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Abstract: An effective method for optimizing high-performance concrete mixtures can significantly benefit the construction industry. How-
ever, traditional proportioning methods are not sufficient because of their expensive costs, limitations of use, and inability to address nonlinear
relationships among components and concrete properties. Consequently, this research introduces a novel genetic algorithm (GA)–based
evolutionary support vector machine (GA-ESIM), which combines the K-means and chaos genetic algorithm (KCGA) with the evolutionary
support vector machine inference model (ESIM). This model benefits from both complex input-output mapping in ESIM and global solutions
with faster convergence characteristics in KCGA. In total, 1,030 data points from concrete strength experiments are provided to demonstrate
the application of GA-ESIM. According to the results, the newly developed model successfully produces the optimal mixture with minimal
prediction errors. Furthermore, a graphical user interface is utilized to assist users in performing optimization tasks. DOI: 10.1061/(ASCE)
CP.1943-5487.0000347. © 2014 American Society of Civil Engineers.
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Introduction

High-performance concrete (HPC) has gained popularity over the
last decade, replacing the well-known high-strength concrete in the
concrete construction industry (Yeh and Lien 2009). Unlike con-
ventional concrete, HPC employs additional supplementary cemen-
titious materials such as fly ash and blast furnace slag, and chemical
admixtures such as superplasticizer (Yeh 1999). Therefore, mixture
proportioning of HPC is more complicated because more materials
are included. Traditional proportioning is not sufficient in HPC mix
designs for several reasons: (1) it is a waste of cost, laborers, and
time (Ji et al. 2006); (2) it is only applicable to a narrow range of
locally available materials (Domone and Soutsos 1994); and (3) it is
often unable to handle nonlinear relationships among components
and concrete properties (Chou 2011). Researchers still need to find
suitable methods for optimizing HPC mixtures.

Several studies have demonstrated that HPC mixtures can be
optimized by using hybrid optimization and prediction techniques
instead of implementing expensive and time-consuming experi-
ments (Yeh 1999, 2007, 2009; Lim et al. 2004). First, because the
relationship between the components and the strength of concrete is
too complicated to be expressed by using mathematical equations, a
prediction tool is employed to generate the relationship model. One

of the primary advantages of employing a prediction tool, such as
artificial neural network (ANN) or support vector machine (SVM),
is its ability to handle complex input-output mapping relationships.
However, improper setting of parameters can reduce the prediction
accuracy of these tools (Ko et al. 2007; Cheng and Wu 2009a).

An optimization technique searches for the optimum mixture
solution based on the establishedmodel. Nevertheless, not all optimi-
zation techniques are sufficiently robust to address optimization prob-
lems. For example, traditional mathematical programming does not
always guarantee a global solution. Metaheuristics, including the
well-known genetic algorithm (GA) and particle swarm optimization
(PSO), are long proven to produce reliable results for various prob-
lems. Although the risk of capturing local optimum traps is lower than
with traditional methods (Kaya 2011), some researchers have noticed
that GA and PSO can converge prematurely when most of the indi-
viduals in a population contain similar structures. This reduces the
search capability and may end up in local optima (Liang et al.
2006; Na-Na et al. 2006; Shieh et al. 2011; Pattnaik et al. 2013).

In GA, once the population has converged, the ability of the GA
to continue to search for better solutions is effectively eliminated
because the crossover of almost identical chromosomes produces
little that is new. Only mutation remains for exploring entirely new
domains, and this simply performs a slow random search (Beasley
et al. 1993). Thus, shortcomings in current GAs have encouraged
researchers to improve the performance of GA by modifying the
selection procedure (Patel et al. 2009, 2011), crossover operator
(Andre et al. 2001; Kaya 2011), or mutation operator (Tang and
Tseng 2013), or even by hybridizing GA with other algorithms
(Chen and Flann 1994; Kao and Zahara 2008; Mahmoodabadi et al.
2013). To this end, more advanced prediction and optimization
algorithms are still needed to optimize HPC mixtures.

The K-means and chaos genetic algorithm (KCGA) (Cheng
and Huang 2010) and the evolutionary support vector machine
inference model (ESIM) (Cheng and Wu 2009b) are two artificial
intelligence (AI) approaches that have been successfully applied in
many construction industry problems. KCGA is a powerful hybrid
optimization algorithm that eliminates some of the shortcomings
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of traditional GA, whereas ESIM can map complex input-output
relationships by automatically self-adjusting its parameters. The
success of KCGA and ESIM in improving the performance of
GA and SVM has opened the possibilities of establishing more
advanced hybrid algorithms. Integrating KCGA and ESIM offers
strong potential to generate a robust method for finding optimum
HPC mixtures.

The primary objective of this research work is to develop a novel
genetic algorithm–based evolutionary support vector machine
(GA-ESIM) for finding the optimum HPC mixture. To achieve
the goal, this research fuses KCGAwith ESIM. ESIM is employed
to build an accurate HPC strength model and KCGA is performed
to obtain the optimum HPC mixture components based on the
established strength model. The remaining sections of this paper
include a review of past studies of HPC mixture proportioning
in the next section. The third section introduces ESIM and KCGA
and describes the proposed architecture of GA-ESIM. The fourth
section elaborates on the proposed model in application following
HPC historical cases and introduces the incorporation of GA-ESIM
and the graphical user interface (GUI). Conclusions and research
findings are given in the last section.

Literature Review

K-Means and Chaos Genetic Algorithm

KCGA is a powerful hybrid algorithm proposed by Cheng and
Huang (2009), which integrates K-means and chaos attributes
based on GA. KCGA has been applied in several construction prob-
lems, such as site layout and time–cost tradeoff problems (Cheng
and Huang 2009; Cheng et al. 2011a). K-means plays a critical role
in the convergence of GA, whereas chaos algorithms can maintain
GA population diversity and avoid premature convergence. Thus,
KCGA not only enhances the diversity of GA to obtain greater ac-
curacy, but also extracts clustering rules to achieve the potential
trend of evolution. In addition, it can effectively erase some draw-
backs of traditional GA, such as long running time and becoming
trapped in local optima. The whole procedure of KCGA is de-
scribed in Fig. 1.

Evolutionary Support Vector Machine Inference Model

Recently, SVM has been extensively applied in various fields of
science and engineering. However, SVM presents users the prob-
lem of tuning optimal kernel parameters. To address this situation,
Cheng and Wu (2009b) developed ESIM by fusing SVM with fast,

messy genetic algorithm (fmGA). The structure of the ESIM is
illustrated in Fig. 2. As a powerful prediction tool, ESIM can
address complex input-output mapping relationships, as verified
in many construction-related topics, such as cost estimation (Cheng
andWu 2009b; Chou et al. 2011), project success assessment (Cheng
et al. 2010a), estimate at completion (Cheng et al. 2010b), construc-
tion insurance (Cheng et al. 2011b), risk management (Cheng
and Wu 2009b), and building assessment (Chen et al. 2012).

Genetic Algorithm–Based Evolutionary Support
Vector Machine

A novel, powerful algorithm is proposed called GA-ESIM. The
proposed model employs ESIM for handling nonlinear input-
output mapping relationships when establishing the prediction
model and KCGA for optimizing the HPC mixture based on the
established model. The hybridization of these AI methods is ex-
pected to yield a robust model for optimizing mixture properties.

The operation of GA-ESIM begins with a population of individ-
uals. The individuals represent solution vectors of mixture compo-
nents. The next step is to obtain the fitness value by evaluating each
individual in the population. This can be done by substituting

Fig. 1. Flowchart of KCGA (adapted from Cheng et al. 2011b)

Fig. 2. Structure of ESIM (reprinted from Automation in Construction,
Vol. 18, No. 5, Min-Yuan Cheng and Yu-Wei Wu, “Evolutionary sup-
port vector machine inference system for construction management”,
pp. 597-604, Copyright 2009, with permission from Elsevier)
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each individual in the objective function and conducting the calcu-
lation process. However, many complex objective functions cannot
be expressed in a mathematical equation. In this situation, ESIM
plays a critical role in mapping the complex and nonlinear relation-
ship between each individual and its fitness value.

After the evaluation is finished, the population is operated by
five primary operators adopted from KCGA: selection, crossover,
mutation, chaos operator, and K-means operator. The operation is
repeated until the optimal solution is found or the stopping criterion
is achieved. The complete GA-ESIM algorithm flowchart is shown
in Fig. 3 and the whole procedure of GA-ESIM is described in the
following.
1. Phase 1 is the initialization phase.

• Step 1: Input data are prepared for building the predic-
tion model.

• Step 2: Conduct ESIM training to establish the prediction
model, including the optimized C and γ parameters of
SVM (C is a soft margin parameter which controls the
trade-off between margin maximization and error minimiza-
tion. γ is a kernel parameter which defines how far the in-
fluence of a single training example reaches). To minimize
the bias in ESIM training, cross-validation can be applied.

• Step 3: Generate initial population randomly by chaos
algorithm. Each individual represents a potential solution
to a problem.

2. Phase 2 is repeated until the stopping criterion is satisfied.
• Step 4: Conduct ESIM predicting (for calculating fitness)

and ranking. The population is evaluated to obtain the fit-
ness value of each individual. ESIM maps each individual
and its fitness value by using the optimal C and γ.

• Step 5: Reserve top fit individuals to population size. The
fitness value of each individual is ranked and top fit indi-
viduals are reserved to population size.

• Step 6: Select parent individuals for genetic operation by
using tournament selection principle.

• Step 7: Perform crossover operation, which mates parents
to produce the next generation based on crossover rate.
A uniform crossover is adopted.

• Step 8: Perform mutation operation, which produces spon-
taneous random changes in various individuals based on
mutation rate.

• Step 9: The chaos operator diversifies individuals after
mutation by using chaos mapping operator.

• Step 10: Conduct K-means clustering, which groups and
locates the centroid of each cluster.

• Step 11: Add centroids to the population. Location infor-
mation for each centroid of the cluster is treated as candi-
date individuals for the next generation.

3. Phase 3: output the best fitness value and its corresponding
solution.

Case Study

This section demonstrates the performance of the novel GA-ESIM.
The proposed algorithm has been developed using the MATLAB
platform version 7.10.0 (MATLAB version 7.10.0 (R2010a)). A
case study to find an optimum HPC mixture is provided to perform
the application potential of the proposed model. The rest of this
section is dedicated to describe the model in detail.

Input Data

Data used in this paper were originally generated by Yeh (1998)
and were collected from a repository of data at the University of
California, Irvine (UCI). The database includes a total of 1,030 con-
crete sample records from 17 concrete strength test laboratories and
cover nine attributes, eight of which are input factors and one of
which is an output factor (Table 1). Input and output variables were
normalized between 0 and 1 to avoid numerical difficulties or con-
ditions in which attributes with greater ranges dominate those with
smaller ranges (Hsu et al. 2003). The function used to normalize
data is shown in Eq. (1):

xnormn ¼ Xn − Xmin
n

Xmax
n − Xmin

n
ð1Þ
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Fig. 3. Procedure of GA-ESIM
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where xnormn = normalized data of attribute n; xn = initial data of
attribute n; xmax

n = upper bound data of attribute n; xmin
n = lower

bound data of attribute n.

ESIM Training

The HPC data were subjected to 10-fold cross validation to ensure
that all of the data set was applied in both the training and testing
phases. The root-mean-square error (RMSE) and mean absolute
error (MAE) were employed to evaluate the error measurement
of each fold. The formulations of RMSE and MAE are expressed
in the following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðy 0 − yÞ2

n

r
ð2Þ

MAE ¼ 1

n

X
jy 0 − yj ð3Þ

where y = actual value; y 0 = predicted value; and n = number of
data samples.

Optimal Prediction Model of ESIM

This section presents the prediction results of ESIM training and
testing. Additional well-known prediction tools, including SVM
and ANN, were also employed for comparison purposes. The C
and γ parameters for SVM were set to 1 and 0.125, as suggested
by Hsu et al. (2003). The parameter setting for ANN followed Yeh
(1998) and Yeh and Lien (2009) as follows: number of hidden
layers = 1; number of hidden units = 8; learning rate = 1.0;
momentum factor = 0.5; and learning cycles = 3,000. RMSE
and MAE results of the ESIM compared against SVM and
ANN are shown in Tables 2 and 3.

The results indicate that ESIM achieves better performance for
predicting HPC compressive strength than both SVM and ANN.
The ANN did not show equally satisfactory performance. However,
no attempt was made in this study to investigate the suitability of
alternative ANN architectures or learning schemes. For the training

Table 2. Training and Testing RMSEs of Various Prediction Tools Verified by Ten-Fold Cross Validation

Number of folds

Training RMSE (MPa) Testing RMSE (MPa)
ESIM optimal
parameters

ESIM SVM ANN ESIM SVM ANN C γ

1 5.98 8.76 6.81 6.76 7.56 6.97 185 0.5524
2 5.88 8.70 6.80 5.95 8.89 7.26 198 0.6364
3 6.05 8.61 6.56 7.64 9.66 7.95 195 0.4411
4 6.03 8.73 6.94 5.93 8.69 7.07 184 0.4171
5 5.95 8.76 6.62 6.46 8.49 7.25 24 0.8001
6 6.08 8.66 6.69 6.00 9.15 6.68 190 0.9985
7 6.33 8.73 6.97 6.77 8.29 7.41 200 0.2001
8 6.29 8.70 7.30 6.21 8.83 8.04 165 0.2561
9 5.94 8.65 7.05 6.50 9.43 7.44 60 0.9501
10 5.82 8.64 7.18 7.06 9.68 8.00 125 0.9995
Minimum 5.82 8.61 6.56 5.93 7.56 6.68 — —
Average 6.04 8.69 6.89 6.53 8.87 7.41 — —
Maximum 6.33 8.76 7.30 7.64 9.68 8.04 — —

Table 3. Training and Testing MAEs of Various Prediction Tools Verified by Ten-Fold Cross Validation

Number of folds

Training MAE (MPa) Testing MAE (MPa)
ESIM optimal
parameters

ESIM SVM ANN ESIM SVM ANN C γ

1 4.98 7.00 5.17 5.37 5.86 5.10 185 0.5524
2 4.89 6.96 5.17 4.52 7.22 5.52 198 0.6364
3 5.04 6.88 5.00 5.90 7.51 6.08 195 0.4411
4 5.01 6.98 5.22 4.84 6.84 5.39 184 0.4171
5 4.90 7.01 4.86 5.33 7.00 5.53 24 0.8001
6 5.11 6.89 4.95 4.84 7.48 4.89 190 0.9985
7 5.23 6.97 5.30 5.09 6.49 5.60 200 0.2001
8 5.21 6.95 5.59 5.03 7.15 5.92 165 0.2561
9 4.92 6.94 5.37 5.27 7.45 5.61 60 0.9501
10 4.88 6.92 5.49 5.66 7.76 6.08 125 0.9995
Minimum 4.88 6.88 4.86 4.52 5.86 4.89 — —
Average 5.02 6.95 5.21 5.18 7.07 5.57 — —
Maximum 5.23 7.01 5.59 5.90 7.76 6.08 — —

Table 1. HPC Influencing Factor Data

Input factor Unit Upper bound Lower bound

Cement Kg=m3 102.00 540.00
Blast furnace slag Kg=m3 0.00 359.40
Fly ash Kg=m3 0.00 200.10
Water Kg=m3 121.75 247.00
Superplasticizer Kg=m3 0.00 32.20
Fine aggregate Kg=m3 801.00 1,145.00
Coarse aggregate Kg=m3 594.00 992.60
Age of testing Day 1.00 365.00
Output factor Unit Upper bound Lower bound
Compressive strength MPa 2.33 82.60

© ASCE 06014003-4 J. Comput. Civ. Eng.
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data set, the minimum, average, and maximum RMSEs of ESIM
were 5.82, 6.04, and 6.33 MPa, respectively; those of MAE were
4.88, 5.02, and 5.23 MPa, respectively. For the testing data set, the
minimum, average, and maximum RMSEs of ESIM were 5.93,
6.53, and 7.64 MPa, respectively; those of MAE were 4.52,
5.18, and 5.90 MPa, respectively. The best prediction model for
HPC compressive strength was found in Fold 4, which showed
the lowest testing RMSE of 5.93 and the second lowest testing
MAE of 4.84.

Finally, ESIM C and γ parameters of Folds 4, 184, and
0.4171, respectively, were identified as the optimal tuning
parameters. In the final step, the optimal C and γ parameters
were conducted in the optimization phase of GA-ESIM as
the optimal prediction model. With this model, ESIM is ready
for mapping the new input-output relationship during the fitness
calculation process.

GA-ESIM Optimization Process

To demonstrate the performance of the proposed model, several
HPC mixtures with various strength requirements were searched.
The requirements included 28-day compressive strength (f 0

c) of
25, 30, 35, 40, 45, 50, 55, and 60 MPa with additional 5% tol-
erance. During the optimization process conducted by KCGA,
ESIM used the prediction model to map the relationship between
mixture properties as the input and f 0

c as the output of HPC data.
The role of KCGA was to find the optimum mixture component
that yielded the required f 0

c for HPC. Feasible solutions were gen-
erated and evaluated by using the established prediction model.
Solutions with the closest value to the required strength were re-
garded as suitable solutions. In KCGA, the population of solution
underwent selection, crossover, mutation, chaos operator, and
K-means clustering until the optimal mixture solution with the
required f 0

c was reached.
The formulation for HPC mixture optimization was adopted

from Yeh (2007) and is expressed in the following equation:

minimize cost ¼ Wc × Cc þWsl × Csl þWfl × Cfl þWw × Cw

þWsp × Csp þWca × Cca þWfa × Cfa ð4Þ
The lower and upper bound components were adopted from his-

torical data. Table 4 represents the approximate unit costs of each
component in Taiwan.

The parameters of KCGA were set as follows: number of gen-
erations = 500, population size = 80, crossover rate = 0.8, mutation
rate = 0.15, number of K-means clusters = 4. Reaching the maxi-
mum number of generations was the cue to stop the computation.
Each individual in the population of KCGA represented ran-
dom HPC mixture components. The age of testing was set at
28 days. Next, ESIM optimal C and γ parameters (C ¼ 184 and
γ ¼ 0.4171) were used to map each individual to its fitness value.
KCGA operators, including selection, crossover, mutation, chaos,
and K-means, were employed to determine the best individual.
The process was repeated until the stopping criterion was met. The
final results of the optimum mixture obtained for each strength re-
quirement are listed in Table 5.

Integrating GA-ESIM with Graphic User Interface of
MATLAB

AGUI is a graphical display that allows users to perform interactive
tasks. This study developed a system that integrates GA-ESIM with

Table 4. Approximate Unit Prices of HPC Components in 2011

Components Unit price (NT$=kg)a

Cement 2.40
Blast furnace slag 0.40
Fly ash 0.80
Water 0.01
Superplasticizer 30.40
Fine aggregate 0.25
Coarse aggregate 0.30
aNT$1 = $0.0334.

Table 5. Optimized HPC Mixture Components

Target
f 0
c (MPa)

Component contents (kg=m3)

Predicted
f 0
c (MPa)

Water/binder
ratio

Total cost
(NT$=m3)Cement Slag Fly ash Water Superplasticizer

Coarse
aggregate

Fine
aggregate

25 132.1 130.9 43.2 208.6 4.0 1,040.1 698.2 25.1 0.694 1,032.2
30 132.7 135.0 70.7 193.0 4.4 1,042.0 705.9 30.0 0.583 1,062.7
35 134.4 211.9 24.8 221.5 4.8 878.4 749.7 35.0 0.610 1,094.6
40 136.3 203.1 74.1 228.2 5.4 799.6 775.9 40.1 0.565 1,118.3
45 161.4 205.4 70.5 221.5 5.7 786.5 786.6 45.3 0.520 1,187.7
50 217.9 196.6 56.6 217.5 6.1 808.7 748.5 50.0 0.475 1,317.2
55 293.7 14.0 197.4 186.1 6.6 995.8 658.5 55.1 0.382 1,444.0
60 332.2 3.1 199.9 172.2 7.0 1,001.5 666.8 61.6 0.335 1,544.6

Fig. 4. Demonstration of GUI integrated with GA-ESIM
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a GUI to provide users with easy and effective interactions. To dem-
onstrate the performance of the system, an example is provided as
follows: unit price, lower and upper bounds, available water-binder
ratio range, and the same KCGA and ESIM parameters as de-
scribed previously; the required f 0

c at 28 days was 25 MPa. The
HPC mixture was presented on the output panel of the proposed
system, as shown in Fig. 4.

Conclusions

This research developed the GA-ESIM for optimizing HPC mix-
tures by fusing KCGA with ESIM. ESIM primarily achieved the
concurrent C and γ parameters to build an accurate prediction
model, verified by cross-validation. KCGA can conduct simula-
tions of trial mixes and finds the optimum solution in a short time
without becoming trapped in local optima. In this case study, indi-
viduals of KCGA represented compositions of the HPC mixture,
whereas the fitness value represented HPC f 0

c. During the optimi-
zation process performed by KCGA, ESIM handled the complex
relationship between each individual and its fitness value. Mean-
while, the integration between GA-ESIM with GUI assisted the
user in easily performing optimization tasks.

The comparison among ESIM, SVM, and ANN showed the
superiority of ESIM as a prediction tool for HPC f 0

c. Thus, the
incorporation of ESIM with KCGA shows the strong potential
of GA-ESIM as a robust model for optimizing HPC mixtures.
In addition, this model has the possibility for application in other
academic and engineering fields.
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