
Implementation of Javanese Text to Speech using MaryTTS Engine

Rudy Adipranata
1
, Yulia

2
, Liliana

3
, Gregorius Satia Budhi

4

Informatics Dept

Petra Christian University

Surabaya, Indonesia

rudya@petra.ac.id
1
, yulia@petra.ac.id

2
, lilian@petra.ac.id

3
, greg@petra.ac.id

4

Abstract— Indonesia is a country consisting of many ethnic

groups with each having different cultures and languages. One

of the tribes in Indonesia is the Javanese, where most of the

Javanese live on the island of Java. The Javanese have their

culture along with its language and character. In this research,

Javanese text to speech has been implemented, and as

interface, word processor application has been developed. This

word processor application is used to convert the writing in

Roman character into Java character and also as input for the

text to speech engine. MaryTTS has been used as text to speech

engine for Javanese language. From experimental results, the

accuracy of word processor for conversion reached 100%

while the accuracy of Javanese text to speech reached 98.1%.

Keywords- text to speech; Javanese language; MaryTTS

I. INTRODUCTION

As one of the Indonesia culture assets, Javanese culture
and language needs to be preserved especially among the
younger generation. Javanese language has its own unique
form of letters called Java character and also it has
pronunciation which differ from pronunciation of Indonesian
language. This difference creates difficulty for people to read
or write Javanese language literature or script. Several
researches related to Java character have been done such as
Java character recognition which is try to convert from Java
character to Roman character [1,2,3,4] with aim to facilitate
the learning of Java character easily especially for younger
generation.

In this research, we implemented Javanese language text
to speech. This can be used to learn the pronunciation of
Javanese language. We used word processor application [5]
as an interface and input for text to speech. This word
processor application is used to convert from Roman
character to Java character. In addition as interface for text to
speech, by using this application, we can also use this to
learn how to write Java character easily. As engine for text to
speech, we used MaryTTS engine. MaryTTS engine is an
open-source text to speech engine written in Java. It was
originally developed as a collaborative project of DFKI’s
Language Technology Lab and the Institute of Phonetics at
Saarland University [6].

The rest of this paper is organized as follows. In section
II and III, we explain brief review about Java character, text
to speech and MaryTTS. In section IV, we present the
system design. Implementation and results are presented in
section V. And in last section VI, we present our conclusion.

II. JAVA CHARACTER

Javanese language has special form for its character,
called Java Character. Java character consists of 20 carakan
characters, 20 pasangan characters and several sandhangan
characters.

Carakan characters are core syllables that consist of 20
characters, which are called ha, na, ca, ra, ka, da, ta, sa, wa,
la, pa, dha, ja, ya, nya, ma, ga, ba, tha, nga. The carakan
characters can be seen in Table I [7].

TABLE I. CARAKAN CHARACTERS

R

e

a

d

R

e

a

d

R

e

a

d

R

e

a

d

ha

da

pa

ma

na

ta

dha

ga

ca

sa

ja

ba

ra

wa

ya

tha

ka

la

nya

nga

Pasangan characters are used to represent consonant at

the end of word, also consist of 20 characters where each
carakan character has its own pasangan character. Some of
pasangan should be written below carakan character and
some of them should be written aligned with carakan
character. The pasangan characters can be seen in Table II
[7].

TABLE II. PASANGAN CHARACTERS

Cara-

kan

Char.

Pasa-

ngan

R

e

a

d

Cara-

kan

Char.

Pasa-

ngan

R

e

a

d

ha

pa

na

dha

ca

ja

ra

ya

ka

nya

da

ma

ta

ga

sa

ba

wa

tha

la

nga

Sandhangan characters are used to represent vowels,

several special characters (e.g. consonant r, h, ng located at
the end of word), punctuations (comma and period) and
mark the end of the sentences if the last word ended with
consonant (except r, h, ng). Sandhangan characters can be
seen in Table III [7].

TABLE III. SANDHANGAN CHARACTERS

Symbol Example Read

yi

ye’

ye

yo

yu

yar

yah

yang

k

(conson

ant at

the end

of

word)

kra

kre

kya

pa,

(comma)

pa.

(period

)

III. TEXT TO SPEECH AND MARYTTS

Text to speech is the process of converting text into
voices. Speech synthesis is the process of making human
speech artificially. Some text to speech engines use the
machine learning method to produce sounds that are very
similar to human voices. The engine must be trained with a
lot of data in the form of text and audio, including words,
sentences, and pronunciation [8].

A text to speech engine is usually divided into 2 major
sections, front-end and back-end. The front-end will convert
the text into a variety of meaningful data and information,
ready for further processing for speech synthesis. The
required data are pronunciation, intonation, speech, word and
sentences. The back-end is assigned to run the speech
sythesis process. It will receive input data from front-end,
and its output is voice. Usually the back-end requires a lot of
sound recording database, as a reference to produce the
appropriate voice [9].

MaryTTS is an text to speech engine, consist of front-end
and back-end. MaryTTS is designed to accept several types
of inputs: plain text, SSML (Speech Synthesis Markup
Language, a markup language based on XML for application
of speech synthesis) and SABLE (another XML markup
language to annotate texts for speech synthesis, but already
discontinued in 2010) [6].

IV. SYSTEM DESIGN

In order to develop the word processor for Java character,
we need to separate each syllable in words. The design for
separation of syllable is using automata. The design results
can be seen in Fig. 1 [10].

In the design in Fig. 1, vowel is represented by character
V, consonant is represented by character C represents
consonant, and the lowercase characters enclosed in
quotation marks are input characters. At first, input come
into the Q0 as initial state. Then this initial state will split
into four subsequent states, Q2-Q5. If input is character n,
state Q2 will be selected, if input is character d, state Q3
will be selected, if input is character t, state Q4 is selected
and state Q5 is selected if input is character h, c, r, k, s, w, l,
p, j, y, m, g, or b. The final states are Q6, Q10, Q12, Q13 and
Q14 [10].

Figure 1. Design for syllable separation.

V. IMPLEMENTATION AND RESULTS

The first step for text to speech implementation using
MaryTTS is create Javanese speech corpus. Speech corpus is
database collection of voices along with text. In this
research, the speech corpus was formed using approximately
1000 sentences of Javanese language. Each sentence has
between 5 and 15 words. Some sentences can be seen in Fig.
2.

Figure 2. Example of Javanese sentences.

 The second step is create lexicon and allophone file.
Lexicon is collection of words and their pronounciations.
The pronounciations use in this lexicon using SAMPA
notation. Example of lexicon in this research can be seen in
Fig. 3.

Figure 3. Example of Javanese lexicon.

After create lexicon, also we need to create allophone file
using XML format. This allophone file contain all phonemes
in Javanese language. All phonemes used in lexicon creation,
must be the same as phonemes listed in allophones XML.
There should be no phoneme in lexicon that is not listed in
allophones XML. The lexicon and allophones are processed
to become language pack later use by MaryTTS engine.

Besides language pack, it also needs to build voice pack
using speech corpus that have been made in first step. There
are two ways to build voice, by unit selection or HMM
based. Unit selection will result better speech synthesis, more
like human voice but need a lot of speech corpus and the
long time training process. HMM based requires shorter
processing time, use less speech corpus but the result of
speech synthesis is not as good as unit selection, but still
resembles human voice. In this research, we used HMM
based to build voice pack.

After doing all the above steps, MaryTTS engine is ready
for use by word processor application. This word processor
application is the extended version from word processor
application that has been developed in previous research [2].
In the last research, it used its own hanacaraka font, while
currently the application used Google Noto Sans Javanese
font. This application is also developed so that text written
on word processor can communicate with MaryTTS engine
for voicing the text. In this word processor, the user only
uses a regular keyboard (Roman character) to write a
sentence and the application will automatically display the
Java character in accordance with the sentence. The
conversion is done in accordance with the design that has
been made. The word processor application can be seen in
Fig. 4.

Figure 4. Word processor and text to speech application.

To measure the conversion accuracy of word processor
and text to speech applications, about 700 sentences is used.
From the experiment result, the accuracy of the conversion
from Roman to Java character is 100%, while the accuracy
of text to speech is about 98.1%. The errors of text to speech
occur especially in some words that have the same character,
but the pronunciation is different.

VI. CONCLUSION

This research has implemented Javanese text to speech
along with word processor application as its interface. The
word processor application can do conversion from Roman
character into Java character. From the experimental results,
the accuracy of word processor conversion reached 100%,
and the accuracy of text to speech reach 98.1%. The results

of this research can further be used for interactive learning of
speech and writing Javanese character.

ACKNOWLEDGMENT

This research was funded by DIPA Directorate General
of Research and Development Reinforcement (Direktorat
Jenderal Penguatan Riset dan Pengembangan) no.
120/SP2H/LT/DRPM/2018, fiscal year 2018. We also thank
Christopher Imantaka Halim for his help in this research.

REFERENCES

[1] Adipranata, R., Liliana, Indrawijaya, M., Budhi, G.S., “Feature
extraction for Java character recognition,” Communications in
Computer and Information Science 516, 2015, pp. 278-288.

[2] Budhi, G.S., Adipranata, R., “Handwritten javanese character
recognition using several artificial neural network methods,” Journal
of ICT Research and Applications vol.8, no.3, 2015, pp. 195-212.

[3] Budhi, G. S., Adipranata, R., “Comparison of bidirectional
associative memory, counterpropagation and evolutionary neural
network for Java characters recognition,” Proceeding of The 1st
International Conference on Advance Informatics: Concepts, Theory
and Applications, Bandung, Indonesia, 2014, pp. 7-10.

[4] Budhi, G. S., Adipranata, R., “Java characters recognition using
evolutionary neural network and combination of chi2 and
backpropagation neural network,” International Journal of Applied
Engineering Research, vol 9, no 22, 2014, pp. 18025-18036.

[5] Adipranata, R., Budhi, G. S., & Thedjakusuma, R., “Java characters
word processing,” Proceeding of The 3rd International Conference on
Soft Computing, Intelligent System and Information Technology,
Bali, Indonesia, 2012.

[6] MaryTTS, “The Mary text-to-speech system (MaryTTS)”, Retrieved
3 Jan 2017 from http://mary.dfki.de.

[7] Tofani, Abi & Nugraha, Setyo, Tatanan anyar pinter basa jawi pepak,
Pustaka Agung Harapan, Surabaya.

[8] Rubin, P., Baer, T., Mermelstein, P., “An articulatory synthesizer for
perceptual research,” Journal of the Acoustical Society of America.
70 (2), 1981, pp. 321–328.

[9] Van Santen, Jan P. H., Sproat, Richard W., Olive, Joseph P.,
Hirschberg, Julia, Progress in speech synthesis. Springer, 1997.

[10] Yulia, Liliana, Adipranata, R., Budhi, G.S., “Design of Javanese text
to speech application,” Journal of Telecommunication, Electronic and
Computer Engineering, in press.

