Root Mean Squared Error (RMSE) has less 

than 10% and can be used for controlling the ternary states of 

discrete manipulators via AI. 
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I.  INTRODUCTION 

The ways discrete-manipulators work are analogue to the 
muscle fibers work. In general, one muscle fiber, called as 
muscle cell, consists of hundreds single fiber and each single 
fiber has filaments and they are constructed in the arrays 
fashion (the cells and filaments are constructed in serial and 
parallel arrays). The cells produce mechanical force for 
contraction when the neuron of motor unit (one motor unit 
communicates with some muscle fibers) releases 
stimulus/trigger to some related fibers with constant value. We 
can say that the simple mechanism of single muscle is 
essentially analogue to the discrete-manipulators (DMs) that 
constructed in arrays (in serial and/or parallel).  

Other motivation is that DMs with 3-states have been used 
in different applications of robotics and biomechanics. These 
are discrete devices, in which the states flip between a finite 
numbers of possible values. In particular we consider actuators 
with three stable positions: the positively, the neutral and the 
negatively ones (in muscle contraction they called these states 
as: concentric, isometric and eccentric). Possible designs 
involve for instance solenoids, pneumatics, dielectric elastomer 
actuators, shape memory alloy.  Because of the simplicity of 

their design, these kinds of actuators have many potential 
benefits: they are relatively cheap and lightweight. In contrast 
with the advantages, the main limitations to the use of such 
architectures come from the complexity of their activation 
control, which results to be nonlinear, discontinues, and the 
number of achievable configurations also being exponentially 
proportional to the number of actuators. The motivations above 
lead us to define the main goals: to develop a general predictive 
control for activating 3-state actuator arrays with real time 
control (fast response); and to apply the control mechanism for 
several actuators design. 

The DMs are a special kind of mechanisms whose actuators 
can only be made switching among a finite number of states. 
Introduced first in the 1970’s with the challenge to consider 
sensor-less robots as well as to reduce the complexity of 
control mechanism [1]. Recently, DMs can be classified into 
two groups depending on whether their actuators act as either 
discrete displacement generators or discrete force generators. 
Examples of DMs of the first type are the binary Snake-Like 
Robots (SLR) [2-4], which are kinematically constrained 
mechanisms employing a large number of bi-stable actuators 
whose configuration can be either fully contracted (inactived 
state) or fully extended (actived state) irrespective of the 
arbitrary external forces/moments on them. Examples of DMs 
of the second type are the binary Massively Parallel Robots 
(MPR) [5,6], which are dynamically constrained mechanisms 
employing a large number of on-off actuators that exert either a 
constant force (active state) or no force (inactive state) 
irrespective of their arbitrary kinematically unconstrained 
configuration.  

  Moreover, owing to the large number and the discrete 
nature of the actuator variables (positions for SLR and forces 
for MPR), the inverse kinematic analysis of SLR and the 
inverse static analysis of MPR are usually very difficult 
problems whose solution practically requires complicated 
techniques. In the past, significant research efforts have been 
devoted to address these inverse problems, in particular by 
resorting to: exhaustive brute-force search approaches, 
methods of differential geometry and calculus, combinatorial 
algorithms, search algorithms using genetic computation, 
probability method, and implemented Hopfield Networks [2-6]. 
Despite most of the proposed solution schemes are formally 
very elegant and rather effective in reducing problem 



 

complexity from exponential time to polynomial time, the 
resulting algorithms still require too many calculations for real-
time manipulator control. 

In this framework, the present paper showing some 

applications of artificial intelligence methods for the real-time 

solution of the Inverse Static Analysis (ISA) of 1 DOF-MPR 

(planar) and 3D-MPR actuated by 10 or more three-state force 

generators. In particular Neuro-Fuzzy and Recurrent Neural 

Networks models for the ISA of such a ternary MPR are first 

constructed and then their real-time computation performances 

are compared to the best preparation time tp, online computing 

time tc, and the best generalization error eg respectively. 

II. INVERSE STATIC ANALYSIS SOLUTION VIA ARTIFICIAL 

INTELLIGENCE METHODS 

A. Inverse Static Analysis Model 

In this paper, we explore the posibilities of using artificial 

intelligence (AI) methods for the real-time solution of the 

Inverse Static Analysis (ISA). The ISA problem in this context 

extents to find the best combination of the activation states 


iu (among a total of 3m possibilities for any desired position 

angle D) which enables the generation of the moment M* 

(namely M* = M(D, 

iu  )) that more closely matches a 

desired torque MD; that is, to find the state combination 

iu , i 

= 1, …, m, and m = number of actuator arrays for which the 

error 
  MMe D

 is 

   iDD

u uMMe
i
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                (1)   (2.3) 

Notice that since the desired MD can be any real value, 

whereas the range  is only a discrete subset, in general the 

minimum error e* is different from zero. Moreover, owing to 

the discrete nature of the m variables iu , the ISA described by 

Eq. (1) cannot be solved via standard pseudo-inverse equations. 

B. Artificial Intelligence learning methods for ISA solution 

We introduce the Lavenberq-Marquardt Algorithm 

(LMA) as a learning mechanism that is used in AI methods for 

ISA solution.  The LMA equation according to [7] can be 

written as a function  wV  is meant to minimize with respect 

to the all LMA parameter w  using Newton’s method.The 

update of parameter vector w  is defined as updated equation 

below: 

             wewJIwJwJnwnw r

TT 
1

1       

where n is constant value: 1,2,3 ...,  wJ is Jacobian matrix, 

 is a constant value which is multiplied or divided by some 

factor whenever the iteration steps increase or decrease the 

value of  wV .  

The LMA can generated the training data from the 3D SW 

software or kinematic equations. At this point, m number of 

actuators will produce 3m training dataset (at least three 

information), which are: forces/moments, position and the 

related three-state combination respectively. In the ISA model, 

the input data will be forces and/or position and the output is 

the state combination related to the inputs. In the learning 

process, the LMA try to find the optimum parameters by 

minimizing the  wV  via Eq. (2). 

III. EXAMPLE OF THREE-STATE  CONTROL MECHANISM 

A. CSL-3RP Planar Mechanisms 

 The ternary Planar Mechanisms considered in this Section 

is represented in Fig. 1. It consists of ten same Crank and 

Slotted-Lever (CSL) 3RP planar mechanisms (R representing 

revolute joint and P representing prismatic joint) sharing the 

same moving revolute joint. The common crank is hinged 

through a R joint to the fixed frame at point O, the ten sliders 

of the different P joints are hinged by a common R joint to the 

crank at a common moving point A( ) ( indicating the 

angular position of the crank with respect to a fixed frame), the 

ten linear guides of the different P joints) are hinged to the 

fixed frame via different R joints at the points Bi that are 

equally spaced along a circular curve with angular span 

equaling 162° with radius r. For more explanation about the 

performance of compared ISA methods and its testing 

performance can be seen in Table 1 and Fig. 2 respectively [7]. 

 

 
Fig. 1. Ternary Massively Parallel Robot (MPR) actuated by ten three-state 

force generators 

Table 1 shows the comparison of several ISA methods 

concerning preparation and computation time and their 

generalization error. The performance demonstrate that HN 

and NFTS are the suitable method concerning the best 

preparation time tp and online computing time tc respectively, 

and the HN method has the best generalization error eg. In 

contrast, concerning minimum requirements of ISA solution 

such as real-time computing and generalization error, the 

ERNN and MLP methods are the recommended prosedures 

dealing with ISA problem [7]. 



 

TABLE I.  PERFORMANCE COMPARISON OF THE 10-TERNARY 

MPRS OF THE CONSIDERED METHODS TABLE STYLES 

Methoda NFTS NFLUT MLP ERNN HN 

tp (s) 
7.1e3 7.3e3 3.1e4 7.8e3 892 

tc (s) 
1.9e-3 3.8e-2 3.3e-3 3.3e-3 0.20 

em (N) 
0.622 0 0.346 0.300 0 

eg (N) 
0.998 0.3966 0.379 0.335 0.30 

RMSE (%) 
19.9 7.9 7.6 6.7 6.01 

a The CPU has 32bit OS, dual core, 2.6 GHz. NFTS(Neuro-Fuzzy Takagi 

Sugeno), NFLUT(NFTS with Look-Up Table), MLP(Multilayer 

Perceptron Neural Network), ERNN(Elman Recurrent Neural 

Network), HN(Hopfield Network) 

 

Fig. 2. Testing Performance of 10-ternary MPR with Different ISA Methods 

B. The designing of the 3D parallel manipulator with 16 

discrete-actuators 

The parallel manipulator design used in this part consists of 
a pair of body: the upper body that serves as a moving platform 
and the lower body serves as a fixed body, which are connected 
by 16 discrete-pneumatic actuators. Both the upper body and 
the lower body are circular forms that have altered diameters. 
The experimental method with discrete combination is used to 
determine the dimensions of the fixed body and the moving 
platform for the manipulator, as well as the location of each 
actuator. In this case, the discrete combination method was 
done with the help of simulation software using Solidworks. 
This combination method was done by: 1) determining the 
dimension of the fixed body and the moving platform to 
accommodate the actuator arrangement so that the manipulator 
will not experience the unexpected twist and 2) collecting the 
minimum combination states and positions that gives stable 
positions [8].  

There are several things that must be considered to 
determine whether the manipulator will experience a twist or 
not, in this case a parallel manipulator with more than six 

actuators, which are the number of actuators and actuator 
positions that will affect the dimension of the manipulator. The 
minimum number of actuators required in order to prevent a 
twist in the manipulator is six pneumatic actuators, and the 
maximum number of actuators that can be used is limited only 
by the dimension specified for the robot manipulator. In this 
paper, the experimental number of actuator used was 
determined by choosing sixteen actuators.  

Moreover, the proposed architecture should have 

specifications of both bodies, like shown in Table 1 and the 

proposed manipulator can be seen also in Fig. 3. 

TABLE II.  SPECIFICATIONS OF THE ROBOT MANIPULATOR 

MOVING PLATFORM 

Moving platform 

Material Aluminium 6061 - 

Mass 6758.56 gr 

Volume 2503170.76 mm3 

Outer Circle Diameter 560 mm 

Diameter of Centre Joint 500 mm 

Inner Circle Diameter 400 mm 

 

The parallel manipulator used has sixteen pairs of spherical 

joint and 16 pneumatic actuators which serve as prismatic 

joints. Actuators connect the moving platform and the fixed 

body using the spherical joints to form Spherical-Prismatic-

Spherical (SPS) construction. Actuators used are JELPC dual 

action type pneumatic actuators with 70 mm stroke and 12 

mm bore and can work well at air pressure range of 4-9 

kg/mm2. Both ends of the actuators are connected to the hubs 

with 25 mm diameter and 21 mm height which are made of 

ST60 steel. The hubs serve to connect the actuator with the 

spherical joints. The hub and the spherical joint are then 

locked by using a pair of plates with a thickness of 1 mm 30 

mm diameter made of ST42 steel. 

 

Fig. 3. Robot manipulator using 16 discrete actuators. 

The simulation results show that for the position of the 

aforementioned reference point along the X-axis, the 

maximum value is 64.63 mm and the minimum value is -64.64 

mm, along the Y-axis the maximum value is 276.14 mm and 

the minimum value is 199.42 mm, and along the Z-axis the 

maximum value is 64.62 mm and the minimum value is -

64.67mm. Along the X axis, the maximum force is 450.64 N, 

and the minimum force is -450.64 N, On the Y axis, the 



 

maximum force is 2154.78 N, and the minimum force is -

2154.78 N, and along the Z axis, the maximum force is 450.64 

N and the minimum force is -450.64 N. The graphs for both 

coordinates and force along the Y axis look different from 

other graphs due to the data value not being evenly distributed. 

 The parallel manipulator is planned to be controlled 

discretely using Neural Network as ISA solution for the 

manipulator. The performance of the discretely controlled 

manipulator is expected to resemble the analogue controlled 

manipulator. From Fig. 4, we can see the comparison between 

the simulation results obtained with the Solid works Motion 

Study software, which shows the approximate value when the 

actuator is controlled discretely, and position and force when 

approached using analogue control. In addition, it can be seen 

that the position and the force along X and Z axis closely 

resemble the value generated when using analogue controller. 

On the other hand, there is a fairly large deviation between the 

coordinates and the force generated from the simulation with 

the software and the coordinates and the force generated when 

using the analogue control observed along the Y axis which 

can be seen in the graph, where the position and force results 

obtained using the simulation along the Y axis jump at some 

point. As a result, it is possible that neural network might not 

work optimally as an ISA solution for the planned 

manipulator. 

 Fig. 4 shows a comparison chart between 105 data that 

has been selected from the simulation and measurement data 

that has been sorted from the smallest to the largest value.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Data Graph Showing Comparison between Software Simulation 
Result and Manipulator Measurement Process Result (a) Position along the X 

axis (b) Position along the Y axis (c) Position along the Z axis 

 The mechanical test data needs to be compared with the 

software simulation data to obtain mechanism error which is 

expressed as root mean square error (RMSE). RMSE obtained, 

expressed in mm and percent error, can be seen in Table 3, 

while some data comparison samples between the position 

obtained by simulation using the Solidworks Motion Study 

software and position measurement results obtained by 

manipulator prototype testing can be seen in Table 3. 

TABLE III.  RMSE OBTAINED BY COMPARING THE RESULTS OF 

MECHANICAL TESTING AND THE RESULTS OF MANIPULATOR SIMULATION 

USING SOFTWARE 

RMSE mm Error Percentage 

X Axis 0.57692 5.872% 

Y Axis 1.0598 0.451% 

Z Axis 0.47052 6.053% 

Average RMSE 0.43171 2.815% 

C. Two layers Hexapod 3D-MPR 

The parallel manipulator design used in this paper 

consists of a pair of body, the upper body that serves as a 

moving platform and the lower body that serves as a fixed 

body, which are connected by 12 pneumatic actuators. Both 

the upper body and the lower body are circular bodies that 

have different diameters. To determine the dimensions of the 

fixed body and the moving platform for the manipulator in this 

research, as well as the location of each actuator, trial and 

error method is used. Trial and error method was done with 

the help of simulation software using Solidworks Motion 

Study (SW). This trial and error method was done to obtain 

dimensions of the fixed body and the moving platform to 

accommodate the actuator arrangement so that the manipulator 

will not experience an unexpected twist. The minimum 

number of actuators required in order to prevent a twist in the 

manipulator is 6 actuators, and the maximum number of 

actuators that can be used is limited only by the dimension 

specified for the manipulator. In this research, the number of 

actuator used was determined to be 12 actuators. In order to 

determine the position of each actuator, a novel parallel 

manipulator was design which based on hexapod Stewart-

Gough platform [9, 10]. 



 

TABLE IV.  SELECTED DATA OF TWO-SIX HEXAPOD MECHANISM  
(1 = EXTEND, -1=RETRACT AND 0 = FLOATING) 

Lower Manipulator States Upper Manipulator States Axis Coordinates 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 X Y Z 

0 0 1 1 0 0 1 0 -1 -1 0 1 6 24 627 

0 0 1 1 0 0 1 1 0 -1 -1 0 6 27 623 

0 0 0 1 1 0 1 0 -1 -1 0 1 -85 -83 574 

0 0 0 0 1 1 0 1 1 0 -1 -1 -18 -4 628 

0 1 1 0 -1 -1 0 1 0 1 0 0 50 15 707 

-1 -1 0 1 1 0 1 0 -1 -1 0 1 -9 19 623 

-1 -1 0 1 1 0 -1 0 1 1 0 -1 9 51 574 

1 1 0 -1 -1 0 1 0 -1 -1 0 1 10 -22 627 

-1 0 1 1 0 -1 1 1 0 -1 -1 0 -11 -12 619 

0 -1 -1 0 1 1 1 0 0 0 0 0 15 -2 728 

 

The motion simulation process generates 1596 data, 

where each the data consists of coordinates along X, Y, and Z 

axis of the reference point on the moving platform, and the 

total force on the X, Y and Z axis. The measurement of 

position of the aforementioned point on the moving platform 

is done with the help of a needle and light to highlight the 

position along X and Z axis of the reference point on the 

moving platform. Some of the extracted data can be seen in 

Table 4. 

In this Section, the data simulation is generated from 

the 3D SW software. At this point, Fig. 5 and 6 show the 

implementation of the discrete manipulator with 12 actuators 

along with the graphs of data simulation results and their 

neuro-fuzzy model respectively. The total dataset for model 

use 1596 data which are already selected and sorted from the 

smallest to the largest value.  

Fig. 5. Implementation of Discrete Manipulator with 12 Discrete Actuators 

 The simulation results show that the position of 

aforementioned reference points along the X, Y and Z axis 

have similar results compared to their Neuro-Fuzzy results. 

The parallel manipulator is planned to be controlled discretely 

using Neuro-Fuzzy as ISA solution for the two-six 

manipulator. Moreover, Fig. 6 describes the comparison 

between the simulation results obtained with the SW software, 

which shows the approximate value when the actuator is 

discretely controlled. In addition, it can be seen that the 

position along X, Y and Z axis closely have generated similar 

value compared to the continuous controller form. As a result, 

the total performance has, in average, 2.12% of RMS error. 

 

 
(a) 

 
(b) 



 

 
(c) 

Fig. 6. Data Graph Showing Comparison between Software Simulation 

Result and Manipulator Measurement Process Result (a) Position along the X 

axis (b) Y axis (c) Z axis 

IV. RESULTS AND DISCUSSIONS 

As conclusion, this paper presented: 1) one planar 
massively parallel robots (MPRs) with 10 three-state force 
actuators and one continuous degree of rotational motion and 
its ISA Solution using  two Neuro-Fuzzy methods (NFTS, 
NFLUT) and three Neural Network methods (MLP, ERNN and 
HN) of the considered MPRs. Thanks to the partitioned and 
spatially distributed actuator architecture, the considered 
discrete robot features rather sufficient, identical and accurate 
torque generation capabilities, compared to the standard CSL 
mechanism (actuated by a single continuously regulated force 
generator); 2) two 3D-MPRs (sixteen actuators and two-six 
actuators) with design and mechanical testing using Neuro-
Fuzzy method. Therefore it is most likely that according to [7], 
neuro-fuzzy and neural network can be used as ISA solution on 
this discrete robot manipulator. The conclusion that can be 
drawn from this research based from the value of the RMSE is 
that the parallel manipulator sixteen actuators are designed in 
this research works relatively well with mechanical testing 
error RMSE below 10%.  
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