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Abstract: Resource leveling is used in project scheduling to reduce fluctuation in resource usage over the period of project implementation.
Fluctuating resource usage frequently creates the untenable requirement of regularly hiring and firing temporary staff to meet short-term
project needs. Construction project decision makers currently rely on experience-based methods to manage fluctuations. However, these
methods lack consistency and may result in unnecessary waste of resources or costly schedule overruns. This research introduces a novel
discrete symbiotic organisms search for optimizing multiple resources leveling in the multiple projects scheduling problem (DSOS-
MRLMP). The optimization model proposed is based on a recently developed metaheuristic algorithm called symbiotic organisms search
(SOS). SOS mimics the symbiotic relationship strategies that organisms use to survive in the ecosystem. Experimental results and statistical
tests indicate that the proposed model obtains optimal results more reliably and efficiently than do the other optimization algorithms con-
sidered. The proposed optimization model is a promising alternative approach to assisting project managers in handling MRLMP effectively.
DOI: 10.1061/(ASCE)CP.1943-5487.0000512. © 2015 American Society of Civil Engineers.
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Introduction

Resource management is one of the key success factors that allow
construction contractors to remain competitive in today’s construc-
tion business environment. Proper resource management helps to
keep the operational expenses of the project within budget and
the schedule on time (Cheng and Tran 2014; Damci et al. 2013;
Hossein Hashemi Doulabi et al. 2011). Construction resources
consist primarily of manpower, equipment, materials, funds, and
expertise. Obviously, proper management of these resources plays
a significant role in the successful accomplishment of any project.

One of the most common problems faced by construction
project managers is a scarcity of resources. Timing the need
for resources should be determined during project scheduling.
However, project schedules generated using network scheduling
techniques, such as PERT and CPM, often cause resource fluctua-
tions that are impractical, inefficient, and costly to implement
(Martinez and Ioannou 1993). In fact, resource fluctuations become
a troublesome issue for contractors because hiring and firing the
workers necessary to harmonize with fluctuating resource profiles
is impractical (Christodoulou et al. 2010). Thus, contractors are
inevitably burdened by a certain percentage of idle resources during

periods of low demand, which reduces project profits. Therefore,
resources must be managed efficiently to minimize resource
expenditures and meet contracted schedules (Hariga and El-Sayegh
2011; Tang et al. 2014).

The process of smoothing out resource demand, known as re-
source leveling, has been studied extensively (Doulabi et al. 2011;
Savin et al. 1996; Son and Skibniewski 1999). Resource leveling
attempts to minimize both the demand peak and the fluctuations
in patterns of resource use (El-Rayes and Jun 2009; Yan et al.
2005) by optimizing noncritical activities in their available floats
while keeping the project duration unchanged. Research on re-
source leveling has focused mainly on three aspects: (1) single-
resource leveling in single-project scheduling (Damci and Polat
2014); (2) multiple-resources leveling in single-project schedul-
ing (Ponz-Tienda et al. 2013); and (3) single-resource leveling in
multiple-project scheduling. However, multiple-resources leveling
in multiple-projects scheduling (MRLMP) is the most typical sce-
nario in the construction and manufacturing industries. It is rela-
tively more complex and difficult to solve and lacks a standard
handling procedure (Guo et al. 2009). Thus, developing a more ef-
ficient optimization algorithm for MRLMP problems and achieving
better resource-leveling solutions are essential to improving the
management of construction project resources.

As optimization problems vary extensively, a great number
of studies have been devoted to the development of new metaheur-
istic algorithms (Alsayegh and Hariga 2012; Cheng et al. 2014;
Koulinas and Anagnostopoulos 2013). Metaheuristic algorithms
perform better than most traditional mathematical techniques in
solving modern optimization problems because they do not require
substantial gradient information (Koulinas and Anagnostopoulos
2013; Wu et al. 2014). A very promising recent development in
the field of metaheuristic algorithms is the symbiotic organisms
search (SOS) algorithm (Cheng and Prayogo 2014). The SOS
algorithm is based on interactive behavior among organisms in
nature. Preliminary studies indicate that it is superior to the widely
used genetic algorithm (GA), particle swarm optimization
(PSO), differential evolution (DE), and bees algorithm (BA) in
solving a various continuous benchmark function and engineering
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problems (Cheng and Prayogo 2014). Because the SOS algorithm
is relatively new, its ability to find a global solution is very inter-
esting and should be further explored and investigated.

The aim of this paper is to propose a new discrete optimization
model for solving MRLMP problems based on the SOS metaheur-
istic algorithm (DSOS-MRLMP). A methodology for transforming
the continuous SOS into a discrete search is provided because SOS
was originally designed for continuous optimization problems and
MRLMP is considered a discrete problem.

Research Contributions

In presenting the discrete SOS (DSOS) as a novel optimization
algorithm, this study makes two important contributions. First,
DSOS is a new, discrete version of the basic SOS algorithm. It
transforms continuous solutions into discrete solutions to fit the
MRLMP. Second, DSOS is more effective and efficient than widely
used evolutionary algorithms, as demonstrated in a numerical con-
struction case study. DSOS outperformed GA, PSO, and DE in
terms of accuracy, solution stability, and satisfaction.

The remaining sections of this paper briefly review the literature
on the new optimization model. Then a detailed description of the
proposed model for the resource-leveling problem is presented.
Subsequently, the model’s performance is demonstrated using
numerical experiments and result comparisons. The final section
presents conclusions and suggestions for future work.

Literature Review

Multiple-Resources Leveling in the Multiple-Projects
Problem

A total of n projects must be started simultaneously in an enter-
prise. Each project includes multiple activities, and each activity
uses p resources. Symbols used in related formulas include the
following: the set of activities in the project k is ½ðik; jkÞ� ¼
fAk; : : : ;Zkg; RmðtÞ is the demand for resource m by all n projects
on day t; Rmtðik; jkÞ is the demand for resourcem by activity (ik, jk)
on day t; Rmðik; jkÞ is the demand for resource m by activity
(ik, jk) on one day. TEðik; jkÞ, TLðik; jkÞ, Tsðik; jkÞ, Tfðik; jkÞ,
Tðik; jkÞ, and Sðik; jkÞ represent early start time, late start time, ac-
tual start time, actual finish time, duration, and slack time of (ik, jk),
respectively. The precedence set of activity (ik, jk) is ½ðpsetk; ikÞ�.

Multiple-resources leveling in multiple-projects scheduling
differs from conventional resource leveling primarily as described
in the following paragraphs (Guo et al. 2009). First, because of
differing levels of resource demand, assimilation must transform
absolute demand into relative demand to enable all p resources to
be comparable in terms of quantity. The relative demand of re-
source m in all n projects on day t may be expressed as

SRmðtÞ ¼ λRmðtÞ=Rmaxm ð1Þ
where Rmaxm ¼ maxfRmðtÞg = maximum demand for resource m
in a total of n projects on one day and λ = amplifying coefficient
within [1,100] used to increase simulation accuracy.

Eq. (1) limits the relative demand for each resource in a total of
n projects on every single day to between 0 and λ.

Second, the weight score wm measures the degree of importance
for each resource. This paper uses the analytical hierarchy process
(AHP) to set the weights of different resources. Larger weight
scores correlate with greater priority.

The mathematical formulation of the objective function for
multiple-resources leveling in multiple-projects scheduling is

min RI ¼ 1

T

XT
t¼1

Xp
m¼1

fwm½SRmðtÞ − SRm�2g ð2Þ

subject to

TEðik; jkÞ ≤ Tsðik; jkÞ ≤ TLðik; jkÞ ð3Þ

max½Tsðpsetk; ikÞ þ Tsðpsetk; ikÞ� ≤ Tsðik; jkÞ ≤ TLðik; jkÞ ð4Þ

RmðtÞ ¼
Xn
k¼1

X
ik;jk

Rmtðik; jkÞ; SRm ¼ 1

T

XT
t¼1

SRmðtÞ ð5Þ

Rmðik; jkÞ ¼
�Rmðik; jkÞ if∶Tsðik; jkÞ < t ≤ Tfðik; jkÞ

0 if∶t < Tsðik; jkÞ or t > Tfðik; jkÞ
ð6Þ

Sðik; jkÞ ¼ TLðik; jkÞ − TEðik; jkÞ ð7Þ
where T = difference between the maximum of the latest finish time
and the minimum of the earliest start time for all n projects.

Related Works on the Resource-Leveling Problem

The literature includes many studies of modeling the resource-
leveling problem in construction projects. A variety of methods,
ranging from mathematical and heuristic to evolutionary and meta-
heuristic (e.g., GA, PSO, DE, ant colony ptimization) have been
proposed to solve the resource-leveling problem. At the beginning,
researchers used various mathematical approaches because they
could provide near-optimal solutions. However, as many project
networks became increasingly complex, these methods became
impractical. Moreover, because resource leveling is a combinatorial
problem, the increasing number of decision variables makes prob-
lem solving infeasible (Savin et al. 1996). As a result, mathematical
approaches are not computationally manageable for real-world
construction projects (Yan et al. 2005).

To overcome these shortcomings, many researchers began
to propose heuristic methods as alternatives for handling the
resource-leveling problem (Harris 1990; Son and Skibniewski
1999). However, heuristic methods frequently are not sufficient
to satisfy project managers despite their simplicity and wide
implementation in commercial project management software
(e.g., Microsoft Project). The reason is that these methods operate
on the basis of predefined rules. Consequently, their performance
relies on specific types of problems and on the rules implemented.
For this reason, a decent feasible solution has no guarantee of
finding an optimum solution (Hegazy 1999).

The shortcomings of the aforementioned mathematical and heu-
ristic methods have encouraged studies of metaheuristic algorithms
for solving the resource-leveling problem in recent years (El-Rayes
and Jun 2009; Geng et al. 2011; Hossein Hashemi Doulabi et al.
2011; Leu et al. 2000). Metaheuristics is recognized as a stochastic
optimization method inspired by phenomena seen in nature. Such
methods have been successfully used to solve optimization prob-
lems in diverse fields (Das and Suganthan 2011). Some widely
known metaheuristic algorithms, such as the GA, PSO, ant colony
optimization, and DE, remain an active research area in the scien-
tific community. However, these algorithms are not free from
certain limitations. Geng et al. (2011) pointed out premature
convergence and poor exploitation as the major drawbacks of
metaheuristics when facing more complex problems. Thus, more
advanced algorithms are needed to achieve satisfactory solutions
for resource-leveling problem in modern construction projects.

© ASCE 04015036-2 J. Comput. Civ. Eng.
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Symbiotic Organisms Search Algorithm

The SOS algorithm is a new metaheuristic algorithm developed by
Cheng and Prayogo (2014). It was inspired by the dependency-
based interactions seen among organisms in nature, which are
known as symbiosis. Like most population-based metaheuristic
algorithms, SOS has the following features: (1) it uses a popu-
lation of organisms that contains candidate solutions used to
seek the global solution over the search space; (2) it has special
operators that use the candidate solutions to guide the search
process; (3) it uses a selection mechanism to preserve the better
solutions; and (4) it requires the proper setting of common con-
trol parameters such as population size and maximum number of
evaluations.

However, unlike most metaheuristic algorithms that have addi-
tional control parameters (e.g., GA has crossover and mutation
rates; PSO has inertia weight, cognitive factors, and social factors),
SOS requires no algorithm-specific parameters. This is considered
an advantage over competing algorithms because SOS does not
need to perform parameter tuning . Improper tuning related to
algorithm-specific parameters might increase computational time
and produce local optima solutions.

In the early stage, a random ecosystem (population) matrix is
created, each row representing a candidate solution to the corre-
sponding problem. The number of organisms in the ecosystem,
the so-called ecosystem size, is predetermined by the user. The
rows in the matrix are called organisms, as in other metaheuristic
algorithms. Each virtual organism represents a candidate solution
to the corresponding problem or objective. The search begins after
the initial ecosystem has been generated. During the search process,
each organism benefits from continuous interaction with others in
three different phases:
• Mutualism: one organism develops a relationship that benefits

itself and the other—a classic example is the interaction be-
tween bees and flowers;

• Commensalism: one organism develops a relationship that
benefits itself but does not impact the other—an example is the
relationship between remora fish and sharks; and

• Parasitism: one organism develops a relationship that benefits
itself but harms the other—an example is the plasmodium para-
site, which uses its relationship with the anopheles mosquito to
transfer between human hosts.
The three phases are adopted from the most common symbioses

used by organisms to increase their fitness and survival advantage
over the long term. During the interaction, the one that receives a
benefit evolves to a fitter organism whereas the one who is harmed
perishes. The mechanisms for updating the best organism are con-
ducted after one generation of organisms has completed its three
phases. The phases are repeated until the stopping criterion is
achieved. The pseudocode shown in Fig. 1 summarizes the basic
step of the SOS optimization procedure:

Discrete Symbiotic Organisms Search for
Multiple-Resources Leveling in Multiple
Projects—the DSOS-MRLMP Model

This section describes the newly proposed DSOS-MRLMP model
in detail. The SOS algorithm plays an important role as the DSOS-
MRLMP’s core optimizer. Fig. 2 shows its overall operational
architecture. The objective of the DSOS-MRLMP is to minimize
daily variation in resource utilization without changing the total
project duration.

Initialization

Inputs required by DSOS-MRLMP include activity precedence
relationship, activity duration, and resource demand. In addition,
the user must provide search engine parameter settings such as the
maximum number of search iterations (Gmax) and the ecosystem
size (ecosize). The scheduling procedure uses these inputs in the
calculation process to obtain the project duration and resource
amount required for each activity. With all the necessary informa-
tion provided, the model is capable of operating automatically
without human intervention.

Prior to the search process, a random generator generates an
initial ecosystem comprising organisms (feasible solutions):

Ecosystem ¼

2
666666666664

X1

X2

..

.

Xi

..

.

Xecosize

3
777777777775
¼

2
666666666664

x1,1 x1,2 · · · x1;D

x2,1 x2,2 · · · x2;D

..

.

xi;1

..

.

..

.

xi;2

..

.

xi;j

..

.

xi;D

..

.

xecosize;1 xecosize;2 · · · xecosize;D

3
777777777775

ð8Þ

where xi;j = uniformly distributed random number between 0
and 1 at the initial step, and is optimized by the SOS algorithm
during the search process.

1: Initialization (initial ecosystem, set ecosystem 

size and maximum iteration)

2: For counter=1 to maximum iteration

3: For each organism in the ecosystem

4: Mutualism Phase

5: Commensalism Phase

6: Parasitism Phase

7: Update the best organism

8: End For

9: End For

Fig. 1. SOS algorithm pseudocode

Ecosystem
[x1, 1, x1, 2,…, x1, D ]

...
[xecosize, 1, …, xecosize, D ]

No

Searching termination

Optimal activity start time
[X1, X2, …, XD]

Mutualism phase

Commensalism phase

Parasitism phase

D
SO

S 
O

pt
im

iz
er

Optimizer’s parameter setting
Project information

Scheduling module

In
it

ia
liz

at
io

n

Yes

Start

Stop

Fig. 2. Flowchart for the DSOS-MRLMP
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Decision variables for the resource-leveling problem are repre-
sented as a vector

X ¼ ½xi;1; xi;2; : : : ; xi;j; : : : ; xi;D� ð9Þ

where D = number of elements in a vector of decision var-
iables in the problem at hand and also = number of noncritical
activities in the project networks; index i = ith member in the
ecosystem.

Because the original SOS operates with real-value variables,
a function is employed to convert those variables from real values
to integer values that are constrained in the feasible domain

Xi;j ¼ roundfLBðjÞ þ xi;j × ½UBðjÞ − LBðjÞ�g ð10Þ

where Xi;j = start time of noncritical activity j in the networks at the
ith individual of the population; LBðjÞ and UBðjÞ = respective
early and late start times for activity j.

In multiple-resources leveling in multiple-projects scheduling,
two constraint conditions limit the actual start time of all
activities: (1) it must be between the early and late start times;
and (2) it is limited by the actual start time of its predecessor
activities. The first constraint is simple to handle because limits
are fixed prior to calculation. However, the minimum limit of the
second constraint is unknown prior to calculation and thus is more
difficult to find. Each dimension of the decision variables is
determined in turn. When calculating the actual start time of one
activity, the actual start times of all activities in its predecessor
set, Tsðpsetk; ikÞ, have been computed and the max ½Tsðpsetk; ikÞ þ
Tsðpsetk; ikÞ� has been confirmed simultaneously.

Mutualism Phase

Let Xi be the organism matched to the ith row of the ecosystem
matrix. The organism Xi randomly selects organism Xj as its
partner from the ecosystem. Organism Xi is associated with the jth
row of the ecosystem where j is not equal to i. The mutualistic
symbiosis between organisms Xi and Xj is modeled in Eqs. (11)
and (12)

Xinew ¼ Xi þ randð0; 1Þ × ðXbest −Mutual Vector × BF1Þ ð11Þ

Xjnew ¼ Xj þ randð0; 1Þ × ðXbest −Mutual Vector × BF2Þ ð12Þ

Mutual Vector ¼ Xi þ Xj

2
ð13Þ

BF1 ¼ 1þ round½randð0,1Þ� ð14Þ

BF2 ¼ 1þ round½randð0; 1Þ� ð15Þ

The following observations on the mutualism mathematical
model can be made:
• rand(0,1) in Eqs. (11) and (12) is a vector of random numbers

between 0 and 1;
• Mutual_Vector in Eq. (13) represents the mutual connection

between organisms Xi and Xj;
• Xbest represents the organism with the current highest state of

adaptation to the ecosystem;
• Organism Xi might benefit significantly when interacting with

organism Xj; at the same time, organism Xj might benefit only
slightly when interacting with organism Xi; here, benefit factors
(BF1) and (BF2) are determined stochastically as either 1 or 2

[Eqs. (14) and (15)], indicating whether an organism partially or
fully benefits from the interaction;

• Organisms evolve to a fitter version only if their new fitness is
better than their preinteraction fitness; if so, the old Xi and Xj
are replaced by Xinew and Xjnew; this mechanism is similar to
greedy selection; and

• For each organism Xi, this interaction counts for two function
evaluations.

Commensalism Phase

After the mutualism phase is finished, the organism Xi selects a
new partner randomly from the ecosystem, organism Xj. In this
case, organism Xi attempts to benefit from the interaction but
organism Xj neither benefits nor suffers from it. The commensal
symbiosis between organisms Xi and Xj is modeled in
Eq. (16):

Xinew ¼ Xi þ randð−1; 1Þ × ðXbest − XjÞ ð16Þ

Some observations on the commensalism mathematical model
can be made:
• randð−1; 1Þ in Eq. (16) is a vector of random numbers between

−1 and 1;
• Xbest reflects the current highest state of adaptation to the

ecosystem, similar to that used in the mutualism phase;
• Organism Xi is updated to Xinew only if its new fitness is better

than its preinteraction fitness; and
• For each organism Xi, this interaction counts for one function

evaluation.

Parasitism Phase

After the commensalism phase is completed, the organism Xi
again randomly selects a new organism from the ecosystem, organ-
ism Xj. In parasitism, organism Xi is given a role similar to that
of the anopheles mosquito through the creation of an artificial
parasite called Parasite_Vector. Organism Xj serves as host to
Parasite_Vector. During the interaction, Parasite_Vector tries to
kill host Xj and replace it in the ecosystem. Organism Xi may gain
a benefit because, by cloning Parasite_Vector, its influence in the
ecosystem may increase whereas Xj may suffer and die.

The creation of Parasite_Vector is described as follows:
1. An initial Parasite_Vector is created in the search space by

duplicating organism Xi; some decision variables from the
initial Parasite_Vector are modified randomly to differentiate
Parasite_Vector from organism Xi;

2. A random number is created within a range from one to the
number of decision variables, representing the total number of
modified variables;

3. The location of the modified variables is determined stochas-
tically using a uniform random number,which is generated for
each dimension; if the random number is less than 0.5, the
variable is modified; otherwise, it stays the same; and

4. The variables are modified using a uniform distribution within
the search space and Parasite_Vector is ready for the parasit-
ism phase.

Both Parasite_Vector and organism Xj are then evaluated to
measure their fitness. If Parasite_Vector has a better fitness value,
it kills organism Xj and assumes its position in the ecosystem. If the
fitness value of Xj is better, Xj has immunity from the parasite and
Parasite_Vector can no longer live in that ecosystem. For each
organism Xi, this interaction counts for one function evaluation.

© ASCE 04015036-4 J. Comput. Civ. Eng.
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Stopping Condition

The optimization process terminates when a user-set stopping
criterion is met. This criterion is often set as the maximum iteration
number Gmax or the maximum number of function evaluations
(NFE). The optimal solution can be identified after search process
termination. The project schedule and its corresponding resource
histogram may then be constructed based on the optimal start time
for activities.

Case Study

A case study adapted from Guo et al. (2009) was used to demon-
strate the capability of the newly developed DSOS-MRLMP
model. In this case study, an enterprise had to start two projects
with the same total project duration. Fig. 3 shows the precedence
relationships of the network projects. Each activity in both projects
used three resources (R1: human; R2: fund; R3: equipment) and had
a certain duration D, indicated above the arrow line in the figure.

Based on the importance of each resource, the analytical hier-
archy method made a pairwise comparison of each resource. The
comparison matrix was obtained as follows:

R1

R2

R3

"
1 3 5

3−1 1 3

5−1 3−1 1

#

Consistency inspection demonstrated that this comparison ma-
trix was acceptable. The computational process for the weights
of each resource followed these steps: (1) sum up each column
of the comparison matrix; (2) divide each corresponding element
by its sum-up value; and (3) take the average of each row to ob-
tain the weights. The weights for each resource were thus set
approximately as w1 ¼ 0.637;w2 ¼ 0.258; and w3 ¼ 0.105. Con-
sequently, the objective function for the case study was calculated
as follows:

min RI ¼ 1

18

X18
t¼1

f0.637½SR1ðtÞ − SR1ðtÞ�2 þ 0.258½SR2ðtÞ − SR2ðtÞ�2

þ 0.105½SR3ðtÞ − SR3ðtÞ�2gs:t:

8>>>>>>>>>><
>>>>>>>>>>:

0 ≤ TsðA1Þ ≤ 7 0 ≤ TsðI1Þ ≤ 15

0 ≤ TsðB1Þ ≤ 3 0 ≤ TsðA2Þ ≤ 9

TsðB1Þ þ 5 ≤ TsðC1Þ ≤ 8 0 ≤ TsðC2Þ ≤ 15

0 ≤ TsðF1Þ ≤ 6 5 ≤ TsðD2Þ ≤ 9

TsðB1Þ þ 4 ≤ TsðG1Þ ≤ 10 5 ≤ TsðG2Þ ≤ 7

0 ≤ TsðH1Þ ≤ 3 5 ≤ TsðH2Þ ≤ 13

Optimization Result for the DSOS-MRLMP

The DSOS-MRLMP model significantly reduces fluctuation in re-
source use. This study used parameters for the DSOS optimizer
based on proposed values from the literature and several experi-
ments, as shown in Table 1 (Cheng and Prayogo 2014). Fig. 4
shows the network resource profile for the projects at initialization
and after leveling using DSOS-MRLMP optimization.

Result Comparisons

Three different algorithms were used to verify the comparative per-
formance of the DSOS-MRLMP model. These were DE (Storn and
Price 1997), PSO (Clerc 2006), and GA (Haupt and Haupt 2004).
For comparison purposes, all four algorithms used an equal number
of function evaluations, had population sizes of 100, and used a
maximum of 200 generations. In GA, the constant mutant and
crossover probability factors were set at 0.5 and 0.9, respectively.
In PSO, the two learning factors, c1, and c2, were both chosen as
2.05, and the inertia factor w was set in the range 0.3–0.7. DE con-
trol parameters were set as 0.5 and 0.8 for mutant factor F and
crossover probability Cr, respectively. Fifty independent runs were
carried out for all experiments.

Table 2 lists the optimal results—that is, the optimal noncritical
activity start times obtained from the proposed model and other
benchmark algorithms. In Table 2, RIm is the resource intensity for
a single resource m

min RI ¼ 1

18

X18
t¼1

½RmðtÞ − RmðtÞ�2; Rm ¼ 1

18

XT
t¼1

RmðtÞ

As shown in the table, the optimal resource intensities (RIs)
obtained by DSOS-MRLMP were, respectively, 94.9%, 2.0%,
6.9%, and 14.4% less than the initial schedule, DE, PSO, and
GA. Fig. 5 shows the resource profile after optimization by each
algorithm.

To evaluate the stability and accuracy of each algorithm, opti-
mization performance was expressed in terms of best result found,
average result, standard deviation, and worst result after 50 runs
(Table 3). The best and worst results demonstrate the capacity of
each algorithm to find the optimal solution for all performance
measurement metrics. Average and standard deviation are two
additional characteristics that describe solution quality. Standard
deviation occurs when algorithms are not able to generate optimal
solutions in all executions.
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As shown in Table 3, the performance of DSOS-MRLMP is
competitive in terms of accuracy and stability. It is clearly shown
that the model can find optimal solutions in fitness function. Fur-
thermore, in terms of average results DSOS-MRLMP performs the
best of the considered algorithms because it generates the lowest

average fitness solution, with a value of 4.739 and a deviation value
of 0.291. Fig. 6 shows the best fitness values from the different
approaches by number of iterations.

Statistical Test

Hypothesis tests were performed to further demonstrate the supe-
riority of the DSOS-MRLMP over the benchmark algorithms.
Because all indicator comparisons demonstrate that DE performs
better on average than either PSO or GA, the hypothesis tests only
considered DSOS-MRLMP and DE. A one-tailed t-test with equal
sample sizes and unequal and unknown variances analyzed DSOS-
MRLMP versus standard DE in terms of resource intensity (RI)
(Table 3) to determine which of the following hypotheses holds:
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Fig. 3. Networks of two projects: (a) project 1; (b) project 2

Table 1. Settings for DSOS-MRLMP Parameters

Input parameter Notation Setting

Number of decision variables D 12
Population size NP 100
Amplification coefficient λ 30
Maximum generation Gmax 200
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Fig. 4. Resource profile of projects: (a) resource demand of initial network; (b) resource demand after DSOS optimization
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• H0: There is no difference in the RI of the DSOS algorithm and
that of the standard DE algorithm.

• H1: The DSOS algorithm is significantly better than the standard
DE algorithm.
The following hypothesis tests were used:

• DSOS-MRLMP: s1 ¼ 0.291; DE: s2 ¼ 0.501; n1 ¼ n2 ¼
n ¼ 50:

Table 2. Comparison of Optimal Performance for Algorithms

Algorithms RI RI1 RI2 RI3

Actual start time of noncritical activities

A1 B1 C1 F1 G1 H1 I1 A2 C2 D2 G2 H2

Initial 89.46 76.95 1,169 123.8 0 0 5 0 4 0 0 0 0 5 5 5
GA 5.327 1.06 13.76 9.17 0 3 8 0 9 0 15 8 12 9 6 13
PSO 4.897 0.84 26.65 7.95 0 0 8 6 10 3 12 0 15 8 5 13
DE 4.652 0.84 21.97 5.73 0 3 9 0 10 0 12 8 15 9 6 13
DSOS-MRLMP 4.558 0.62 21.31 9.51 3 0 8 0 8 0 12 8 15 9 5 13

Note: RI = resource intensity.
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Fig. 5. Resource profile of projects by different algorithms: (a) resource demand optimized by DSOS optimizer; (b) resource demand optimized by
DE optimizer; (c) resource demand optimized by PSO optimizer; (d) resource demand optimized by GA optimizer

Table 3. Comparison of Results for the DSOS-MRLMP and Benchmarked
Algorithms

Evaluation
indicator

Performance
measurement GA PSO DE DSOS-MRLMP

Fitness
value

Best 5.327 4.897 4.652 4.558
Average 6.832 6.154 5.346 4.739
Standard 1.979 0.864 0.501 0.291
Worst 13.385 10.038 6.506 5.518
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Fig. 6. Best project RI curves for the algorithms
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v ¼ ðs21=n1 þ s22=n2Þ2
ðs21=n1Þ2
n1 − 1

þ ðs22=n2Þ2
n2 − 1

¼ ð0.2912=50þ 0.5012=50Þ2
ð0.2912=50Þ2

50 − 1
þ ð0.5012=50Þ2

50 − 1

¼ 78.7 ðclosest to 79Þ
• Critical value: with significant level of t-test α ¼ 0.05; ν ¼ 79;

the following is obtained:

tα;ν ¼ t0.05;79 ¼ 1.664

• Statistical test:

t ¼ ðx̄1 − x̄2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21=n1 þ s22=n2

p ¼ ð4.739 − 5.346Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.2912=50þ 0.5012=50

p ¼ −7.406

< −1.664 ¼ −t0.05;79
where n = sample size (number of experimental runs); ν =
degrees of freedom used in the test; and s21 and s22 = unbiased
estimators of the variances of the two samples (DSOS-MRLMP
and DE).
The denominator of t is the standard error of the difference

between two means x̄1, and x̄2 (average).
The statistical test value is smaller than the critical value. There-

fore, H0 is rejected. The proposed DSOS-MRLMP is thus demon-
strated to be statistically superior to the standard DE in terms of
resource intensity.

Conclusions

This paper used DSOS to solve the problem of multiple-resources
leveling in multiple-projects scheduling (MRLMP). An application
example was analyzed to illustrate the effectiveness of the proposed
model and to demonstrate its capabilities in generating an optimal
schedule that eliminates undesirable resource fluctuations and re-
source idle times.

Obtained results indicate the excellent performance of the
DSOS-MRLMP algorithm in solving the MRLMP problem. It is
the only algorithm that yields the optimal actual start time of
noncritical activities with the best RI, 4.558. Furthermore, it sig-
nificantly outperforms GA, DE, and PSO. The closet competing
algorithm to the proposed algorithm is DE. When these two algo-
rithms are compared, DSOS-MRLMP has an approximately 2.0%,
11.4%, 41.9%, and15.2% better solution than DE in terms of best
solution, average, standard deviation, and worst solution, respec-
tively. Moreover, DSOS-MRLMP produces a significantly better
result than DE in terms of RI, verified by the one-tailed t-test.

The search strategy using organism interactions was important
to the extraordinary performance of the proposed algorithm. This
strategy differs significantly from previous metaheuristic algo-
rithms such as GA, PSO, and DE because it simulates natural pat-
terns using the mutualism, commensalism, and parasitism phases of
the SOS algorithm to gradually improve candidate solutions. These
three phases are simple and require only a few additional lines of
code onMATLAB platforms. Another major advantage of SOS over
competing algorithms is the small number of parameters that must
be tuned.

The DSOS algorithm has broad application potential because it
is easily modifiable for solving many other classes of single-
objective optimization problems in the construction management
field, such as resource allocation and resource constraint. More-
over, resource-leveling problems in the realm of minimization of
total project cost are frequently encountered in construction
management. Trade-offs between time and cost are necessary to

improve overall project benefits. Further work is necessary to ad-
dress these issues so that DSOS can be applied to the resolution of
complicated resource-leveling problems that consider multiobjec-
tive optimizations. Extending the current DSOS from a single-
objective to a multiobjective format is an interesting direction
for further research.
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