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Abstract—A simple independent generalized extreme value
(GEV) model and a three-stage hierarchical model were applied
to regional climate model outputs for temperature extremes
over Tasmania, Australia. The parameters of each model were
estimated using a maximum likelihood and a hybrid Markov
chain Monte Carlo (MCMC) approach respectively. The two
models were compared based on how well the models could
predict extremes for 50 randomly selected locations that were
withheld from fitting, using root mean squared prediction error
(RMSPE), ten times. The RMSPEs of the two models show
that the three-stage hierarchical model outperformed the simple
model. We showed that the spatial hierarchical model has
successfully smoothed the shape parameters. The high values
tend to be pulled down, the low values to be pushed up.
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I. INTRODUCTION

Extreme events occur rarely and we lack the observational
data needed to learn about the characteristics of the event.
In this case, simulation data generated from a global cli-
mate model (GCM), can be useful. A GCM helps us learn
about weather phenomena in the long term, including climate
change. A GCM uses physical and chemical equations and
other parameters to predict climate behaviour. The model’s
predictions do not represent daily weather conditions but
instead represent the overall behaviour of the climate. The
coarse resolution of the GCM (up to hundreds of kilometres) of
the model’s predictions can be misleading. For example, within
one grid cell with a range of 100 km, the topology can be very
diverse and may contain mountains, valleys and plains that
result in large variations in temperature. Because regional vari-
ations are not fully covered by GCM, an alternative approach
is developing a higher resolution climate model, the RCM.
While some RCMs are driven by GCM, RCM projections are
available for a lattice grid of 0.1 degrees. References [1], [2]
used these projections to evaluate extreme temperatures and
produce a return level map for Tasmania.

Most atmospheric data including RCM outputs are highly
spatial. The spatial dependence can be captured by directly
modelling at the data level or at the process stage [3], [4],

[5], [6], [7]. The latter arguably has the benefit of being
more sensible and flexible because the spatial association
is introduced as an adjustment to the explained covariates,
usually through random effects [8]. A three-stage hierarchical
model can be used as an alternative, and the Bayesian approach
may be employed to estimate the parameters.

We applied and compared two models that have different
assumptions about the spatial structure for predicted tempera-
ture extremes. The simple model (Model 1) assumed that the
extreme values in each grid follow an independent generalized
extreme value (GEV) distribution with particular parameters.
The parameters were then independently estimated using max-
imum likelihood estimation (MLE). The more complex model
(Model 2) is a three-stage hierarchical spatial model that
is essentially the same as the model presented by [6]. The
hierarchy allows for small-scale variation in regional effects.
We compared the two models based on how well the models
are able to predict unobserved locations via root mean squared
prediction error (RMSPE). The hierarchical model (Model 2)
will be briefly described in the next section.

II. THE HIERARCHICAL MODEL

We adopt a common three-level hierarchical model com-
prising a data level, process level and parameter level [4], [6],
[7]. Let S ⊂ R2 be the area of interest, which consists of N
locations or grid cells. Let {Y (si)} be a subset of a spatial pro-
cess Y (s) : s ∈R2, where Y (si) = {Y (1)(si), . . . , Y

(n)(si)}
is a vector of n years of independent data at location si.
Then assume Y (k)(si), k = 1, . . . , n follows a GEV distri-
bution with particular parameters at each location, that is,
Y (k)(si) ∼ GEV

(
µ(si), σ(si), ξ(si)

)
. Furthermore, assume

Y (si) is conditionally independent of Y (sj) for si 6=sj .
The second stage is the process level in which each of the

GEV parameters is assumed to follow a normal distribution
with means that comprise fixed effects (XTβ ) and random
effects (W ). Xi is the covariate vector at grid i,βθ is a vector
of unknown regression coefficients and θ is generically used
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TABLE I
POSTERIOR MEANS OF β WITH CORRESPONDING STANDARD ERROR IN

PARENTHESES

ones latitudes longitudes altitudes
βµ 24.01 1.06 0.02 −0.01

(0.06) (0.06) (0.02) (0.00)
βσ 0.90 0.01 0.14 0.03

(0.08) (0.01) (0.01) (0.01)
βξ 0.54 0.02 −0.20 0.00

(0.22) (0.01) (0.00) (0.00)

to stand for µ, σ, and ξ. Consequently, we can write

µ(s) ∼ N
(
XT
µβµ+Wµ(s), τ−2

µ

)
log(σ(s)) ∼ N

(
XT
σβσ+Wσ(s), τ−2

σ

)
ξ(s) ∼ N

(
XT
ξ βξ+Wξ(s), τ

−2
ξ

)
.

(1)

A multivariate intrinsic conditional autoregressive model was
applied to the random effects to capture the spatial dependence
[6], [8]. Here, the effects were assumed to follow a function
depending on the other effects in the neighbourhood. We
chose conjugate priors for the hyperparameters to ease the
computation (see [2] for details).

III. MODEL FITTING

The data are projections from the Commonwealth Scientific
and Industrial Research Organisation’s over Tasmania. The
data are downscaled with high resolution of 0.1 degree and
B1 emissions scenario, and were retrieved from the Tasmanian
Partnership of Advanced Computing portal [9]. We opted to
apply both models to the annual temperature maximum. In
particular, we considered the annual temperature maximum
in summer season (December-February) from 1991 to 2010.
Hence, there are 20 data points at each site.

For Model 1, the MLE was used to estimate GEV pa-
rameters in each cell with help from ismev R-packages. The
diagnostic check showed that the model fit well. For Model 2,
a combination of Gibbs sampling and random walk Metropolis
Hasting (MH) methods were used to sample the posterior
parameters. The MH is used to sample the GEV parameters.
The Gibbs sampler was used to sample the β,W and T
parameters because the posterior conditional distributions of
these parameters can be fully developed.

We carried out 50, 000 iterations, left the first 20, 000
samples as a burn-in period and then thinned every 20th to
eliminate autocorrelation. The running mean plot for each
chain of simulated parameters behaves well and converges to
each specific value. The trace plot of each simulated parameter
converges with empirical density resembling the assumed
normal distribution. It is not surprising that the autocorrelation
plot decays quickly, indicating no autocorrelation, because
every 20th sample was taken from the chain. Thus, the model
passed the visual diagnostic checks.
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Figure 1. The posterior random effects of location, scale and shape
parameters

The posterior parameters were summarised using means
from the Markov chain Monte Carlo (MCMC) chains. Ta-
ble I provides the posterior means of β, and the values in
parentheses are the corresponding standard errors. Some of
the regression coefficients are not significant: longitude is not
significant for location parameter µ, latitude is not significant
for σ and surprisingly altitude is only near significant for σ.
The posterior means of the random effects W (s) are plotted
as maps in Fig. 1. Comparing the three plots, we can see that
the random effect values for location parameters have similar
patterns but much larger values than the scale parameters,
while the values of the shape parameters exhibit different
patterns with relatively small values.

The spatial hierarchical model has successfully smoothed
the shape parameters, which are crucial for extreme values.
With only 20 data points at each site, the tails of the distri-
bution are likely to be thinner than that of a site with a large
sample size. Therefore, the GEV distribution fitted to such data
provides a large value for the shape parameter. For example,
the MLE estimates of the shape parameters for the annual
extremes in summer periods (with 20 data points at each
site) range from −1.11 to 0.97. For monthly extremes from
the same projections (with 69 data at each site), the values
range from −0.58 to 0.04. Model 2 has greatly smoothed the
shape parameters. For the summer annual extremes, Model 2
smoothed the shape parameters to a range of (−0.57, 0.27;
see Fig. 2). For the monthly extremes, with sample sizes
of 69, the model does a little smoothing and only reduced
the values to a range of (−0.55, 0.02). The advantages of
this reduction or smoothing are apparent in computing return
levels. The random effects shown in Fig. 1 may explain
this occurrence. The random effect values for the location
and the scale parameters, Wµ(s) and Wσ(s), exhibit similar
patterns to the corresponding process values. Meanwhile, the
random effect values for the shape parameter smooth the shape
posteriors. The scatter plot of the shape parameters of Model
1 and Model 2 (Fig. 2) shows that for Model 2, the high
values tend to be pulled down and the low values to be pushed
up toward usual values for temperature extremes (i.e., about
−0.2). Hence, the shape parameters of Model 2 are less spread
than those of Model 1.
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Figure 2. Shape parameter estimates Model 1 (x-axis) vs. shape posteriors
Model 2 (y-axis)

IV. PREDICTION AND COMPARISON

Fifty locations were selected at random and the data in these
locations were considered missing. The two models were fitted
to the rest of the data, and then the data from the randomly
selected locations were used to validate the models. To study
the performance of the two models, we computed RMSPE
over L=50 locations. The smaller the RMSPE, the better the
model. We repeated the process ten times.

Let DM ={m1, . . . ,mL} be the set of locations where data
are omitted and kept as validation data. Denote the validation
data mean at each location as ȳ(mi) and denote the associate
predicted mean as ỹl(mi), where l=1 for Model 1 and l=2
for Model 2. The RMSPE is given as

RMSPEl=

√√√√ 1

L

L∑
i=1

(
ỹl(mi)−ȳ(mi)

)2
. (2)

where

ỹl(mi)=



µ̃l(mi)+
σ̃l(mi)

ξ̃l(mi)

(
Γ(1−ξ̃l(mi))−1

)
if ξ̃l(mi) 6=0, ξ̃l(mi)<1

µ̃l(mi)+σ̃l(mi)γ

if ξ̃l(mi)=0, γ is Euler’s constant

∞ if ξ̃l(mi)≥1,

(3)

that is, the mean of a GEV distribution.
Prediction for a hierarchical model is straightforward. Let

Y (mi) be a random variable at an unobserved location mi

that we want to predict given y={y(s1), . . . , y(sn)}, and let
f(y) be a function that minimises the mean squared prediction
error, E

[(
Y (mi)−f(y)

)2|y]. By adding and subtracting the
conditional mean E[Y (mi)|y] and decomposing the terms

TABLE II
THE RMSPE FOR MODEL 1 AND MODEL 2

Model 1 Model 2
1 6.55 6.29
2 7.59 6.45
3 6.95 6.85
4 7.89 7.27
5 7.56 6.89
6 8.41 7.90
7 6.80 6.38
8 6.85 6.11
9 7.68 6.84
10 7.50 6.47
mean 7.38 6.66
sd 0.58 0.37

inside the parentheses, we obtain

E
[(
Y (mi)−f(y)

)2|y] =E
[(
Y (mi)−E[Y (mi)|y]

)2|y]
+
(
E[Y (mi)|y]−f(y)

)2
.

(4)

The last term in Equation (4) is always positive, hence

E
[(
Y (mi)−f(y)

)2|y]≥E[(Y (mi)−E[Y (mi)|y]
)2|y]. (5)

Therefore, f(y) = E[Y (mi)|y] must be the predictor that
minimises the prediction error, and this is just the posterior
mean of Y (mi); see [8] for more details.

Here, the spatial prediction was conducted by first sum-
marising the outputs of the MCMC runs, the posterior hyper-
parameters {β̂, Ŵ (s), T̂ }, by their means. The random effect
structure captures the spatial dependence through the intrin-
sically autoregressive model, that is, by averaging the first-
order neighbour values. We used the same structure to predict
the random effects at the unobserved locations by comput-
ing the predicted GEV parameters {µ̃2(mi), σ̃2(mi), ξ̃2(mi)}
given the covariates at the location to be predicted. Like-
wise, we used the mean of the neighbours to predict
the GEV parameters at unobserved locations for Model 1,
{µ̃1(mi), σ̃1(mi), ξ̃1(mi)}. If ∂i is the set of first-order neigh-
bours of mi and di is the number of ∂i members, di = n(∂i),
then

µ̃1(mi) =
1

di

∑
j

µ̂MLE(sj), sj ∈∂i

µ̃2(mi) = X(mi)β̂µ + ρ
∑
j

wij
wi+

Ŵµ(sj), sj ∈∂i.
(6)

σ̃l(mi) and ξ̃l(mi) were similarly defined for l=1, 2. Finally,
we computed the expected values (Equation (3)) and the
RMSPEs (Equation (2)).

Table II provides the RMSPE for each replication for both
models. The spatial predictions based on averaging neighbour-
ing values for Model 1 and Model 2 give smaller RMSPEs for
Model 2 than Model 1. The RMSPE means of both models
are 7.38 and 6.66, while the standard deviations are 0.58 and
0.37, respectively.

361



V. SUMMARY

The simple model (Model 1) and the three-stage hierarchical
model (Model 2) were applied to the summer temperature
maximum over Tasmania. For Model 1, we assumed that the
data at each site follow the GEV distribution with partic-
ular parameters, and we independently estimated the GEV
parameters using MLE. For Model 2, we assumed that the
GEV parameters in Model 1 follow normal and log-normal
distributions for which the mean structures consist of both
fixed and random effects. Further, the random effects were
modelled by the multivariate intrinsically autoregressive model
to capture the spatial dependence. We sampled the posteriors
using the MCMC and found the posteriors are very close to
the MLE estimate counterparts, which, by and large, is the
case when the sample sizes are relatively large.

Model 2 is prominent as the sample size decreases. With
a small number of data points at each site, there is a high
of getting a distribution with a thin tail at some sites, and
accordingly, large shape parameter values. The spatial hier-
archical model (Model 2) successfully smoothed the shape
parameters. The high values tend to be pulled down, and the
low values tend to be pushed up. This notion of smoothing
(Fig. 2) may due to the random effects shown in Fig. 1. The
random effect values for the shape parameters Wξ(s) exhibit a
smoothing spatial pattern that picks up a similar pattern from
the corresponding parameter values. The notion of smoothing
is also seen in the random effects for the location and scale
parameters. The patterns of these random effects resemble
the topography of Tasmania. The highland areas get negative
values and the coastal areas get positive values.

The spatial predictions for Model 2 give, on average, smaller
RMSPE than the predictions for Model 1. The means of the
RMSPE of each model are 7.38 and 6.66, respectively, which
are relatively high. The high RMSPE values indicate that the
spatial hierarchical model is less able to predict values at
unobserved locations. These results agree with the results of
[10], who found that the hierarchical model gives unrealistic
spatial predictions. References [10] and [11] pointed out that
the reason for this drawback is the conditional independence
assumption underlying the model. For weather data especially,
it is unreasonable to assume that the data are conditionally
independent because the occurence of an individual event may

affect its neighbours. Improvement can be sought through
modelling dependence in residuals. This has been attempted
by [12] using copula, [13] using a Dirichlet process and [14]
using a max-stable process.
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