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Abstract. In the last decade, several hybrid methods combining the finite 8 
element and meshfree methods have been proposed for solving elasticity 9 
problems. Among these methods, a novel quadrilateral four-node element with 10 
continuous nodal stress (Q4-CNS) is of our interest. In this method, the shape 11 
functions are constructed using the combination of the ‘non-conforming’ shape 12 
functions for the Kirchhoff’s plate rectangular element and the shape functions 13 
obtained using an orthonormalized and constrained least-squares method. The 14 
key advantage of the Q4-CNS element is that it provides the continuity of the 15 
gradients at the element nodes so that the global gradient fields are smooth and 16 
highly accurate. This paper presents a numerical study on the accuracy and 17 
convergence of the Q4-CNS interpolation and its gradients in surface fitting 18 
problems. Several functions of two variables were employed to examine the 19 
accuracy and convergence. Furthermore, the consistency property of the Q4-20 
CNS interpolation was also examined. The results show that the Q4-CNS 21 
interpolation possess a bi-linier order of consistency even in a distorted mesh. 22 
The Q4-CNS gives highly accurate surface fittings and possess excellent 23 
convergence characteristics. The accuracy and convergence rates are better than 24 
those of the standard Q4 element.  25 

Keywords: continuous nodal stress; finite element; meshfree; Q4-CNS; quadrilateral 26 
four-node element; surface fitting.  27 

1 Introduction 28 

The finite element method (FEM) is now a widely-used, well-establish 29 

numerical method for solving mathematical models of practical problems 30 

in engineering and science. In practice, FEM users often prefer to use 31 

simple, low order triangular or quadrilateral elements in 2D problems and 32 

tetrahedral elements in 3D problems since these elements can be 33 
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automatically generated with ease for meshing complicated geometries. 34 

Nevertheless, the standard low order elements produce discontinuous 35 

gradient fields on the element boundaries and their accuracy is sensitive 36 

to the quality of the mesh.  37 

To overcome the FEM shortcomings, since the early 1990’s up to present 38 

a vast amount of meshfree (or meshless) methods [1], [2], which do not 39 

require a mesh in discretizing the problem domain, have been proposed. 40 

A recent review on meshfree methods presented by Liu [3]. While these 41 

newer methods are able to eliminate the FEM shortcomings, they also 42 

have their own, such as: (i) the computational cost is much more 43 

expensive than the FEM, and (ii) the computer implementation is quite 44 

different from that of the standard FEM.  45 

To synergize the strengths of the finite element and meshfree methods 46 

while avoiding their weaknesses, in the last decade several hybrid 47 

methods combining the two classes of methods based on the concept of 48 

partition-of-unity have been developed [4]-[8]. Among several hybrid 49 

methods available in literature, the authors are interested in the four-node 50 

quadrilateral element with continuous nodal stress (Q4-CNS) proposed 51 

by Tang el al. [6] for the reason that this work is the pioneering hybrid 52 
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method possessing the property of continuous nodal stress. The Q4-CNS 53 

can be regarded as an improved version of the FE-LSPIM Q4 [4], [5]. In 54 

this novel method, the nonconforming shape functions for the 55 

Kirchhoff’s plate rectangular element are combined with the shape 56 

functions obtained using an orthonormalized and constrained least-57 

squares method. The advantages of the Q4-CNS are [6], [9], [10]: (1) the 58 

shape functions are C1 continuous at nodes so that it naturally provides a 59 

globally smooth gradient fields. (2) The Q4-CNS can give higher 60 

accuracy and faster convergence rate than the standard quadrilateral 61 

element (Q4). (3) The Q4-CNS is more tolerant to mesh distortion.  62 

The Q4-CNS has been developed and applied for the free and forced 63 

vibration analyses of 2D solids [9] and for 2D crack propagation analysis 64 

[10]. Recently the Q4-CNS has been further developed to its 3D 65 

counterpart, that is, the hybrid FE-meshfree eight-node hexahedral 66 

element with continuous nodal stress (Hexa8-CNS) [11]. However, 67 

examination of the Q4-CNS interpolation in fitting surfaces defined by 68 

functions of two variables has not been carried out. Thus, it is the 69 

purpose of this paper to present a numerical study on the on the accuracy 70 

and convergence of the Q4-CNS shape functions and their derivatives in 71 
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surface fitting problems. Furthermore, the consistency (or completeness) 72 

property of the Q4-CNS shape functions is numerically examined in this 73 

study.  74 

2 The Q4-CNS Interpolation 75 

As in the standard finite element procedure, a 2D problem domain,  , is 76 

firstly divided into four-node quadrilateral elements to construct the Q4-77 

CNS shape functions. Consider a typical element e  with the local node 78 

labels 1, 2, 3 and 4. The unknown function u on the interior and boundary 79 

of the element is approximated by 80 

 
4

1
( , ) ( , ) ( , )h

i ii
u x y w u x y


    (1) 81 

where wi(ξ,η) and ui(x,y) are the weight functions and nodal 82 

approximations, respectively, associated with node i, i=1,…,4. Note that 83 

in the classical isoparametric four-node quadrilateral element (Q4), the 84 

weight functions are given as the shape functions and the nodal 85 

approximations are reduced to nodal values ui. The weight functions in 86 

the Q4-CNS are defined as the non-conforming shape functions for the 87 

Kirchhoff’s plate rectangular element [6], [12], that is,  88 

 
2 21

8 0 0 0 0
( , ) (1 )(1 )(2 )

i
w          ,  (2a) 89 

 0 i
    ,   0 i

   ,     i=1,2,3,4. (2b) 90 
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where ξ and η are the natural coordinates of the classical Q4 with the 91 

values in the range of –1 to 1.  The weight functions satisfy the partition 92 

of unity property, that is, 
4

1
( , ) 1

i
w    . The nodal approximations 93 

ui(x,y) are constructed using the orthonormalized and constrained least-94 

squares method (CO-LS) as presented by Tang et al. [6] and Yang et al. 95 

[9], [10]. Here the CO-LS is briefly reviewed.  96 

To construct the CO-LS approximation, nodal support domains of node i, 97 

i , i=1,…,4 of a typical quadrilateral element e are firstly defined 98 

using the neighboring nodes of node i. For example, the nodal support 99 

domain of node 3 of element e is shown in Fig. 1(a). The element support 100 

domain ˆ e is then defined as the union of the four nodal support 101 

domains, that is, 4

1
ˆ e

i   , as shown in Fig. 1(b).  102 

Consider a nodal support domain of node i, i  with the total number of 103 

supporting nodes n. Let the labels for the nodes be j, j=1,…, n. Using the 104 

least-squares method, the nodal approximation ui(x,y) is given as 105 

 
T 1( , ) ( , )

i
u x y x y  p A Ba  (3) 106 

where p(x, y) is a vector of polynomial basis functions, viz. 107 

  T 2 2( , ) 1x y x y x xy yp      (1 )m  (4) 108 
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(a) 3  (b) ˆ e  

Figure 1 Definitions of: (a) the nodal support domain of node 3 of element e 109 
and (b) the element support domain of element e.  110 

Here m is the number of monomial bases in p. Following the original 111 

work [6], in this study the ‘serendipity’ basis function 112 

 T 2 2 2 2( , ) 1x y x y x xy y x y xyp  is used if 8n   and the bi-113 

linear basis function  T ( , ) 1x y x y xyp  is used if 8n  . Matrices A 114 

and B are the moment matrix and the basis matrix, respectively, given as 115 

 
T

1
( , ) ( , )

n

j j j jj
x y x y


A p p      ( )m m  (5) 116 

  1 1 2 2
( , ) ( , ) ( , )

n n
x y x y x yB p p p      ( )m n  (6) 117 

Vector  
T

1 2 n
a a aa is the vector of nodal parameters. Note that 118 

in general vector a is not a vector of nodal values because the 119 

approximation ui(x,y) does not necessarily pass through the nodal values.  120 

Defining the inner product for any two basis functions f(x,y) and g(x,y) as 121 
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  
1

( , ), ( , ) ( , ) ( , )
n

j j j jj
f x y g x y f x y g x y


  (7) 122 

and using the Gram-Schmidt orthonormalization algorithm [6], the basis 123 

vector p can be transformed into an orthonormal basis function vector r 124 

so that the moment matrix A becomes the identity matrix. Subsequently, 125 

the nodal approximation is constrained using the Lagrange multiplier 126 

method so that the nodal parameter ui(x,y) at node i is equal to the nodal 127 

value ui. Going through the abovementioned process, the nodal 128 

approximation, Eqn. (3), turns into 129 

 
1

( , ) ( , ) ( , )
n i

i j jj
u x y x y x y a


  Φ a  (8) 130 

where 131 

 
T

1 2
( , ) ( , ) ( , ) ( , ) ( , )i i i i

n
x y x y x y x y x y      Φ r B  (9) 132 

 1 2

i i i i

n
   B B B B  (10) 133 

 ( , ) ( , )i i

j j j j i i
x y f x y B r r ,     j=1, …, n (11) 134 

 

T T

T T

( ( , ) ( , )) ( ( , ) ( , )) if  

( ( , ) ( , ) 1) ( ( , ) ( , )) if  

i i j j i i i ii

j

i i j j i i i i

x y x y x y x y j i
f

x y x y x y x y j i

 
 

 

r r r r

r r r r
 (12) 135 

Note that n, the number of nodes in the nodal support domain of node i, 136 

in general varies with i.   137 
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Consider now the element support domain of element e, ˆ e , with the 138 

total number of nodes N. Let the node labels in ˆ e  be I=1, …, N. Using 139 

this element level labelling system and substituting Eqn. (8) into Eqn. 140 

(1), the approximate function can be expressed as  141 

 
4

1 1 1
( , ) ( , ) ( , ) ( , )

N Nh i

i I I I Ii I I
u x y w x y a x y a

  
         (13) 142 

in which ( , )
I

x y is the Q4-CNS shape function associated with node I in 143 

the element support domain. In this equation, if node I is not in the nodal 144 

support domain of node i, then ( , )i

I
x y  is defined to be zero. It is obvious 145 

that the shape function is the product of the nonconforming rectangular 146 

element shape functions wi(ξ,η) and the CO-LS shape functions ( , )i

I
x y , 147 

that is,  148 

 
4

1
( , ) ( , ) ( , )i

I i Ii
x y w x y


      (14) 149 

 150 

3 Numerical Tests 151 

In this section, the accuracy and convergence of the Q4-CNS 152 

interpolation in fitting surfaces of ( , )z f x y  and their derivatives are 153 

examined. To measure the approximation errors, the following relative L2 154 

norm of error is used 155 
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2

2

( )
h

h

h

z

z z dA
r

z dA










 (15) 156 

in which z is the function under consideration, zh is the approximate 157 

function, and 
h  is the approximate domain with the element 158 

characteristic size, h. This expression is also applicable to measure the 159 

relative error of the function partial derivatives (replacing z and zh with 160 

their derivatives). The integral in Eqn. (15) is evaluated numerically 161 

using Gaussian quadrature rule. The number of quadrature sampling 162 

points is taken to be 5 5 . For the purpose of comparison, the accuracy 163 

and convergence of the standard Q4 interpolation and its partial 164 

derivatives are also presented.  165 

3.1 Shape function consistency property 166 

In order to be applicable as the basis functions in the Rayleigh-Ritz based 167 

numerical method, a set of shape functions is required to be able to 168 

represent exactly all polynomial terms of order up to m in the Cartesian 169 

coordinates [13], where m is the variational index (that is, the highest 170 

order of the spatial derivatives that appears in the problem functional). A 171 

set of shape functions that satisfies this condition is called m-consistent 172 

[13]. This consistency property is a necessary condition for convergence 173 
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(that is, as the mesh is refined, the solution approaches to the exact 174 

solution of the corresponding mathematical model).  175 

To examine the consistency property of the Q4-CNS shape functions, 176 

consider a 10 10 square domain shown in Fig. 2. The domain is 177 

subdivided using 4 4  regular quadrilateral elements, Fig. 2(a), and 178 

irregular quadrilateral elements, Fig. 2(b). The functions under 179 

consideration are the polynomial bases up to the quadratic bases, that is, 180 

1z  , z x , z y , z xy , 2z x and 2z y . The results of the relative 181 

errors for the Q4-CNS interpolation and its nonzero partial derivatives 182 

are listed in Tables 1 and 2, respectively, together with those of the 183 

standard Q4 interpolation.  184 

 185 

 

(a) Regular mesh 

 

(b) Irregular mesh 

Figure 2 Square function domain of size 10-by-10 subdivided into: (a) regular 186 
and (b) irregular quadrilateral elements.  187 

 188 
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Table 1 Relative L2 norm of errors for the approximation of different 189 
polynomial basis functions using the regular and irregular meshes. 190 

Function 
Regular Mesh Irregular Mesh 

Q4-CNS Q4 Q4-CNS Q4 

z=1 9.98E-16 1.32E-17 1.88E-15 1.35E-17 

z=x 1.41E-15 0 2.82E-15 0 

z=y 1.20E-15 0 1.45E-15 0 

z=xy 1.39E-15 1.49E-16 4.59E-15 2.37% 

z=x2 1.22% 2.55% 2.65% 5.83% 

z=y2 1.22% 2.55% 2.33% 5.37% 

 191 

Table 2 Relative L2 norm of errors for the approximation of nonzero 192 
polynomial basis function derivatives using the regular and irregular 193 
meshes.  194 

(a) Basis function derivatives with respect to x 195 

Function 

Derivative to 
x 

Regular Mesh Irregular Mesh 

Q4-CNS Q4 Q4-CNS Q4 

z,x=1 9.11E-15 2.25E-16 2.15E-14 2.82E-16 

z,x=y 9.36E-15 2.55E-16 3.06E-14 11.32% 

z,x=2x 6.70% 12.50% 10.94% 16.58% 

(b) Basis function derivatives with respect to y 196 

Function 

Derivative to 

y 

Regular Mesh Irregular Mesh 

Q4-CNS Q4 Q4-CNS Q4 

z,y=1 8.71E-15 1.98E-16 9.61E-15 2.11E-16 

z,y=x 1.02E-14 2.93E-16 3.58E-14 12.53% 

z,y=2y 6.70% 12.50% 10.30% 15.90% 

 197 

The tables show that the Q4-CNS interpolation is capable to reproduce 198 

exact solutions up to the xy basis both for the domain with regular and 199 

irregular meshes. In other words, the Q4-CNS interpolation is consistent 200 

up to the xy basis. On the other hand, the Q4 interpolation is consistent 201 



12 F.T. Wong, R.M. Soetanto & J. Budiman 

up to the same basis for the regular mesh, but it is only purely linear 202 

consistent for the irregular mesh. This finding may partly explain the 203 

reason the Q4-CNS has higher tolerance to mesh distortion [6]. For the x2 204 

and y2 bases, both the Q4-CNS and Q4 interpolations are not able to 205 

produce the exact solutions, as expected. For these bases, the Q4-CNS 206 

interpolation is consistently more accurate than the standard Q4.  207 

The tables clearly reveals that the Q4-CNS interpolation is not consistent 208 

up to all of the quadratic bases. As a consequence, the Q4-CNS is not 209 

applicable to variational problems possessing variational index m=2, 210 

including the Love-Kirchhoff plate bending and shell models. This is in 211 

contradiction to the statement made in the original paper [6], which 212 

mentioned that the Q4-CNS “is potentially useful for the problems of 213 

bending plate and shell models”. If the Reissner-Mindlin theory is 214 

adopted, however, the Q4-CNS is of course applicable.  215 

3.2 Accuracy and Convergence 216 

3.2.1 Quadratic function 217 

The accuracy and convergence of the Q4-CNS interpolation in fitting 218 

functions in 2D domain are firstly examined using quadratic function 219 

(adapted from an example in Wong and Kanok-nukulchai [14]) given as 220 
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 2 21z x y    (16) 221 

with two different domains, viz.  222 

  S ( , ) 0 1, 0 1x y x y       (17) 223 

  2 2
C ( , ) 1, 0, 0x y x y x y       (18) 224 

The first domain, Eqn. (17), is the unit square while the second one, Eqn. 225 

(18), is a quarter of the unit circle, both of which are located in the first 226 

quadrant of the Cartesian coordinate system. The unit square is 227 

subdivided using regular meshes of 2 2 , 4 4 , 8 8 , and 16 16  square 228 

elements. The quarter of the unit circle is subdivided into 3, 12, 27, and 229 

48 quadrilateral elements as shown in Fig. 3 (taken from an example in 230 

Katili [15]).   231 

The relative error norms of the Q4-CNS and Q4 interpolations in 232 

approximating the quadratic function, Eqn. (16), and its partial 233 

derivatives, are presented in Table 3 for the square domain and in Table 4 234 

for the quarter circle domain. The tables show that the Q4-CNS 235 

interpolation converges very well to the quadratic function z both for the 236 

regular mesh in the unit square domain and for the relatively irregular 237 

mesh in the quarter of the unit circle domain. The tables also confirm that 238 

the Q4-CNS interpolation is consistently more accurate than the Q4 239 
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interpolation. The finer the mesh the more accurate the Q4-CNS 240 

interpolation compared to the Q4.  241 

 242 

 
3 elements 

 
12 elements 

 
27 elements 

 
48 elements 

Figure 3 A quarter of the unit circle subdivided into different number of 243 
quadrilateral elements (Katili [15], p.1899).  244 

 245 

Table 3 Relative L2 norm of errors for the approximation of the quadratic 246 
function, rz, and its partial derivatives, rz,x and rz,y over the unit square 247 
domain.  248 

M 
rz rz,x rz,y 

Q4-CNS Q4 Q4-CNS Q4 Q4-CNS Q4 

2 10.18% 16.26% 22.77% 25.00% 26.29% 28.87% 

4 1.83% 4.07% 10.62% 12.50% 12.26% 14.43% 

8 0.33% 1.02% 4.13% 6.25% 4.77% 7.22% 

16 0.06% 0.25% 1.52% 3.13% 1.76% 3.61% 

M: the number of elements on each edge 
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Table 4 Relative L2 norm of errors for the approximation of the quadratic 249 
function, rz, and its partial derivatives, rz,x and rz,y over a quarter of the 250 
unit circle domain.  251 

Number 

of 

elements 

rz rz,x rz,y 

Q4-CNS Q4 Q4-CNS Q4 Q4-CNS Q4 

3 11.06% 16.59% 28.14% 33.92% 22.48% 27.10% 

12 2.51% 4.52% 14.56% 16.16% 12.57% 13.96% 

27 0.91% 2.04% 8.42% 10.68% 7.37% 9.36% 

48 0.44% 1.15% 5.64% 7.99% 4.97% 7.03% 

 252 

 253 

 

(a) Relative error norms of 

interpolations 

 

(b) Relative error norms of 

interpolation x-partial derivative  

Figure 4 Convergence of the Q4-CNS and Q4 interpolations in approximating: 254 
(a) the quadratic function, (b) the partial derivatives of the function with respect 255 
to x, over the unit square. The number in the legend indicate the average 256 
convergence rate.  257 

 258 

The relative error norms are plotted against the number of elements on 259 

each edge, M, in log-log scale as shown in Fig. 4. The convergence 260 

graphs for the partial derivatives with respect to y are similar to Fig. 4(b) 261 

and have the same convergence rates. The graphs show that the average 262 

convergence rate of the Q4-CNS interpolation is about 25% faster than 263 

that of the Q4. It is worth mentioning here that the convergence rates of 264 



16 F.T. Wong, R.M. Soetanto & J. Budiman 

the Q4 interpolation, 2, and its partial derivatives, 1, are exactly the same 265 

as predicted by the interpolation theory [16].  266 

3.2.2 Cosine function 267 

The second function chosen to examine the accuracy and convergence of 268 

the Q4-CNS interpolation is  269 

 cos( )cos( )
2 2

z x y
 

  (19) 270 

defined over the square unit domain, Eqn. (17). The meshes used are the 271 

same as those in the previous example.  272 

The convergence graphs of the relative error norms of the Q4-CNS and 273 

Q4 interpolations and their partial derivatives with respect to x are shown 274 

in Fig. 5. The graphs confirm the superiority of the Q4-CNS interpolation 275 

over the Q4 interpolation both in terms of the accuracy and convergence 276 

rate.  277 

4 Conclusions 278 

The consistency property, accuracy and convergence of the Q4-CNS 279 

interpolation in surface fitting problems have been numerically studied. 280 

The results show that the Q4-CNS interpolation is consistent up to the 281 

bilinear basis both for the regular and irregular meshes. It is more 282 

accurate than the Q4 in fitting the functions and their derivatives. In a 283 
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sufficiently fine mesh, the error norm of the Q4-CNS interpolation is 284 

around 3 to 4 times smaller than that of the Q4, and the error norm of its 285 

derivatives is around 1.5 to 2 times smaller than that of the Q4. The Q4-286 

CNS interpolation converge very well to the fitted function. Its 287 

convergence rate is approximately 25% faster than that of the Q4. The 288 

demerits of the present method is that the computational cost to construct 289 

the shape function is much higher than the Q4 shape function.   290 

 291 

 

(a) Relative error norms of 

interpolations 

 

(b) Relative error norms of 

interpolation of the x-partial 

derivative  

Figure 5 Convergence of the Q4-CNS and Q4 interpolations in approximating: 292 
(a) the bi-cosine function, (b) the partial derivatives of the function with respect 293 
to x, over the unit square. The number in the legend indicate the average 294 
convergence rate.  295 

 296 

 297 

 298 
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