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Abstract 

In this paper the discrete-Kirchhoff Mindlin quadrilateral (DKMQ) element was developed for buckling analysis of plate bending 

including the shear deformation. In this development the potential energy corresponding to membrane stresses was incorporated 

in the Hu-Washizu functional. The bilinear approximations for the deflection and normal rotations were used for the membrane 

stress term in the functional, while the approximations for the remaining terms remain the same as in static analysis. Numerical 

tests showedthat the element has good predictive capability both for thin and thick plates.  
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1. Introduction 

Plate bending is of an utmost important structural model in engineering. To analyze practical problems of plate 

bending, the finite element method (FEM) is at present the most widely used numerical method. Indeed the plate 

bending problem is one of the earliest problems to which the FEM was applied[1]. The most commonly used 

theories in developing finite elements for analysis of plate bending are Kirchhoff (or thin plate) and Reissner-

Mindlin (or thick plate) theories. The Kirchhoff plate theory neglects the effect of shear deformation and thus it is 

only valid for thin plates, whereas the Reissner-Mindlin (RM) plate theory is applicable to both thick and thin plates. 

In early development of the FEM,the Kirchhoff theory was widely adopted as the basis of the finite element 
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formulation. The difficulty with this approach is to construct the shape functions that satisfy the C
1
 continuity 

requirement. In the subsequent developments the RM theory is preferred since it requires only C
0
 continuity on the 

shape functions and furthermore, it is a more general theory than the Kirchhoff theory. 

While the use of RM theory in developing plate elements by-passes the difficulty caused by the C
1
 requirement, 

direct application of the displacement-based finite element formulation, however, produces elements that overly stiff 

for thin plate situations. This phenomenon is known as shear locking. Early attempts to overcome this difficulty 

wasto employ the selective reduced integration technique (e.g. see [2] and the references therein). Unfortunately this 

simple approach produced elements that have spurious energy modes. Since then there are innumerable RM plate 

bending elements have been proposed with different approaches to eliminate the shear locking. Some recently 

proposed successful plate bending elements include the refined Mindlin plate elements [3,4], a family of RM plate 

elements formulated using the discrete shear gap concept [5,6], and the RM plate element based on the consistent 

version of the Mindlin equations [7].   

Among countless plate bending elements available now, the discrete-Kirchhoff Mindlin quadrilateral (DKMQ) 

element proposed by Katili [8]is of our interest since it has the standard nodal degrees of freedom, pass the patch 

test, shear locking free, and no spurious zero energy modes.Furthermore it has been proven [8] that the DKMQ has 

good predictive capability for thin to thick plates. This element is an extension of the DKQ (discrete Kirchhoff 

quadrilateral) element [9], which is a simple, efficient and reliable element for analysis of thin plates,to include the 

shear deformation. The DKMQ [8] results will converge to the DKQ [9] results as the plate becomes progressively 

thinner.  

With regard to the good characteristics of the DKMQ element, this element has been recently further developed to 

the DKMQ24 shell element [10] and applied to composite plate bending structures [11,12]. However, to the authors’ 

knowledge, there is no published report on the application of the DKMQ to plate bending buckling problems. It is 

thus the aim of this paper to present the development of the DKMQ element to plate buckling problems.  

In the present development the membrane strain energy was added to the original Hu-Washizu functional for RM 

plates in order to account for the membrane stress effect to the plate bending stiffness. The approximate deflection 

and rotation fields for the membrane strain energy were taken to be the standard bilinear function, while the 

approximate fields for the bending and shear strain energy followed the original work [8]. The element was tested to 

different plate buckling problems to assess the accuracy and convergence characteristics. The results showed the 

DKMQ element can give accurate critical bucking loads both for thin and thick plates. 

2. Formulation of the DKMQ for bucking analysis 

A detailed formulation of the DKMQ for static analysis of plate bending have been presented in Reference [8]. In 

this sectionwe present only the essential equations of the static formulation. The focus is given to formulation of the 

DKMQ for buckling problems. 

2.1. Variational formulation 

We consider a plate of uniform thickness h, made from homogeneous and isotropic material with modulus of 

elasticity E and Poisson’s ratio ν. Three dimensional Cartesian coordinate system is established with the x-y plane 

lying on the plate middle surface Aas illustrated in Fig 1. Based on basic assumptions of the RM plate theory, the 

displacement of a generic point in the plate can be expressed as 

     (   )           (   )          (   ) (1) 

Where w is the deflection of the middle surfaceA, βx and βy are the normal line rotations in the x-z and y-z planes, 

respectively.  

The strains associated with bending deformation, 〈  〉, can be expressed in terms of the curvature, 〈 〉, as  

〈  〉    〈 〉,   〈 〉    〈
   

  

   

  
   (

   

  
 
   

  
)〉  (2a, b) 
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Fig. 1. Plate with the coordinate system and positive sign convention for the displacement fields. 

The strains associated with transverse shear deformation are given as 

〈 〉  〈    〉   〈
  

  
   

  

  
   〉  (3) 

Here and here after symbols 〈 〉, * +, and , - are used to denote a row matrix, a column matrix, and a square matrix, 

respectively. 

Following the static formulation[8], the Hu-Washizu functional is used as the basis to develop the DKMQ 

element for plate buckling analysis. In the presence of membrane (or in-plane) pre-buckling stresses  
 ,   

  and    
  

and in the absence of other external forces, the Hu-Washizu functional is given as[8], [13]–[16] 

    (     )    .        * + * +/    (       )  (4) 
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   (7) 

In Eqns. (4)-(7)   is the bending strain energy,   is the shear strain energy, and    is the membrane strain 

energy associated with the buckling deformation. Matrix * + is a matrix of assumed shear strains and matrix * + is a 

matrix of the shear forces. Matrices ,  - and ,  - are the bending and shear elasticity matrices, respectively, given 

as  

,  -    [

   
   

  
   

 

]         
   

  (    )
  (8) 

,  -    0
  
  

1              (9) 

Here Db is the bending rigidity,Ds is the shear rigidity, k is the shear correction factor, which is taken tobe 5/6,and G 

is the shear modulus,      (   ).  
The expression of   , Eqn. (7), comes from the work of membrane stresses   

 ,   
  and    

 along the nonlinear 

terms of membrane Green strains[14], [16]. In this equation, ,  - is the matrix of membrane stresses, that is 
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,  -  [
  
    

 

   
   

 ]  (10) 

Matrices 〈  〉, 〈   〉 and 〈   〉 are matrices of gradient of the deflection and rotations, that is, 

〈  〉  〈
  

  

  

  
〉 〈   〉  〈

   

  

   

  
〉 〈   〉  〈

   

  

   

  
〉 (11) 

The stationary condition of   with respect to {T} gives[8], [15] 

∫ 〈  〉
 

.* +  * +/       (12) 

Which is a constraint equation relating the assumed shear strains * + to the kinematical shear strains * +.  

2.2. Approximation form 

We consider a typical DKMQ element as shown in Fig. 2. The element has four nodes and three degrees of 

freedom per node, that is, wi, βxi, βyi, i=1,… , 4. Mid-side nodes 5, …, 8 are used to define a nodal parameter     , 

k=5,… , 8, which is the difference between the linearly and quadratically interpolated tangential rotation at a mid-

side node. For the bending and shear strain energies    and   , approximate rotations within an element are given 

as [8] 

    ∑      
 
    ∑         

 
     (13) 

    ∑      
 
    ∑         

 
     (14) 

Where    
 

 
(   )(   ), i=1,…, 4, are the bilinear shape functions and Pk, k=5,…, 8 are the hierarchical 

quadratic shape functions, all of them are expressed in terms of natural coordinates ξ-η. Ck and Sk are the direction 

cosines of side k. Approximate deflection and rotations for the membrane strain energy   , however, are given as 

   ∑     
 
       ∑      

 
       ∑      

 
    (15) 

The assumed shear strains * +are linearly interpolated from the discrete tangential shear strains at the mid-side 

nodes 5, …, 8. These mid-side tangential strains are obtained based on the moment-shear equilibrium equation along 

each side. The constraint equation, Eqn. (12), is implemented in discrete manner along each side using [8] 

∫ .     /   
  
 

                  
  

  
    (16) 

Where s is the tangential coordinate alongside k (see Fig. 2). 

 

 

Ck= cos θk = xji/Lk 

Sk= sin θk = yji/Lk 

Lk
2= xji

2+ yji
2 

xji=xj- xi 

yji=yj-yi 
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(a)      (b)  

Fig. 2. (a) DKMQ element with natural coordinates ξ-η and normal-tangential coordinates n-s along each side; (b) side k—nodes i, j (Taken from 

Reference [8]). 

2.3. Geometric stiffness matrix 

Substituting the approximate deflection and rotations, Eqns. (15), into Eqns. (11), followed by substituting the 

resulting gradient matrices into Eqn. (7), the membrane strain energy of an element can be expressed as 

   
 

 
〈  〉,  -*  +  (17) 

in which 

〈  〉  〈                                〉 (18) 

is the nodal displacement vector and 

,  -   ∫ ,  -
 ,  -,  - 

   
  

  
∫ [   ]
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∫ [   ]

 
,  -[   ] 
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is the geometric stiffness matrix. In this equation 

,  -  [ 
      

      
          ]  (20a) 

[   ]  [ 
      

      
          ][   ]  [ 

      
      

          ] (20b, c) 

where 

                                        (21) 

And herej11, j12, j21, j22 are the components of the invers Jacobian matrix.  

The reader may consult Reference [8] for a detailed formulation leading to the bending and shear stiffness 

matrices. 

3. Numerical tests 

In the following tests, we perform a series of plate buckling analyses to assess the convergence characteristics 

and accuracy of the developed DKMQ element in predicting a critical buckling load. The results are presented in 

terms of a non-dimensional buckling load intensity factor defined as      
      

   [13,17], where Ncr is the 

critical buckling load and Db is the bending rigidity, as defined in Eqn. (8).  

3.1. Simply-supported square plates subjected to an in-plane compressive load 

We firstly consider a hard type simply-supported square plate with two different length-to-thickness ratios, that is 

L/h=10 and L/h=100, subjected to a uniaxial compressive load in x-direction. The length of the plate is L=10 m; the 

material properties are          N/m
2
 and ν=0.3. The plate is modeled using different degrees of mesh 

refinement, i.e.    ,    ,    , and      .  

The resulting buckling load intensity factors are presented in Table 1together with the analytical solutions. It is 

observed that the DKMQ results converge from above to the corresponding analytical solutions, both for the case of 
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moderately-thick plate, L/h=10,as well asfor the case of thin plate, L/h=100. ‘Converging from above’ is reasonable 

since the formulation basis is not a purely displacement-based formulation.  

Table 1. Buckling load intensity factors for hard type simply-supported square plates. 

Mesh L/h=10 L/h=100 

2x2 4.694 5.016 

4x4 3.986 4.244 

8x8 3.801 4.058 

16x16 3.750 4.013 

Analytical solution 
3.741  

([18] as cited in[17]) 

4 

[19] 

3.2. Rectangular plates subjected to an in-plane compressive load 

Secondly we consider hard type simply-supported rectangular plates of the length a and width b with five length-

to-width ratios, a/b=0.5, 1, 1.5, 2, 2.5, and three thickness-to-width ratios, h/b=0.05, 0.1, 0.2, as described in 

Reference [13]. The plate is subjected to an in-plane compressive force N along the edges of width b. The material 

properties are the same as in the previous test. The plates are modeled using meshes with the number of elements 

along the edges of width b, n=12, while the number of elements along the edges of length a follows the ratio of a/b 

(thus the shape of all elements is square of the length b/12). 

The resulting buckling load intensity factors are tabulated in Table 2 together with those obtained using the 

meshfree method with regular       particles presented by Liew et al.[13] and the pb-2 Ritz method presented by 

Kitipornchai et al. [20]. It is observed that results from the present elementare in agreement with those obtained 

using the meshfree and pb-2 Ritz methods. For the case of thin plates(h/b=0.05), the results are a little bit higher 

compared to the reference results. As the plates become thicker (h/b=0.1 and h/b=0.2), however, the results are 

between the meshfree and pb-2 Ritz results. 

Buckling mode shapes for the plates with length-to-width ratios a/b=2 and a/b=2.5 are shown in Fig. 3. These 

bucking modes are in agreement with those presented in Reference [13]. 

 

a  b  

Fig. 3. Buckling mode shape for hard type simply-supported rectangular plates with length-to-width ratios: (a) a/b=2; (b) a/b=2.5. 
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Table 2. Buckling load intensity factors for hard type simply-supported rectangular plates with different length-to-width 

ratios a/band thickness-to-width ratios h/b.  

a/b h/b Present Meshfree [13] pb-2 Ritz ([20] as cited in [13]) 

0.5 0.05 6.0967 6.0405 6.0372 

 

0.1 5.4085 5.3116 5.4777 

 

0.2 3.7877 3.7157 3.9963 

     1 0.05 3.9609 3.9293 3.9444 

 

0.1 3.7637 3.7270 3.7865 

 

0.2 3.1501 3.1471 3.2637 

     1.5 0.05 4.2764 4.2116 4.257 

 

0.1 3.9886 3.8982 4.025 

 

0.2 3.1638 3.1032 3.3048 

     2 0.05 3.9609 3.8657 3.9444 

 

0.1 3.7637 3.6797 3.7865 

 

0.2 3.1501 3.0783 3.2637 

     2.5 0.05 4.0817 3.9600 4.0645 

 

0.1 3.8376 3.7311 3.8683 

  0.2 3.1134 3.0306 3.2421 

3.3. A square plate with a hole subjected to different in-plane loads 

Lastly we consider a hard-type simply-supported square plate with a hole of the thickness h=1, as shown in Fig. 

4(a). The material properties are taken to be the same as in the first test (Sec. 3.1). The plate is subjected to three 

different in-plane load cases, namely an axial compressive load in x-direction, Nx, pure shear load, and biaxial 

compressive loads in x and y directions where Nx=Ny. The plate is modelled using a mesh as shown in Fig. 4(b).  

The analysis results are tabulated in Table 3 and compared to those obtained using the element-free Galerkin 

method (EFGM) [17]. It can be seen that the results are very close to those of the EFGM,that is, around 1-

3%higherthan the EFGM results.  

Table 3. Buckling load intensity factors for the hard type  

simply-supported square plate with a hole.  

Method Axial Shear Biaxial 

Present 2.041 7.978 1.059 

EFGM [17] 1.986 7.867 1.032 
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a  b  

Fig. 4. (a) Hard type simply-supported square plate with a hole (adopted from [17], p. 474) and (b) itsfinite element mesh. 

4.  Conclusions 

The DKMQ element has been extended for buckling analysis of plate bending. The static part of the formulation 

was taken to be the same as in the original formulation, while the geometric stiffness matrix was formulated based 

upon the standard bilinear approximation of the deflection and rotations in the membrane strain energy expression. 

The convergence and accuracy of the present formulation were tested using different plate buckling problems.The 

results showed that the element can yield accurate solutions both for thin and thick plates. The results converged 

from above as the finite element mesh was refined. Therefore, the DKMQ element can be very useful for predicting 

a critical buckling load in practical applications.  

References 

[1]  O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, Volume 2: Solid Mechanics, fifth ed., Butterworth-Heinemann, Oxford, 2000. 

[2]  T. J. R. Hughes, R. L. Taylor, W. Kanoknukulchai, A simple and efficient finite element for plate bending, Int. J. Numer. Methods Eng. 11 

(1977) 1529–1543. 

[3]  C. Wanji, Y. K. Cheung, Refined quadrilateral element based on Mindlin/Reissner plate theory, Int. J. Numer. Methods Eng. 47 (2000) 605–

627. 

[4]  C. Wanji, Y. K. Cheung, Refined 9‐ dof triangular Mindlin plate elements, Int. J. Numer. Methods Eng. 51 (2001) 1259–1281. 

[5]  K. U. Bletzinger, M. Bischoff, E. Ramm, A unified approach for shear-locking-free triangular and rectangular shell finite elements,Comput. 

Struct., 75 (2000) 321–334. 

[6]  M. Bischoff, F. Koschnick, K. Bletzinger, Stabilized DSG elements – A new paradigm in finite element technology, Proc. 4th Eur. LS-DYNA 

Users Conf., Ulm, Germany, 2003. 

[7]  G. Falsone, D. Settineri, I. Elishakoff, A new locking-free finite element method based on more consistent version of Mindlin plate equation, 

Arch. Appl. Mech. 84 (2014) 967–983. 

[8]  I. Katili, A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields- Part II: an 

extended DKQ element for thick-plate bending analysis, Int. J. Numer. Methods Eng. 36 (1993) 1885–1908. 

[9] J. L. Batoz, M. Ben Tahar, Evaluation of a new quadrilateral thin plate bending element, Int. J. Numer. Methods Eng. 18 (1982) 1655–1677. 

[10]  I. Katili, J. L. Batoz, I. J. Maknun, A. Hamdouni, O. Millet, The development of DKMQ plate bending element for thick to thin shell 

analysis based on the Naghdi/Reissner/Mindlin shell theory, Finite Elem. Anal. Des. 100 (2015) 12–27. 

[11]  I. Katili, I. J. Maknun, A. Hamdouni, O. Millet, Application of DKMQ element for composite plate bending structures, Compos. Struct. 132 

(2015) 166–174. 

[12]  I. J. Maknun, I. Katili, H. Purnomo, Development of the DKMT element for error estimation in composite plate structures, Int. J. Technol. 5 

(2015) 780–789. 

[13]  K. M. Liew, J. Wang, T. Y. Ng, M. J. Tan, Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree 

method, J. Sound Vib.276 (2004) 997–1017, 2004. 

[14]  J. N. Reddy, An Introduction to the Finite Element Method, third ed., McGraw-Hill, Singapore, 2006. 

[15]  J. L. BatozI. Katili, On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints, Int. J. 

Numer. Methods Eng.35 (1992) 1603–1632. 

[16]  R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite Element Analysis, forth ed., John Wiley & Sons, 

2002. 

[17]  G. R. Liu, Mesh Free Methods: Moving Beyond the Finite Element Method, first ed., CRC Press, Boca Raton, 2003. 

[18]  S. Srinivas, A. K. Rao, C. V. J. Rao, Flexure of simply supported thick homogeneous and laminated rectangular plates, ZAMM - J. Appl. 

Math. Mech.49 (1969) 449–458. 

[19]  A. Chajes, Principles of Structural Stability Theory, Prentice-Hall, Eaglewood Cliffs,1974. 

[20]  S. Kitipornchai, Y. Xiang, C. M. Wang, K. M. Liew, Buckling of thick skew plates, Int. J. Numer. Methods Eng. 36 (1993) 1299–1310. 

Uncorrected Proof


