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a b s t r a c t

Multiple work shifts are commonly utilized in construction projects to meet project requirements. Neverthe-

less, evening and night shifts raise the risk of adverse events and thus must be used to the minimum extent

feasible. Tradeoff optimization among project duration (time), project cost, and the utilization of evening and

night work shifts while maintaining with all job logic and resource availability constraints is necessary to

enhance overall construction project success. In this study, a novel approach called “Multiple Objective Sym-

biotic Organisms Search” (MOSOS) to solve multiple work shifts problem is introduced. The MOSOS algorithm

is new meta-heuristic based multi-objective optimization techniques inspired by the symbiotic interaction

strategies that organisms use to survive in the ecosystem. A numerical case study of construction projects

were studied and the performance of MOSOS is evaluated in comparison with other widely used algorithms

which includes non-dominated sorting genetic algorithm II (NSGA-II), the multiple objective particle swarm

optimization (MOPSO), the multiple objective differential evolution (MODE), and the multiple objective ar-

tificial bee colony (MOABC). The numerical results demonstrate MOSOS approach is a powerful search and

optimization technique in finding optimization of work shift schedules that is it can assist project managers

in selecting appropriate plan for project.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Labor is a critical construction project resource for construction

contractors to be successful on every construction project. Inefficient

management of labor resources can result the contractors not able

to meet the project deadline and budget requirement. When facing a

tight schedule deadline, labor resources has a huge limitation on the

number of hours a worker can work per day. Therefore, it requires the

use of shift work to meet scheduled deadlines [1]. Using shift work

can approximately double the total amount of work hours per day. It

also has an advantage over using overtime hours because it prevents

worker fatigue and has lower hourly labor costs [2,3]. Furthermore,

work shift done during the evening and night is often more efficient

due to the quieter, less congested environment around the construc-

tion site.

In spite of these advantages, the multiple shift schedules possess

several shortcomings including its negative impacts on construction

cost, productivity, and safety [1,4]. The multiple shifts might lead in
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igher overall costs that are required for shift premiums, quality con-

rol, nighttime lighting, and safety measures. Additionally, disturbed

leep cycles and stress resulting in higher injury and accident risks,

nd nighttime construction adversely affects worker health due to

ircadian rhythm disruption [5–7]. Moreover, recent researches iden-

ified that the utilization of evening and night shifts causes higher

ates of labor overturn and absenteeism that leads to project delays

nd cost overruns [2,4]. In order to minimize these negative impacts

f utilizing multiple shifts while complying with labor availability

onstraints, project decision makers need to distribute and utilize the

imited labor resources among multiple shifts in the most efficient

nd effective way to maximize project performance.

Over past decades, a significant amount of research studies have

eveloped optimization models to solve civil engineering problems

anging from structural engineering [8] to construction management

9]. In recent years, there have been notable efforts to solve resource

tilization problems using multi-objective optimization models. The

ost commonly used multi-objective optimization model is the mul-

iple objective genetic algorithm (GA) [10–13]. Other researchers have

developed hybrid models of genetic and other algorithms such as par-

ticle swarm optimization (PSO) [14], differential evolution (DE) [15]

and simulated annealing [16]. However, there are a few reported re-

searches that focus on optimizing the utilization of multiple labor
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2

hifts in constructions. Jun and El-Rayes [1] firstly applied a multi-

le objective genetic algorithm to work shift problem. Therefore, fur-

her study is needed to build better optimization models to schedule

onstruction project work shift.

Symbiotic Organisms Search (SOS) is currently one of the most

ecent metaheuristic algorithms [17]. SOS was first used in a wide va-

iety of highly nonlinear benchmark and engineering problems. The

OS algorithm is simply structured and easy to use, while demon-

trating great robustness and fast convergence in solving single ob-

ective global optimization problem. Preliminary studies indicate that

he new SOS algorithm is superior over the widely used GA, PSO, DE,

nd bees algorithm (BA) in solving a various continuous benchmark

unction and engineering problems [17]. Since the SOS algorithm is

elatively new, the capability of the SOS algorithm in solving the time

ost utilization labor tradeoff (TCUT) problem is very interesting to

e further explored and investigated.

This study presents the novel Multiple Objective Symbiotic Or-

anisms Search (MOSOS) algorithm to facilitate a TCUT analysis. The

mportant contribution of this research is that the proposed MOSOS

lgorithm is a new, multiple objective optimization (MOO) version

f the basic SOS algorithm. MOSOS algorithm is developed to fit the

CUT problem because the ability to provide efficient solutions for

omplex problems simpler operations of SOS is very much attractive

nd encouraging. The proposed algorithm is designed to attain fast

onvergence without losing solution diversity on the Pareto front.

The remaining of this paper is organized as follows. In Section 2,

he time-cost-utilization resource problem is mathematically formu-

ated. In Section 3, literature related to the establishment of the new

ptimization model is briefly reviewed. In Section 4, the detailed de-

criptions of the proposed optimization model for the TCUT problem

re presented in details. In Section 5, the performance of the newly

eveloped model is demonstrated using two numerical experiments

nd result comparisons. Section 6 presents study conclusions.

. Work shift schedules problem formulation

Using multiple work shifts in a construction project requires that

he project planners determine the execution mode of project activi-

ies, seek to find the optimal scheduling sequence and assign workers

o shifts while satisfying all project constraints. The work shift prob-

em must minimize three contradicting objectives simultaneously in-

luding project duration, project cost, and total evening and night

hift working hours [1].

The first objective, minimization of total project duration, may be

xpressed as follows:

inimize project time T =
l∑

n=1

T Sn
n = Max∀n(ESn + Dn)

Sn = Maximum
all predecessors m of n

(ESm + Dm) (1)

here T Sn
n is the duration of the activity n{n = 1, 2, . . . , l} on the criti-

al path for a specific option of resources (Sn); l is the total number of

ritical activities on a specific critical path. ESn is the earliest start of

ctivity n, Dn is the duration of activity n. In general, project duration

s calculated based on precedence constraints and activity duration.

he project information determines the precedence constraints and

he selection alternatives determine activity duration.

The second objective, minimization of total project cost, may be

alculated as follows:

inimize project cost =
N∑

i=1

CostSi

i
(2)

here Cost
Si
i

is the total cost which includes direct and indirect cost

f activity i for a specific option of resources (Sn) and N is the total

umber of activities.
The third and final objective, minimization of project labor utiliza-

ion in evening and night shifts, may be calculated as follows.

inimize LHEN = LHE + LHN(1 + W )if SS

= 3 (Three shifts system (SS)) (3)

HNE = LHE if SS = 2 (Two shifts system) (4)

HE =
N∑

n=1

(Dn
∗Rn,2)

∗
HE (5)

HN =
N∑

n=1

(Dn
∗Rn,3)

∗
HN (6)

here LHEN is the total number of evening and night shift work

ours, LHE is the total number of evening shift work hours and LHN

s the total number of night shift work hours. Because risks faced in

ight shift work are typically higher than in other shifts, W is the de-

ned weight that represents the relative importance of minimizing

HN. Rn, k is the daily labor demand of activity n on shift k. k repre-

ents the shift type (e.g., for the 3-shift system, k = 1 means day shift,

= 2 means evening shift, and k = 3 means night shift); HE is the

aily evening shift work hours (7.5 h per day); and HN is the daily

ight shift work hours (7 h per day). In this study, day shift is the pe-

iod of time for such work during the day (as 8 a.m. to 4 p.m. – 8 h).

vening shift is the work shift during the evening (as 4 p.m. to mid-

ight). Night shift is the work shift during the night (as midnight to

a.m.).

. Literature review

.1. Review of multiple objective optimization

A MOO problem involves several conflicting objectives simultane-

usly. The MOO with such conflicting objective functions gives rise

o a set of Pareto optimal solutions instead of one optimal solution.

ecause no one of these solutions can be considered to be better than

ny other with respect to all objective functions. Generally, the MOO

roblem consists of n decision variables, k objective functions, m in-

quality constraints and p equality constraints. It may be mathemat-

cally formulated as follows [18–20]:

in
X∈D

f (X ) = [ f1(X ), f2(X ), . . . , fk(X )] (7)

.t gi(X ) ≥ 0; i = 1, . . . , m (8)

j(X ) = 0; j = 1, . . . , p (9)

= {X|g(X ) ≥ 0, h(X ) = 0} (10)

here f(X) is the objective vector, k is the number of objective func-

ions. gi(X) is the set of inequality constraints, and hj(X) is the set of

quality constraints. The solution X(x1, x2, . . . , xn)T is a vector of n

ecision variables in feasible region D. The multi-objective optimiza-

ion problem works to determine those vectors X that yield the opti-

um values for all the objective functions from the set D of all vectors

hich satisfy (8) and (9).

Because this problem rarely presents a unique solution, decision

akers are expected to choose a solution from among a set of effi-

ient solutions, known collectively as the Pareto. The Pareto domi-

ance is formally defined as follows (Deb [18]):

Solution X1(x1.1, x1.2, . . . , x1.n)T dominates X2(x2.1, x2.2, . . . ,x2.n)T

f both the conditions are satisfied:

1. ∀i ∈ (1, 2, . . . , k) : fi(X1) ≤ fi(X2). The solution X1 is no worse

than X2 in attaining all objectives.

2. ∃i ∈ (1, 2, . . . , k) : fi(X1) < fi(X2). The solution X1 is strictly

better than X in at least one objective.
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Fig. 1. SOS algorithm pseudocode.
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So, while comparing two different solutions X1 and X2, there are

three possibilities of dominance relation between them.

• X1 dominates X2

• X1 is dominated by X2

• X1 and X2 are non-dominated to each other.

A non-dominated solution means that no other solution has been

found that dominates it. The set of non-dominated solutions is called

the Pareto front.

Multiple Objective Evolutionary Algorithms (MOEAs) have at-

tracted increasing attention for solving MOO problems [21–24] in re-

cent years. Various researchers from various multi-disciplinary have

used MOEAs to solve optimization problems that arise in their own

fields [25–27]. As MOO problems become more complex, new MOEAs

will continue to emerge.

3.2. Symbiotic Organisms Search algorithm

The SOS algorithm is a new meta-heuristic algorithm devel-

oped by Cheng and Prayogo [17]. It is inspired by the biological

dependency-based interaction seen among organisms in nature. The

dependency-based interaction is often known as symbiosis. Like

most population-based meta-heuristic algorithms, SOS shares the

similar following features: it uses a population of organisms which

contains candidate solutions to seek the global solution over the

search space; it has special operators that employ the candidate

solutions to guide the searching process; it uses a selection mecha-

nism to preserve the better solutions; it requires a proper setting of

common control parameters such as population size and maximum

number of evaluations.

However, unlike most meta-heuristic algorithms which have ad-

ditional control parameters (i.e. GA has crossover and mutation rate;

PSO has inertia weight, cognitive factor, and social factor), SOS re-

quires no algorithm-specific parameters. This is considered as an

advantage over competing algorithms since SOS does not need ad-

ditional work for tune the parameters. Improper tuning related to

the algorithm-specific parameters might increase the computational

time and produce the local optima solution.

In the early stage, a random ecosystem (population) matrix is

created, each row representing a candidate solution to the corre-

sponding problem. The number of organisms in the ecosystem, so-

called the ecosystem size, is pre-determined by the users. The rows

in the matrix are called organisms, same as individuals in other meta-

heuristic algorithms. Each virtual organism represents a candidate

solution to the corresponding problem/objective. The search begins

after the initial ecosystem generated. During the searching process,

each organism gains benefit from continuously interacting with one

another through three different ways:

1. Mutualism phase: The phase where one organism is develop-

ing a relationship that benefits itself and also the other. The

interaction between bees and flowers is a classic example to

explain the philosophy of mutualism.

2. Commensalism phase: The phase where one organism is de-

veloping a relationship that benefits itself while does not im-

pact the other. An example of commensalism is the relation-

ship between remora fish and sharks.

3. Parasitism phase: The phase where one organism is develop-

ing a relationship that benefits itself but harms the other. An

example of parasitism is the plasmodium parasite, which uses

its relationship with the anopheles mosquito to pass between

human hosts.

These three phases are adopted from the most common sym-

bioses used by organisms to increase their fitness and survival advan-

tage over the long term. During the interaction, the one who receive

a benefit will evolve to a fitter organism while the one who is harmed
ill perish. The mechanisms for updating the best organism will be

onducted after one organism has completed their three phases. The

hase will operate until the stopping criterion is achieved. The pseu-

ocode shown in Fig. 1 further summarizes the basic step SOS opti-

ization procedure.

. The proposed Multiple Objective Symbiotic Organisms Search

or time–cost–utilization labor tradeoff model (MOSOS-TCU)

This section describes the Multiple Objective Symbiotic Organ-

sms Search (MOSOS) for solving the TCUT problem developed in this

tudy based on the original SOS algorithm [17]. Fig. 2 shows the over-

ll operational architecture of the proposed algorithm. The following

ubsections provide further details on the flowchart.

.1. Ecosystem initialization

This study considers the TCUT problem, in which project cost,

roject duration, and the utilization of evening and night work shifts

re optimized simultaneously. The model requires project informa-

ion inputs including activity relationship, activity duration (Duri),

ctivity cost (Ci), daily labor demand (Ri,j), shift options (Si) for each

ctivity, and total number of available labor (RC). In addition, the user

lso must provide parameter settings for the search engine (MOSOS)

uch as the value of ecosystem size ecosize, number of decision vari-

bles D, number of objective functions M, maximum number of gen-

rations Gmax, the lower bound (LB) and the upper bound (UB) of deci-

ion variables. With these inputs, the optimizer conducts calculations

o obtain an optimal set of shift options, optimal scheduling sequence

nd assign available labors to shifts for all construction project activ-

ties. With all the necessary information provided, the model is capa-

le of operating automatically without any human intervention.

Population (ecosystem) initialization is the first and the primary

ask in any optimization algorithm. These two terms, population

nd ecosystem or, are used interchangeably. Analogous to other

opulation-based algorithms, MOSOS begins with an initial popula-

ion called the ecosystem. In the initial ecosystem, a group of organ-

sms is generated randomly to the search space as follows:

The initial process generates a point in D-dimensional space X =
x1, x2, . . . , xD} in which x1, x2, . . . , xD ∈ � and xj ∈ [0, 1] have uniform

andom distributions. The first ecosize organisms may be easily gen-

rated as follows:

G=0
i, j = LBj + xi, j

∗(UBj − LBj); i = 1, 2, . . . , D;
j = 1, 2, . . . , ecosize (11)
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Fig. 2. MOSOS for the TCUT problem flowchart.
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.2. Decision variables and constraints

A candidate solution to the TCUT problems may be represented as

vector with these decision variables: (1) shift option used for each

ctivity; (2) the priority value of each activity; and (3) the labor con-

traint with (2N + 1), (2N + 2) elements for two, three shifts system,

espectively, as follows:

=

⎡
⎢⎣xi,1, . . . , xi, j, . . . , xi,N︸ ︷︷ ︸

Shift−Option Sn

, xi,N+1, . . . , xi,2N︸ ︷︷ ︸
Priority−value Pn

, xi,2N+1, xi,D︸ ︷︷ ︸
Labor−Constraint Lk/RC

⎤
⎥⎦

(12)

here D is the number of decision variables in the problem at hand.

t is obvious that N is the number of activities in the project network.

ndex i denotes the ith individual in the population.

(1) Shift option: Shift-option (Sn) represents the feasible shift op-

tions for activity n. Every option has specific combinations of

duration, cost and labor demands that lead to different total

project durations, total costs and total labor hours. Vector xi,n

represents one shift option value for activity n. Si,n is an inte-

ger number in the range [1,USn] (n = 1 to N), meaning one po-

sition from USn shift options. Because the original DE operates

with real-value variables, a function is employed to convert the

execution mode options of those activities from real values to

integer values within the feasible domain.

Si,n = Round(xi,n × USn) ; (n = 1, . . . , N) (13)

where xi, n is the shift option value of activity n at the individual

ith. USn represents the total number of shift options for each

activity. Round is a function to convert a real number to the

nearest integer greater than or equal to it.
(2) Priority value: priority-value (Pn) represents the preference

value for each activity in comparison with all other activities.

Eq. (14) shows the constraint for this variable.

0 ≤ Pn ≤ 1; n = N, . . . , 2N (14)

Together with labor constraints and the precedence relation-

ships between activities, Pn values help determine the project

scheduling sequence and calculate project duration based the

resource constraint subsystem presented in the following sub-

section.

(3) Labor constraints: labor-constraint (Lk/RC) represents the per-

centage of total available labors per day for shift k. Eq. (15)

shows the constraint for this variable.

0 ≤ Lk/RC ≤ 1; k = 1, K − 1 (15)

here RC is the total number of labors per day available for distribu-

ion among all shifts; k is shift type; and K is the maximum number

f allowable shifts per day (e.g. K = 3 for three shifts and K = 2 for

wo shifts). This decision variable limits the amount of workers per

hift and determines the allocation of available workers. The labor

vailability (RCSk) for each shift in the three-shift system may be cal-

ulated as follows:

Rk = max
n∈All

{RSn

n,k
} (16)

EM = RC −
∑K

k=1
MRk (17)

R1 = Round(REM∗(L1/RC)) (18)

R2 = Round
(
(REM − PR1)

∗(L2/RC)
)

(19)

CS1 = MR1 + PR1 (20)

CS2 = MR2 + PR2 (21)
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Fig. 3. Transfer to feasible active schedule.
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RCS3 = RC − (RCS1 + RCS2) (22)

where MRk is the minimum number of workers for shift k; REM is the

remaining number of available workers; PR1 is the additional number

of workers available for allocation to the day shift; PR2 is the addi-

tional number of workers available for allocation to the evening shift;

RCS1 is the maximum number of workers allowed to be allocated to

the day shift; RCS2 is the maximum number of workers allowed to be

allocated to the evening shift; and RCS3 is the maximum number of

workers allowed to be allocated to the night shift.

4.3. Resource constraint subsystem

Once the MOSOS organism is created, the project duration is cal-

culated through serial method. The shift-option (Sn) values of MOSOS

organism defines the execution mode of each activity and then deter-

mines the corresponding durations and resource requirements of all

activities. The priority value (Pn) of MOSOS organism carries out the

sequence of activities. Labor-constraint (Lk) figure out the number of

available labors per day for each shift.

The serial method was proposed by Kolisch [28]. It consists of

n = 1,…,N stages, in which one activity is selected and scheduled in

each stage. When an activity has been checked and currently avail-

able amounts of resources are adequate, this activity is scheduled at

the earliest precedence time (e.g., the earliest completion times of its

predecessors) and resource-feasible time. The serial schedule schema

is revised for easier comprehension and implementation using the

following two steps:

Step 1: Transfer MOSOS organism sequence of tasks priorities to

an active schedule based on precedence constraints.

Denote a set of tasks in project J = {1, 2, . . . , N}. We can define

priority relations in set J as a set of pair C = {(i, j)|i that must be exe-

cuted before j}. We introduce the binary relation matrix V = (vi j, 1 ≤
i, j ≤ n), vi j = 1, if (i, j) ∈ C, vi j = 0, if (i, j) 	∈C, related with a set of prior-

ity constraints and define a full-priority relation matrix G = (gi j, 1 ≤
i, j ≤ n). This matrix describes all priority relation chains. So, gk j = 1

if it is possible to find such a sequence of index pairs that (k, k1) ∈
C, (k1, k2) ∈ C,…,(kl, kj) ∈ C. The matrix V has the following property:

vi j = 1 ⇒ v ji = 1. The G matrix shares this feature as well [29]. Fig 3

illustrates the transfer procedure.
Step 2: Calculate project duration based on active schedule

Two important points must be considered before applying the

erial method. Firstly, activity A starts when all predecessors are

ompleted (network logic). Secondly, activity A start time depends

n resource availability. Thus, activity A is scheduled to start after the

ompletion time of its immediate predecessor on the histogram at

he point when sufficient resources are available for activity comple-

ion (resource constrained). Fig 4 demonstrates how the serial gener-

tion calculates project duration.

The search engine (MOSOS) takes into account the results ob-

ained from the scheduling module and the search for an optimal

ombination of shift work options, optimal scheduling sequence for

ach activity and assign available labors to shifts. This research used

hree contradicting objectives. Section 2 describes the formulae for

ach objective function.

.4. Mutualism phase

Let Xi be the organism matched to the ith row of the ecosystem

opulation. The organism Xi selects organism Xj as its partner ran-

omly from the ecosystem. Organism Xi is associated to the jth row

f the ecosystem where j is different from i. The mutualistic symbiosis

etween organism Xi and Xj is modeled in Eqs. (23) and (24).

inew = Xi + rand(0, 1)∗(Xbest − Mutual_Vector∗BF1) (23)

jnew = Xj + rand(0, 1)∗(Xbest − Mutual_Vector∗BF2) (24)

utual_Vector = Xi + Xj

2
(25)

ome notes on the mutualism mathematical model:

1. rand(0,1) in Eqs. (23) and (24) is a vector of random numbers

between 0 and 1.

2. “Mutual_Vector” represents the mutual connection between

organism Xi and Xj.

3. Xbest represents the best organism in an ecosystem. In this

model, the Xbest is arbitrarily chosen among the first non-

dominated rank.

4. Organism Xi might benefit significantly when interacting with

organism Xj. Meanwhile, organism Xj might only get benefit

slightly when interacting with organism Xi. Here, Benefit Fac-

tors (BF1) and (BF2) are determined stochastically as either 1

or 2. This illustrates whether an organism partially or fully

benefits from the interaction.

5. Organisms are evolving to a fitter version only if their new fit-

ness dominates their pre-interaction fitness. In this case, the

old Xi and Xj will be replaced immediately by Xi new and Xj new,

respectively. The old Xi and Xj will be moved into advanced

population. Otherwise, the Xi new and Xj new will be added into

advanced population for selecting the next generation ecosys-

tem. In this way, the proposed algorithm can converge faster

while maintaining good diversity. Since algorithm may gain

some important information from dominated the solution in

latter sorting.

6. For each organism Xi, this interaction counts for two function

evaluations.

.5. Commensalism phase

After the mutualism phase is finished, the organism Xi selects

gain a new partner randomly from the ecosystem, organism Xj. In

his circumstance, organism Xi attempts to benefit from the interac-

ion but organism Xj neither benefits nor suffers from the relation-

hip. The commensal symbiosis between organism Xi and Xj is mod-

led in Eq. (26).

inew = Xi + rand(−1, 1)∗(Xbest − Xj) (26)
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Fig. 4. Serial method.
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Some notes on the commensalism mathematical model:

1. rand(−1,1) in Eq. (26) is a vector of random numbers between

−1 and 1.

2. Xbest reflects the best organism in the ecosystem, similar to

those in the mutualism phase.

3. Organism Xi is updated by Xi new only if its new fitness dom-

inates its pre-interaction fitness. Then, Xi will be moved into

advanced population, otherwise, Xi new. This selection mecha-

nism is analogous to those in the mutualism phase.

4. For each organism Xi, this interaction counts for one function

evaluation.

.6. Parasitism phase

After the commensalism phase is completed, the organism Xi se-

ects again a new organism randomly from the ecosystem, organism

j. In parasitism, organism Xi is given a role similar to the anophe-

es mosquito through the creation of an artificial parasite called “Par-

site_Vector”. Organism Xj serves as a host to the Parasite_Vector.

uring the interaction, the Parasite_Vector tries to kill the host Xj and

eplace Xj in the ecosystem. The organism Xi may gain a benefit, be-

ause by cloning it, its influence in the ecosystem may increase while

j may have to suffer and die.

The creation of Parasite_Vector is described as follows:

1. Initial Parasite_Vector is created in the search space by dupli-

cating organism X . Some decision variables from the initial
i
Parasite_Vector will be modified randomly in order to differ-

entiate Parasite_Vector with organism Xi.

2. A random number is created within a range from one to the

number of decision variables. This random number represents

the total number of modified variables.

3. The location of the modified variables is determined

stochastically.

4. Finally, the variables are modified using a uniform distribu-

tion within the range of the search space. The Parasite_Vector

is ready for the parasitism phase.

Both Parasite_Vector and organism Xj are then evaluated to mea-

ure their fitness. If Parasite_Vector dominates or non-dominated each

ther with Xj, it will replace organism Xj in the current ecosystem

nd Xj will be moved into advanced population. Otherwise, the Para-

ite_Vector will be moved into advanced population. For each organ-

sm Xi, this interaction counts for one function evaluation.

.7. Ecosystem selection procedure

Modification of the selection mechanism is the most important

ask of multi-objective optimization because the careful selection of

andidate solutions facilitates the generation of a good Pareto front.

his study used a new selection mechanism proposed by Ali et al.

30]. During the optimization process, size of ecosystem remains eco-

ize. Ecosize best (elite) solutions are selected from the combined

cosystem, which mixed of the current and advanced population to-

ether. While the “highest fitness value” solution is the best solution
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Fig. 5. Ecosystem selection procedure.
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in the single objective solution scenario, a two-solution dominance

approach is used in multi-objective scenarios. Note that the total size

of the combined population is larger than ecosize. However, popula-

tion size during the optimization process remains ecosize. Thus, eco-

size solutions are selected based on the technique as follow. At first,

thus, the fast non-dominated sorting technique [31] is employed to

sort the combined population into non-dominated sets (F1, F2, …).

The solutions belonging to the best non-dominated set (Set F1) are se-

lected first to enter the main population. If size of F1 is smaller than

ecosize, the remaining members of the population are chosen from

subsequent non-dominated fronts in rank order (F2, F3 …). This pro-

cedure continues until no further sets can be accommodated. Assume

that Fk is the last non-dominated set beyond which no other set can

be accommodated. In general, the number of solutions in all sets F1

to Fk is greater than ecosize. To select the optimal ecosize population

members using crowding entropy sorting technique [32], it is neces-

sary to first fill all population slots in descending order of distance.

Fig 5 provides an overview of this procedure.

4.8. Stopping conditions

The optimization process terminates when the stopping condi-

tions are achieved. The user can set these types of conditions. Maxi-

mum generation Gmax or maximum number of functions evaluations

(NFE) may be used as the stopping criterion. This study used the max-

imum number of generation as stopping condition for the proposed

algorithm. When the optimization process ends, the final set of op-

timal solutions, called the Pareto front, is presented to the user. Ob-

taining the entire Pareto front is of great importance because it as-

sists planners to evaluate the pros and cons of each potential solution

based on qualitative and experience-driven considerations.
Fig. 6. Network o
. Case study

This study analyzed a numerical case to demonstrate the effec-

iveness of the proposed MOSOS for the TCUT problem, with obtained

esults compared against four approaches also employed to handle

he TCUT problem, including NSGA-II, MOPSO, MODE and MOABC.

he case project adapted was a previous study of a construction

roject by Jun and El-Rayes [1]. The project comprised 15 construc-

ion activities, each of which has a number of possible shift alterna-

ives. In the case study, a three shifts system (SS = 3) was utilized in

ombination with a total of 70 available daily labors (RC = 70). The

eight for night shift in Eq. (3) was set as W = 80%. Fig. 6 shows the

recedence relationships of the network projects. Table 1 illustrates

roject information data including allowable types of shift operation

or each activity (n) and its direct cost, duration, and daily labor de-

and for each shift and Shift-option (Sn) for project. Project with an

verage of seven execution modes for each of the 15 activities gener-

te multiple billions 715 of possible combinations for completing the

ntire projects. Each possible combination has a unique impact on

roject performance, which means that DMs must search in a large

umber of potential solutions to find those that establish an optimal

radeoff/balance among construction duration, cost, and the utiliza-

ion of evening and night work shifts. The newly developed multi-

bjective optimization model was used to search the many potential

olutions.

.1. Optimization result of MOSOS-TCUT

Since the original SOS is the core mechanism in the proposed

OSOS-TCUT. Only two common control parameters which are pop-

lation size and maximum number of generations are needed to be
f projects.
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Table 1

Case study data.

Act Shift option Dur. (Days) Cost Worker demand

j = 1 j = 2 j = 3

A 1 4 $12,600 4 4 4

2 5 $11,400 4 4 0

3 5 $12,700 4 0 4

4 6 $15,000 0 4 4

5 8 $11,100 4 0 0

6 11 $14,800 0 4 0

7 12 $18,600 0 0 4

B 1 2 $8400 8 8 8

2 3 $7400 8 8 0

3 3 $8200 8 0 8

4 4 $9700 0 8 8

5 5 $6400 8 0 0

6 6 $8700 0 8 0

7 7 $10,900 0 0 8

C 1 3 $13,700 7 7 7

2 4 $12,400 7 7 0

3 4 $13,800 7 0 7

4 5 $16,200 0 7 7

5 6 $11,600 7 0 0

6 8 $15,600 0 7 0

7 9 $19,600 0 0 7

D 1 2 $9100 6 6 6

2 3 $8200 6 6 0

3 3 $9100 6 0 6

4 4 $10,800 0 6 6

5 5 $7800 6 0 0

6 6 $10,500 0 6 0

7 7 $13,100 0 0 6

E 1 5 $18,100 5 5 5

2 6 $16,400 5 5 0

3 6 $18,200 5 0 5

4 7 $21,500 0 5 5

5 10 $15,700 5 0 0

6 13 $21,100 0 5 0

7 15 $26,400 0 0 5

F 1 2 $8600 5 5 5

2 3 $7800 5 5 0

3 3 $8700 5 0 5

4 4 $10,200 0 5 5

5 5 $7500 5 0 0

6 7 $10,000 0 5 0

7 8 $12,600 0 0 5

G 1 3 $6800 4 4 4

2 4 $6000 4 4 0

3 5 $6600 4 0 4

4 5 $7800 0 4 4

5 8 $5200 4 0 0

6 10 $7000 0 4 0

7 11 $8800 0 0 4

H 1 3 $5600 4 4 4

2 4 $5000 4 4 0

3 4 $5500 4 0 4

4 5 $6500 0 4 4

5 6 $4300 4 0 0

6 8 $5800 0 4 0

7 9 $7300 0 0 4

I 1 4 $15,400 8 8 8

2 5 $13,600 8 8 0

3 5 $15,100 8 0 8

4 6 $17,800 0 8 8

5 8 $11,800 8 0 0

6 11 $16,000 0 8 0

7 12 $20,000 0 0 8

J 1 2 $7500 8 8 8

2 3 $6600 8 8 0

3 3 $7300 8 0 8

4 3 $8700 0 8 8

5 4 $5700 8 0 0

6 5 $7800 0 8 0

7 6 $9700 0 0 8

K 1 4 $16,400 6 6 6

2 5 $14,800 6 6 0

3 5 $16,500 6 0 6

Table 1 (continued)

Act Shift option Dur. (Days) Cost Worker demand

j = 1 j = 2 j = 3

4 6 $19,400 0 6 6

5 8 $14,000 6 0 0

6 11 $18,800 0 6 0

7 12 $23,600 0 0 6

L 1 1 $6100 8 8 8

2 2 $5500 8 8 0

3 2 $6100 8 0 8

4 2 $7200 0 8 8

5 3 $5100 8 0 0

6 4 $6900 0 8 0

7 4 $8600 0 0 8

M 1 2 $3300 3 3 3

2 3 $2900 3 3 0

3 3 $3300 3 0 3

4 4 $3900 0 3 3

5 5 $2500 3 0 0

6 6 $3500 0 3 0

7 7 $4300 0 0 3

N 1 4 $13,400 7 7 7

2 5 $11,900 7 7 0

3 5 $13,200 7 0 7

4 6 $15,600 0 7 7

5 8 $10,300 7 0 0

6 11 $14,000 0 7 0

7 12 $17,500 0 0 7

O 1 2 $7700 8 8 8

2 3 $6800 8 8 0

3 3 $7500 8 0 8

4 3 $8900 0 8 8

5 4 $5900 8 0 0

6 6 $8000 0 8 0

7 6 $10,000 0 0 8

Note: shift option Sn = 1: three shifts (day, evening, and night shifts), Sn = 2: two

shifts (day and evening shifts), Sn = 3: two shifts (day and night shifts), Sn = 4:

two shifts (evening and night shifts), Sn = 5: one shift (day shift), Sn = 6: one shift

(evening shift), Sn = 7: one shift (night shift).
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anually determined in this experiment. These parameters are set

ased on proposed values form the literature [1,17,33] and several

xperiments (trial and error) like other metaheuristic algorithms as

ollowing settings: the population size was set as 200 and maxi-

um number of generations was set as 300. The other parameters

ere set as default. Thirty independent optimization runs were con-

ucted. Table 2 describes the first 8 non-dominated solutions in de-

cending order of time, cost, the utilization labor and compromised

f case study, respectively, along with optimal shift option combina-

ion, scheduling sequence, and labor for each shift. It can be seen that

olution 1 generates the smallest project duration value for project

hile solution 3 and 5 generate the smallest values for cost and to-

al evening and night shift working hours for project, and other so-

utions strike a balance among the three objectives. Fig. 7 presents

chedules of three selected non-dominated solutions (1, 3, and 7) and

heir corresponding time, cost and total evening and night shift work-

ng hours for project. Based on the generated solutions, project man-

gers might choose the optimal solutions for a specific project sce-

ario based on experience, preferences, and specific conditions. If a

anager needs to prioritize time, solution 1 is optimal. If a manager

eeds to prioritize budget and labor utilization in evening and night

hifts, solution 3, 5 are optimal. On the other hand, if a manager wants

o strike a measured balance between the three objectives, solution

provides a centrist solution that offers an acceptable project dura-

ion (27 days), a moderate cost ($128700), a moderate total labor hour

alue in evening and night shifts (998 h) for the project. Fig. 8 shows

areto fronts obtained using MOSOS for case study. The Pareto front

resents the relationships among project duration, cost, and labor

tilization. This three-dimensional visualization of the tradeoffs may

elp project managers evaluate the impact on project performance of

he various potential resource-utilization plans.
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Table 2

Best non-dominated solutions obtained by MOSOS-TCUT.

Solutions Partial set Activity shift-option, scheduling sequence, labor availability in shift k Project performance

Time (days) Cost ($) LHEN (hours)

1 Sorted by time {1.2.1.2.1.5.1.2.2.5.1.5.1.1.1}{A.B.F.C.D.E.G.H.J.I.K.L.M.N.O}{32.20.18} 18 144,500 3710

2 {1.2.1.2.2.5.1.2.2.5.1.5.1.2.1}{A.B.F.C.D.E.G.H.J.I.K.L.N.M.O}{32.20.18} 19 141,300 3132

3 Sorted by cost {5.5.5.5.5.5.5.5.5.5.5.5.5.5.5}{A.B.F.C.D.E.J.G.H.I.K.L.M.N.O}{30.20.20} 38 124,900 0

4 {2.5.5.5.5.5.5.5.5.5.5.5.5.5.5}{A.B.C.D.E.F.J.G.H.I.K.L.M.N.O}{32.26.12} 35 125,200 150

5 Sorted by LHEN {5.5.5.5.5.5.5.5.5.5.5.5.5.5.5}{A.B.F.C.D.E.J.G.H.I.K.L.M.N.O}{30.20.20} 38 124,900 0

6 {5.5.5.5.5.5.2.5.5.5.5.5.5.5.5}{A.B.F.C.D.E.J.G.H.I.K.L.M.N.O}{38.14.18} 35 125,700 120

7 Compromised {2.5.5.5.2.5.1.5.5.5.5.5.2.2.5}{A.B.C.D.E.F.J.G.H.I.K.L.M.N.O}{36.19.15} 27 129,500 946

8 {2.5.2.5.2.5.2.5.5.5.2.5.2.5.5}{A.B.C.D.E.F.G.H.J.I.K.L.M.N.O}{35.16.19} 27 128,700 998

Fig. 7. Schedules related to three non-dominated solutions of case study.
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Figs. 8–10 show the two objectives relationship between time

and cost, cost and labor utilization, and time and labor utilization,

respectively, on a two-dimensional plane. It can be seen from the

time-cost curve example (Fig. 9) that lower project funding cor-

relates with longer project completion duration and vice versa.

Nevertheless, Figs. 8–10 might not be good representatives of the

entire tradeoff surface in the three-dimensional space. In fact, the

two-dimensional tradeoff surface, when projected from three to two

dimensions, might lose some non-dominated points because there is

a hidden dimension that makes these points non-dominated.

5.2. Statistical comparison and analysis

We compared MOSOS performance against NSGA-II [31], MOPSO

[34], MODE [30] and MOABC [35] to assess comparative effectiveness.

For comparison purposes, all five algorithms used an equal number of

function evaluations, had a population size of 200 and a maximum of

300 generations. In NSGA-II, the constant mutant and crossover prob-

ability factors were set at 0.5 and 0.9, respectively. In MOPSO, the two

learning factors c1, c2 are both chosen at 2, and the inertia factor w is

set in range of 0.3–0.7. In MODE, the crossover probability CR is set to

0.8, and the scaling factor F equals to 0.5. MOSOS control parameters
emained the same as stated in previous subsection. Thirty indepen-

ent runs were carried out for all experiments in case study.

Much research effort has been invested in recent years to de-

elop methods able to evaluate the performance of multi-objective

ptimization models. Its complex characteristics mean that multi-

bjective optimization results cannot be evaluated directly, unlike

hose of single-objective optimization. In the literature, the re-

earchers have suggested numerous quality indicators [31,36–38].

his study used the following four evaluation methods.

1. Number of solutions found in the Pareto-optimal front: the

goal of multi-objective optimization is to obtain the Pareto-

optimal front that contains the non-dominated solutions of the

problem under investigation. No single solution in the Pareto-

optimal front may be objectively evaluated as being better

than its peers [39]. Therefore, it is preferable to find as many

solutions within the Pareto-optimal front as possible.

Table 3 shows that MOSOS earned the highest number of so-

lutions found in the Pareto front evaluation criterion with 20.9

solutions on average.

2. C-metric (C): C-metric is often used to assess the quality of the

true Pareto front of optimized problems [40]. Let S , S ⊆S be
1 2
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Fig. 8. Time–cost–utilization labor tradeoff Pareto front using MOSOS.

Fig. 9. Time–cost tradeoff curve.
two sets of decision solutions. C-metric is defined as the map-

ping between the ordered pair (S1,S2) and the interval [0,1]:

C(S1, S2) = |{a2 ∈ S2;∃a1 ∈ S1 : a1 ≤ a2}|
|S2| (24)

The numerator in Eq. (24) denotes that the number of solutions

in S2 is dominated by at least one solution in S1, the denomi-

nator is the total solutions in S2. Provided that C(S1,S2) = 1,

all solutions in S2 are dominated by or equal to solutions in

S1. If C(S1,S2) = 0, then S1 covers none of the solutions in S2.

Both C(S1,S2) and C(S2,S1) should be checked in the compari-

son because C-metric is not symmetrical in its arguments [41].

Table 4 illustrates comparison results among four algorithms

in terms of C-metric, where A1, A2, A3, A4 and A5 indicate
MOSOS, MODE, MOABC, MOPSO, and NSGA-II, respectively. Re-

sults show that MOSOS dominates more than 67.2% of MODE

solutions, 94.4% of MODE solutions, 100.0% of MOPSO solu-

tions, and 100.0% of NSGA-II solutions on average.

3. Spread (SP): this indicator [32] measures the extent of spread

achieved among the non-dominated solutions. The mathemat-

ical definition of SP may be given as:

SP =
∑k

i=1 d(Ei,�) + ∑
X∈�

∣∣d(X,�) − d
∣∣

∑k
i=1 d(Ei,�)+(|�| − k)d

(25)

where � is a set of solutions, (E1, . . . , Ek) are k extreme so-

lutions in the set of true Pareto-front PF, k is the number

of objectives and d(X,�) = minY∈�,Y 	=X ‖F (X ) − F (Y )‖ is the
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Fig. 10. Cost–utilization labor tradeoff curve.

Fig. 11. Time–utilization labor tradeoff curve.

Table 3

Comparison of numbers of solutions found in Pareto front.

Performance MOSOS MODE MOABC MOPSO NSGA-II

measurement

Best 25.00 21.00 18.00 14.00 13.00

Worst 16.00 10.00 6.00 7.00 6.00

Average 20.90 17.10 11.20 11.50 9.00

Std. 2.69 3.90 3.88 2.17 2.62

Note: Std. = standard deviation.
minimum Euclidean distance between solution X and its

neighboring solutions in the obtained non-dominated � set;

d = 1
|�|

∑
X∈� d(X,�) is the mean value of all d(X, �), |�| is

the total solutions in � set. A value of zero for this metric indi-

cates all members of the Pareto optimal set are spaced equidis-

tantly. A smaller value of SP indicates a better distribution and

diversity of non-dominated solutions. Table 5 shows a com-

parison of the spread metric for different algorithms. This sup-

ports that the average performance of the MOSOS is superior

to that of the other four algorithms in case study.

3 Hyper-volume (HV): this indicator calculates the volume (in

the objective space) covered by members of a non-dominated

set of solutions � for a problem that works to minimize all

objectives [37,42]. A hypercube vi is constructed for each so-
lution Xi ∈ � with reference point W and the solution Xi as

the diagonal corners of the hypercube. The reference point can

be found simply by constructing a vector of worst objective
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Table 4

Comparison of C-metric for different algorithms.

Performance C(A1,A2) C(A2,A1) C(A1,A3) C(A3,A1) C(A1,A4) C(A4,A1) C(A1,A5) C(A5,A1)

measurement

Best 0.900 0.273 1.000 0.080 1.000 0.000 1.000 0.000

Worst 0.455 0.044 0.563 0.000 1.000 0.000 1.000 0.000

Average 0.672 0.158 0.944 0.008 1.000 0.000 1.000 0.000

Std. 0.130 0.076 0.140 0.025 0.000 0.000 0.000 0.000

Table 5

Comparison of SP-metric for different algorithms.

Performance MOSOS MODE MOABC MOPSO NSGA-II

measurement

Best 0.757 0.592 0.703 0.628 0.602

Worst 1.124 1.142 1.307 1.249 1.445

Average 0.904 0.969 1.088 0.999 0.991

Std. 0.120 0.159 0.191 0.198 0.308

Table 6

Comparison of HV-metric for different algorithms.

Performance MOSOS MODE MOABC MOPSO NSGA-II

measurement

Best 0.547 0.234 0.028 0.079 0.103

Worst 0.974 0.670 0.391 0.472 0.483

Average 0.796 0.494 0.195 0.248 0.184

Std. 0.126 0.146 0.118 0.121 0.113

s

s

v

o

s

s

p

5

5

r

h

a

a

H

(

H

a

H

a

v

Table 7

Hypothesis test results between MOSOS and other approaches.

Indicators x̄1 x̄2 s1 s2 t v tα;ν = t0.05;v

C-metric (C) 0.6720 0.1583 0.1301 0.0763 18.655 47 1.678

Spread (SP) 0.9045 0.9685 0.1200 0.1593 −1.758 54 −1.674

Hyper-volume (HV) 0.7957 0.4942 0.1262 0.1458 8.567 57 1.672
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function values. Thereafter, a union of all hypercubes is found

and its HV is calculated as:

HV =
|�|⋃
i=1

vi (26a)

Algorithms with larger HV values are desirable. The HV value of a

et of solutions is normalized using a reference set of Pareto optimal

olutions with the same reference point. After normalization, the HV

alues are confined to range [0,1]. Table 6 lists the results for each

f the four compared algorithms in terms of HV. From Table 6, we

ee that the proposed model obtains the largest HV values in case

tudy, which means that MOSOS has better convergence and diversity

erformance than the other four algorithms.

.3. Statistical analyses

.3.1. One tail t-test

A hypothesis test was performed to further demonstrate the supe-

iority of the MOSOS over the other approaches. In all indicators, the

ypothesis tests only considered the MOSOS and the best of other

pproaches. A one-tailed t-test with equal sample sizes and unequal

nd unknown variances analyzed the following hypothesis tests:

ypothesis. MOSOS versus standard MODE in term of C-metric

Table 4).

0: There is no difference in the C-metric of the MOSOS algorithm

nd that of the MODE algorithm.

1: The MOSOS algorithm is significantly better than the MODE

lgorithm.

MOSOS s1 = 0.130; MODE: s2 = 0.076; n1 = n2 = n = 30;

=
(
s2

1/n1 + s2
2/n2

)2

(s2
1
/n1)

2

n1−1
+ (s2

2
/n2)

2

n2−1

=
(
0.1302

/30 + 0.0762
/30

)2

(0.1302
/30)

2

30−1
+ (0.0762

/30)
2

30−1

= 46.8 (closest to 47)
Critical value: with significant level of t-test α = 0.05; ν = 47; we

ave tα;ν = t0.05;47 = 1.678

tatistical test: t = (x̄1 − x̄2)√
s2

1
/n1 + s2

2
/n2

= (0.6720 − 0.1583)√
0.1302

/30 + 0.0762
/30

= 18.655 > 1.678 = t0.05;47

here n is the sample size (number of experimental runs), ν is the

egrees of freedom used in the test, s2
1 and s2

2 are the unbiased esti-

ators of the variances of the two samples (MOSOS and MODE). The

enominator of t is the standard error of the difference between two

eans x̄1, x̄2 (average).

H0 is rejected because the statistical test value noted above is

reater than the critical value, which demonstrates the proposed

OSOS as statistically superior to the standard MOABC in terms of

he C-metric. In the same manner, Table 7 shows the results of the

ypothesis test between MOSOS and the best of other approaches in

erms of the C-metric (C), Spread (SP) and Hyper-volume (HV):

As shown in Table 7, the proposed algorithm MOSOS produced

esults that were significantly better than other approaches in terms

f the C-metric, spread, and hyper-volume (t = 18.655 > 1.678 =
0.05;47; t = −1.758 < −1.674 = −t0.05;54 and t = 8.567 > 1.672 =
0.05;57).

.3.2. Wilcoxon’s signed ranks test

The proposed algorithm is also analyzed statistically with other

lgorithms using non parametric Wilcoxon’s signed ranks test [43].

ilcoxon’s test is defined as follows. Let di be the difference between

he performance scores of the two algorithms on ith out of n solu-

ions. The differences are ranked according to their absolute values;

n case of ties, the practitioner can apply one of the available methods

xisting in the literature [44] such as ignore ties, assign the highest

ank, compute all the possible assignments and average the results

btained in every application of the test, and so on. This study uses

he average ranks for dealing with ties (for example, if two differ-

nces are tied in the assignation of ranks 1 and 2, assign rank 1.5 to

oth differences).

Let R+ be the sum of ranks for the solutions in which the proposed

lgorithm MOSOS outperformed the compared algorithm, and R− the

um of ranks for the opposite. Ranks of di = 0 are split evenly among

he sums; if there is an odd number of them, one is ignored:

+ =
∑
di>0

rank(di) + 1

2

∑
di=0

rank(di)

− =
∑
di<0

rank(di) + 1

2

∑
di=0

rank(di) (27)
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Table 8

Wilcoxon test results between MOSOS and other approaches.

Algorithms Number of solutions found Spread Hyper-volume

MOSOS vs. R+ R− Critical values R+ R− Critical values R+ R− Critical values

MODE 432 33 151 143 322 151 465 0 151

MOABC 465 0 151 40 425 151 465 0 151

MOPSO 465 0 151 137 328 151 465 0 151

NSGA-II 465 0 151 150 315 151 465 0 151

Note: Critical value: tα;n = t0.05;30 = 151.
Let T be the smaller of the sums, T = min(R+, R−). If T is less than

or equal to the value of the distribution of Wilcoxon for n degrees of

freedom ([45], Table B.12), the null hypothesis of equality of means

is rejected; this will mean that proposed algorithm outperforms the

other one.

Table 8 displays Wilcoxon’s signed ranks test results of proposed

algorithm and benchmarked algorithms for number of solutions

found, spread and hyper volume indicators, respectively. It can be

seen from Table 8 that the MOSOS outperformed the compared al-

gorithms in all indicators since (T < Critical value).

6. Conclusions

A novel Multiple Objective Symbiotic Organisms Search optimiza-

tion algorithm has been introduced for optimizing work shift sched-

ules. MOSOS is a population based meta-heuristic algorithm which

imitates the biological interactions between organisms in an ecosys-

tem. Three phases of mutualism, commensalism, and parasitism in-

spire MOSOS to find the non-dominated solutions of given multi-

ple objectives. The proposed algorithm run a construction project to

demonstrate its efficacy in finding optimal schedules that simulta-

neously minimize project duration (time), cost, and the utilization

of evening and night work shifts while satisfying with all prece-

dence and labor availability constraints. A project was conducted

to illustrate the impact of three shifts systems on project perfor-

mance. Experimental results shows that the proposed MOSOS ap-

proach efficiently solves multi-objective TCUT problems and finds

Pareto optimal solutions in one simulation run. Results obtained from

the proposed approach have been compared with those obtained

from widely used multi-objective evolutionary algorithms such as

MOABC, MODE, MOPSO, and NSGA-II. MOSOS displayed better di-

versity characteristics, yielded better compromise solutions, and at-

tained a higher degree of satisfaction. It is also observed that the

proposed approach provides a competitive performance in terms

of diversity characteristics, compromise solutions and degree of

satisfactions.

The Pareto front generated by MOSOS provides useful information

that assists construction-project decision makers determine the op-

timal tradeoff among the three important project considerations of

project duration, cost, and labor utilization.

The proposed MOSOS is simple, robust and efficient. It does not

impose any limitation on the number of objectives and can be ex-

tended to include more objectives. Further minor modifications of

the proposed MOSOS algorithm hold interesting potential to resolve

other multi-objective optimization problems in the field of construc-

tion management such as the tradeoffs among performance, cost, and

reliability in engineering design work; time, cost and safety tradeoffs;

and resource-constrained and resource-leveling in project scheduling

activities.

Appendix

Detail flowchart of MOSOS for the TCUT problem.
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