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School bullying is a common social problem which affects children both mentally and physically, and 

preventing school bullying is a timeless topic all over the world. This paper proposes a school bullying 

detection method based on activity recognition and speech emotion recognition. Motion data and voice 

data are gathered by movement sensors and microphone, and motion features and audio features are 

extracted to describe bullying events and daily-life events. Motion features include time domain 

features and frequency domain features. Audio features are the classical MFCCs. Wrapper is used for 

feature selection. Then motion features and audio features together form combined feature vectors for 

classification, and LDA is used for further dimension reduction. A BPNN is trained to recognize 

bullying activities and distinguish them from daily-life ones. An action transition detection method is 

proposed to reduce computational complex for the purpose of practical use. Only when an action 

transition event has been detected, the school bullying detection algorithm will run. Simulation results 

show that the motion-audio combined feature vector outperforms sole motion features and sole 

acoustic features, with accuracy of 82.4% and precision of 92.2%. Moreover, with the action transition 

method, the computation can be reduced by half.  

Keywords: activity recognition; speech emotion recognition; movement sensors; school bullying; pattern 

recognition 

1. Introduction 

School bullying means aggressive behaviors or words, which hurt another person intentionally. It is 

often applied by the stronger upon the weaker, or by the elder upon the younger. School bullying is a 

serious social problem among teenagers, especially in high grades of primary schools and junior 

middle schools. Victims in school bullying suffer from both mental and physical violence. School 

bullying is considered as one of the main reasons for depression, dropping out of school and 

adolescent suicide. 

School bullying is a common social phenomenon. A survey1 by “USA Today” in 2010 showed 

that, among the surveyed senior middle school students in their past year, 50% of them had bullied 

others, whereas 47% and been bullied. Nearly half (44%) of the boys said that they were victims of 

school bullying, and so did 50% of the girls. A statistical result2 by the MEXT (Ministry of 

Education, Culture, Sports, Science and Technology) of Japan in 2011 showed that school bullying 

events were increasing in the past decade, from 28,526 in 1998 to 60,913 in 2010. The increasing 

speed was worrisome. Moreover, school violence showed a trend of younger age. The statistical 

result showed that school violence events in primary schools increased from 1,432 in 1998 to 7,115 

in 2010. Serious bullying events were often reported on TVs or newspapers in recent years. In 2015, 

requirement for integrated child protection systems were proposed on the European Forum3. 

Preventing school bullying is an important and timeless topic. Study on school bullying first 

started from the 1960s in Sweden, Finland, and Norway. However, existing methods to prevent 

school bullying are man-driven. Since bullying will not happen in front of teachers or parents, they 

could only know it when someone reports the event to them. If there is no eyewitness, the bullying 

event cannot be discovered in time. 

With the popularity of smartphones, some anti-bullying applications have been developed, e.g., 

Stop Bullies, Campus Safety, ICE BlackBox, TipOff, and Back Off Bully. 

• Stop Bullies: When a bullying event happens, the user needs to press a key on the smartphone, and 

then the smartphone will send phones, videos, or texts together with the GPS message to certain 

receiver(s). The receiver(s) will be able to know what has happened and where it happened, and go to 

stop the bullying. 

• TipOff: The user operates the smartphone to record the evidence (e.g. photos) and upload it to a 

secure server. Only the manager of this server has the access to the server, and he/she will decide 

what to do next. 

Other applications work in similar ways. Obviously, these applications are also man-driven. In a 

bullying event, especially physical violence, it is difficult for the user to operate his/her smartphone 
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which may cause more serious bullying. Whereas eyewitness may be afraid of reprisal by the bullies 

hence dare not operate his/her smartphone to send alarms. 

Therefore, there should be an information-driven technique which could detect bullying events 

automatically. In a bullying event, there is a lot of information generated, such as motion and 

emotion. By analyzing such information, one is able to recognize a bullying event and distinguish it 

from daily-life activities or conversations. In view of this, an active bullying-detecting algorithm is 

possible. Moreover, after a bullying event has been detected, it should be reported to the victim’s 

teachers or parents automatically. Fortunately, a smartphone with built-in movement sensors and 

microphone is worthy of this task. It will be able to protect children from bullying where their 

teachers and parents are absent. 

Such bullying detecting algorithm uses the knowledge of pattern recognition, specifically, 

activity recognition, speech emotion recognition and mental stress recognition to detect school 

bullying events. However, existing algorithms of the above-mentioned pattern recognition techniques 

cannot be applied directly on school bullying detection. The reasons are given as follows: 

(1) Existing activity recognition techniques are mainly on daily-life activities, e.g., standing, 

walking, sitting down, lying down, falling down, and taking vehicles4-9. Such motions have regular 

patterns, and the forces are applied directly upon oneself, so the recognition algorithms are not 

affected by individual factors (e.g. strength and weight) too much, thus have relatively high 

accuracies. However, in physical violence environment, the power of force depends on the bullies, 

and the movement of the victim is irregular and has much randomness, i.e. beats can come from any 

direction with different power. Moreover, physical violence can be confused with competitive games 

or sports, which increases the difficulty for classification. On one hand, classical motion features 

(single axis acceleration, incline angle, standard deviation, signal magnitude area, etc.10) cannot tell 

the differences between physical violence and daily-life activities. On the other hand, bullying 

actions may be mixed with daily-life actions (e.g. being pushed when walking), so traditional 

classifiers are not suitable for bullying detection. 

(2) Existing speech emotion recognition techniques are mainly based on pure emotion from 

single person11-16, e.g., EMO-DB (Berlin Emotional Speech Database)17. Emotions are normally 

divided into six classes, namely anger, joy, sadness, fear, surprise, and disgust18. Besides, neutral is 

another common used emotion which together with the above-mentioned six forms seven basic pure 

emotions for speech emotion recognition. However, school bullying is a group event thus has a 

complex acoustic environment which includes various emotions, e.g., taunt and vituperation from the 

bullies, and fear and sorrow from the bullied. Classifiers for pure emotion recognition are not 

suitable, and new classifiers for mixed speech emotion recognition are needed. 

(3) Existing mental stress recognition techniques are mainly based on physiological parameters 

such as EEG (Electroence-phalography), PPG (Photoplethysmogram), ECG (Electrocardiography), 

EMG (Electromyography), HR (Heart Rate)19-22. These parameters need special sensors which are 

not contained in normal smartphones, so they are not suitable for this thesis, i.e. school bullying 

detection with smartphones. 

The authors’ research group has already got some previous results on school bullying detection. 

Ye et al.23 in 2014 developed a Fuzzy Multi-Threshold (FMT) classifier based on Decision Tree (DT) 

to recognize physical bullying. FMT was able to detect hitting, pushing down, etc. and distinguish 

them from running, falling down, etc. The average accuracy reached 92%. However, as the types of 

activities increased, FMT could not work well, because it was difficult to find proper thresholds for 

too many different activities. Then Ye et al.24 in 2015 developed an instance based classifier. In that 

experiment, more types of activities were involved, but more activities were confused, and the 

accuracy was decreased to 80%. Ferdinando et al.25 recognized emotions which could indicate 

bullying events with ECG (electrocardiogram) and HRV (heart rate variability). Average accuracies 

of 47.69% and 42.55% for arousal and valence respectively were achieved. Then they26 used ECG 
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signal only to detect violence events and achieved 62%-70% accuracies. Later in 2017, they27 

improved this ECG-based method to 73%-88% accuracies.  

This paper proposes a motion-audio combined school bullying detection algorithm. It uses 

motion and audio features to recognize school bullying events, and distinguish them from daily-life 

ones. Data were gathered by role playing, and unreal activities are excluded by watching the video 

records. For activity recognition, time domain features and frequency domain features are extracted, 

whereas for speech emotion recognition, MFCC features are extracted. Then the Wrapper feature 

selection method and the LDA (Linear Discriminant Analysis) method are applied to reduce the 

feature dimension. A BPNN (Back Propagation Neural Network) trained with the 

Lenvenberg-Marquardt method is used for classification. Furthermore, in order to reduce the 

computational complexity for the purpose of future practical use, an action transition detection 

algorithm is developed. Simulation results show that the proposed school bullying detection 

algorithm provides higher average recognition performance (precision=92.2%, accuracy=82.4%, 

recall=85.8%, and F1=88.5%) than the authors’ previous work, and the action transition detection 

algorithm can averagely save half of the computation cost.  

The remainder of this paper is organized as follows: Section 2 describes the school bullying 

experiments from which the data were collected; Section 3 describes the features extraction and 

selection methods; Section 4 describes the classifier design; Section 5 shows the simulation results; 

and finally Section 6 draws a conclusion.  

2. School Bullying Experiments  

Experiment data were collected by role playing of school bullying and daily-life activities. The 

experiments were carried out by the authors’ research group and volunteers.  

2.1. Physical violence experiments 

The movement sensor (integrated accelerometer and gyroscope) was fixed on the subject’s waist, 

which has been proved to be the best place for activity recognition with a single movement sensor28, 

to collect 3D accelerations and 3D gyros at 50Hz. The y-axis is the vertical vector, whereas the x-axis 

and the z-axis are horizontal vectors. The experiments were video-recorded for the purpose of data 

synchronization. Sponge mats and protective gears were used to protect the subjects.  

Physical violence experiments included nine types of activities, i.e., walking, running, jumping, 

falling down, playing, standing, hitting, pushing, and pushing down. Walking, running, jumping, 

falling down, playing, and standing were daily-life activities. Walking, running, jumping, falling 

down, and standing were acted by individual, whereas playing was acted in pairs or groups. Playing 

included several types of competitive games and sports which contained physical confrontation. 

Hitting, pushing, and pushing down were bullying activities, and were acted in pairs. Each activity 

was repeated several times by different subjects. Instantaneous actions such as pushing and pushing 

down were repeated more times than continuous actions such as walking and hitting. There were 

1160 sections of activities recorded including transitional activities.  

2.2. Verbal bullying experiments 

Verbal bullying experiments included two types of speeches, i.e., verbal bullying and daily-life 

conversations. Verbal bullying speeches contain negative emotions such as sorrow, fear, anger, etc., 

whereas daily-life conversations contain positive emotions such as neuter, joy, surprise, etc. 

Conversations of verbal bullying and daily life were performed with different emotion combinations. 

Voices were recorded with microphones. The sampling rate is 44.1 kHz. Long conversations were 

split into short fragments to match the length of activities, and blank fragments were discarded.  
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3. Feature Extraction 

3.1. Motion features 

3.1.1. Motion Feature Extraction 

As mentioned above, motion data include acceleration and gyro, from which time domain features 

and frequency domain features are extracted. Features are extracted according to the data curves, i.e., 

find out the differences between two types of motions by comparing the curves, e.g., peak amplitudes, 

curve slopes. The extracted time domain features together with their meanings are given in Table 1.  

Table 1. Time domain motion features. 

Feature Meaning From 

Meany Mean of the y-axis Acceleration 

MeanHori Mean of the horizontal combined vector Acceleration 

MeanGyro Mean of the combined gyro Gyro 

MADy MAD of the y-axis Acceleration 

MADHori MAD of the horizontal combined vector Acceleration 

MADGyro MAD of the combined gyro Gyro 

Maxy Maximum of the y-axis Acceleration 

MaxHori Maximum of the horizontal combined vector Acceleration 

MaxGyro Maximum of the combined gyro Gyro 

Miny Minimum of the y-axis Acceleration 

MinHori Minimum of the horizontal combined vector Acceleration 

MinGyro Minimum of the combined gyro Gyro 

Maxdiff(y) Maximum of the differential of the y-axis Acceleration 

Maxdiff(Hori) Maximum of the differential of the horizontal combined vector Acceleration 

Meandiff(y) Mean of the differential of the y-axis Acceleration 

Meandiff(Hori) Mean of the differential of the horizontal combined vector Acceleration 

Maxdiff(Gyro) Maximum of the differential of the combined gyro Gyro 

Meandiff(Gyro) Mean of the differential of the combined gyro Gyro 

ZCRx Zero cross rate of the x-axis Acceleration 

ZCRy Zero cross rate of the y-axis Acceleration 

ZCRz Zero cross rate of the z-axis Acceleration 

VarDir Variation of the horizontal movement direction Acceleration 

Areay Accumulation of movement jitter of the y-axis Acceleration 

 

In Table 1, the horizontal combined vector is the combination of the two horizontal vectors, i.e., 

the x-axis and the z-axis of the movement sensor. The combined gyro is the combination of gyro of 

the three axes. The maximum of the movement data is the absolute value of the max peak amplitude 

during the sampling period which represents the strength of the force. The differential of the 

movement data describes the slope of the movement curve which represents the sudden of the 

movement. Given a set of data X={x1, x2, …, xn}, the MAD (Median Absolute Deviation) calculated 

as, 

MAD = median(|xi-median(X)|), (1) 

is a robust feature which could overcome the noise to some extent.  
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The VarDir is the variation of the horizontal movement direction. Assume that MaxHori happens 

at T in the sampling window, and the corresponding horizontal movement direction is Dir(T). The 

comparative period of the average movement direction before T is [T-ts, T-te], and then the average 

direction is 
( )

( )
( )

e

es

s

T t Hori

T ti T t

Horij T t

Acc i
Dir i

Acc j

−

−= −

= −




, where AccHori is the horizontal combined vector of 

the acceleration. Then, 

( )
( ) ( )
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e
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s
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−
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, (2) 

If VarDir > 180°, VarDir = 360°- VarDir. The feature can detect irregular movements to some 

extent.  

The Areay is the accumulation of movement jitter in the vertical direction. During the period 

[T-tArea, T+tArea] in which MaxHori happens,  

( )
Area

Area

T t

y yi T t
Area gravity Acc i

+

= −
= − , (3) 

where gravity is local gravity, and Accy is the vertical vector of the acceleration. Accy can distinguish 

movements of which the horizontal vectors do not differ much.  

Besides time domain features, frequency domain features can also represent some characteristics 

of movements. Frequency features are extracted by FFT (Fast Fourier Transform) after Butterworth 

filters which removes high frequency noise. The extracted frequency domain features are given in 

Table 2.  

Table 2. Frequency domain motion features. 

Feature Meaning From 

Maxfy Maximum of the y-axis Acceleration 

MaxfHori Maximum of the horizontal combined vector Acceleration 

MaxfGyro Maximum of the combined gyro Gyro 

Minfy Minimum of the y-axis Acceleration 

MinfHori Minimum of the horizontal combined vector Acceleration 

MinfGyro Minimum of the combined gyro Gyro 

MADfy MAD of the y-axis Acceleration 

MADfHori MAD of the horizontal combined vector Acceleration 

MADfGyro MAD of the combined gyro Gyro 

Meanfy Mean of the y-axis Acceleration 

MeanfHori Mean of the horizontal combined vector Acceleration 

MeanfGyro Mean of the combined gyro Gyro 

Energyfy Energy of the y-axis Acceleration 

EnergyfHori Energy of the horizontal combined vector Acceleration 

EnergyfGyro Energy of the combined gyro Gyro 

CenterfHori Main lob center frequency of the horizontal combined vector Acceleration 

Centerfy Main lob center frequency of the y-axis Acceleration 

CenterfGyro Main lob center frequency of the combined gyro Gyro 

 

The maximum or minimum of the frequency means the frequency with the maximum or 

minimum amplitude.  
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3.1.2. Motion Feature Selection 

Indeed, the sum of the time domain features and the frequency domain ones is a little too large for 

classification. As the goal of this research work is to perform a school bullying detecting algorithm 

on portable devices such as smartphones of which the resources are limited, the computational cost 

should be as little as possible. Moreover, some features are useless, or even may be harmful for 

classification, i.e., they may decline the recognition accuracy, as is called overfitting. Fig. 1 shows 

two examples of motion features by the quartile box plot. Fig. 1 (a) shows an effective feature which 

can distinguish different types of activities well, whereas Fig. 1 (b) shows an ineffective feature 

which cannot. Features like Fig. 1 (b) should be excluded for classification. So feature selection is 

essential before putting the features into the classifier. 

 
(a) 

 
(b) 

Fig. 1. Examples of quartile box plots of motion features: (a) An effective feature which can distinguish 

different types of activities well; (b) An ineffective feature which cannot distinguish different types of 

activities. 

Feature selection by quartile box plot is obvious, but not precise enough, so a more proper 

feature selection method should be used. Commonly used feature selection methods include Filter 

and Wrapper.  

• Filter: This method estimates the correlation among the candidate features, and drops features with 

low correlation. It estimates the classification results without a pre-designed classifier. However, 

correlation is only one of the aspects which affect the classification accuracy. Moreover, different 

classifiers may have different results with the same features, so the adaptability between the 

classifier and the feature(s) should be taken into consideration. For this reason, Filter usually does 

not perform as well as Wrapper.  

• Wrapper: This method needs a pre-designed entire classification system, i.e. from data 

pre-processing to classifier. In each traversal step, features added or removed, and the contributions 

of the features to classification are estimated according to the classification results. Wrapper has a 

relatively high computational complexity, and is time consuming. However, since Wrapper has 

tested the features with the classifier, it is able to pick out the best feature set for this dedicated 

classifier.  

Therefore, this paper uses Wrapper for feature selection. BPNN (Back Propagation Neural 

Network) is chosen as the classifier for Wrapper to select features. Finally 11 motion features are 

selected, namely Energyfy, MADfGyro, MADfHori, Maxdiff(Gyro), Maxdiff(y), MaxGyro, MeanfHori, MeanGyro, 

VarDir, ZCRx, and ZCRy.  
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3.2. Audio Features 

For speech emotion recognition, the pitch and the MFCCs (Mel Frequency Cepstral Coefficients) are 

considered to be the most popular and most effective acoustic features29, 30. However, the pitch is 

affected by individual’s differences too much31, so this paper chooses the MFCCs for emotion 

recognition.  

Besides MFCCs, the short time energy which indicates the volume of a voice is another 

important feature for bullying detection. When a bullying event happens, the volume of the voice is 

usually high, so this is obvious difference between bullying and daily-life conversation. However, 

there are some emotions which can have high energy, e.g., excitement. So short time energy cannot 

be used alone, but to assist the MFCCs and differential MFCCs. 

Altogether 37 features are extracted for emotion recognition, i.e. 12 MFCCs, mfcc1, mfcc2, …, 

mfcc12, 12 first-order differential MFCCs, dmfcc1, dmfcc2, …, dmfcc12, 12 second-order differential 

MFCCs, ddmfcc1, ddmfcc2, …, ddmfcc12, and short time energy. Again the Wrapper is used for 

feature selection, and finally 16 features are selected, i.e. mfcc1, mfcc2, mfcc4, mfcc5, mfcc9, mfcc10, 

mfcc11, dmfcc3, dmfcc4, dmfcc6, dmfcc7, dmfcc11, ddmfcc4, ddmfcc5, ddmfcc12, and short time energy.  

3.3. Combination of Motion and Audio Features 

A physical bullying event is usually accompanied with verbal bullying or curses. Therefore, speech 

emotions can be used to assist physical bullying detection. In this section, motion features and audio 

features are combined to form a new classifier input vector.  

In previous subsections, 11 motion features and 16 audio features have been selected, i.e., totally 

27 features are selected for physical bullying detection. This amount is also too large for 

classification. However, both the motion features and the audio features are already the best selection, 

so feature selection methods should not be used again to reduce the feature dimension. Instead, 

dimensionality reduction methods are applied. PCA (Principal Component Analysis) and LDA 

(Linear Discriminant Analysis) are two commonly used dimensionality reduction methods. Section 5 

will compare the effects of the two methods by simulation.  

4. Classifier Design 

During the data gathering phase, the labels of the samples are known, so supervised learning is used. 

Since the ultimate goal of this research work is to apply the bullying detecting algorithm on portable 

terminals such as smartphones which are resource-limited, the computational cost of the algorithm 

should be as little as possible. Therefore, off-line learning is used. Commonly used off-line 

supervised learning classifiers include Bayesian classifier, SVM (Support Vector Machine), BPNN, 

etc.  

• Bayesian classifier: Bayesian classifier relies on the priori probabilities of different activity types 

which are difficult to acquire for the unforeseen school bullying case, so Bayesian classifier does not 

fit this paper.  

• SVM: SVM solves support vectors with quadratic programming, and quadratic programming 

involves computation of mth order matrices where m is the number of samples. When m is large, 

matrix storage and computational cost are large, which is a challenge to future practical use.  

• BPNN: In this paper’s situation, there is a complex non-linear relationship between the extracted 

features and classification results. BPNN is particularly suitable for solving such kind of problem 

with complex internal mechanism. Although BPNN training is slow, it will not affect future practical 

use because users do not need to train the classifier. Simulations given below will show that BPNN is 

a good choice. 
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In fact, there are other classifiers which can also be used for this paper’s situation. However, this 

paper focuses on the effect of motion-audio combined features versus merely motion features or 

audio ones upon classification, so the authors are not going to test all available classifiers, but just to 

choose one that has been proved to be effective.  

4.1. Back Propagation Neural Network 

The BPNN models the input into non-linear combinations for class prediction. Common used 

transfer functions in BPNN include logsig, tansig, and purelin. If the output layer uses logsig, the 

output range is [0, 1]; if the output layer uses purelin, the output range is not limited. BPNN can have 

one or more hidden layers. The hidden layer neuron usually uses an S-type transfer function, whereas 

the output layer neuron usually uses a linear transfer function.  

4.1.1. Parameter Setting of BPNN 

When using BPNN for classification, parameters should be set first according to the specific task. 

The number of inputs of the network equals to the dimension of the input feature vector, and the 

number of neurons in the output layer equals to the number of classes. The number of neurons in the 

hidden layer is usually set to be larger than the extraction of a root of the sum of the input dimension 

and the output dimension empirically.  

For the setup of the hidden layer, on one hand, the characteristics of different types of activities 

should be highlighted; on the other hand, overfitting should be avoided. Empirically, this paper 

chooses to set up one hidden layer in which logsig is used, and purelin is used in the output layer. Fig. 

2 shows the structure of the constructed BPNN model.  

Logsig

1W

1b

1p

K R

1K R

+
1K 

1R 

Purelin

2W

2b

1a

N K

1K 

+
1N 

1n
2n

K N

1K 

Input layer Hidden layer Output layer

 

Fig. 2. Constructed BPNN model. 

4.1.2. Training of BPNN 

There are three methods for training BPNN, namely Gradient Descent, Newton Method, and 

Lenvenberg-Marquardt (L-M).  

Fig. 3 gives out a comparison of the three methods in terms of MSE (Mean Square Error). 

Quasi-Newton is better than Gradient Descent, and Lenvenberg-Marquardt is the best of all. This is 

because that compared with Gradient Descent, Quasi-Newton has taken the second order derivative 

of the error function into consideration, therefore a better solution is achieved, but the convergence 

rate near the optimal solution is slow. On the other hand, Lenvenberg-Marquardt combines the 

advantages of both Gradient Descent and Quasi-Newton in a self-adaptive way by adjusting μ, and 

thereby provides better results while enhancing the convergence rate. So this paper chooses 

Lenvenberg-Marquardt to train BPNN.  
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(a)                                        (b) 

 
(c) 

Fig. 3. The MSE as a function of iteration times: (a) Gradient Descent; (b) Quasi-Newton; (c) Lenvenberg- 

Marquardt.  

4.2. Action Transition Detecting Algorithm 

For the purpose of practical use, computational complexity and energy consumption should be taken 

into consideration besides accuracy. If one’s action keeps unchanged for a long time, bullying 

detection is not always necessary during this period. Therefore, this paper proposed an action 

transition detection algorithm. Only when an action transition event is detected, bullying detection 

algorithm is executed, which can save a number of computation.  

As a computational complexity reducing algorithm, its own computational complexity should be 

as little as possible. By watching the curves of acceleration and gyro during different action 

transitions, it is found that the variation of the vertical acceleration can best describe an action 

transition. Set the length of the sliding window which detects action transition points to be 40, and 

each time it slides 20 samples, i.e., the overlap ratio is 50%. Measure the variation of the vertical 

acceleration in the sliding window as, 

2
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= − , (4) 

where L is the window length, and the unit of Accy is g. Experimentally choose εth=1.5 as the 

threshold. ε>εth means an action transition point has been detected, and then school bullying 

detection algorithm runs. The length of bullying detection sliding window is 256 of which the center 

is the action transition point, and each time it slides 128 samples. If a different action has not been 

0 50 100 150 200 250 300 350 400 450 500

10
-1

10
0

10
1

0.12445 at 500

M
S

E

Iteration

 

 

Train

Best

0 50 100 150 200 250 300 350 400 450 500

10
-2

10
-1

10
0

10
1

0.012729 at 500

M
S

E

Iteration

 

 

Train

Best

0 50 100 150 200 250 300 350 400 450 500

10
-3

10
-2

10
-1

10
0

0.0082871 at 500

M
S

E

Iteration

 

 

Train

Best



A Motion-audio Combined School Bullying Detection Algorithm 

xxx-11 
 

detected after two slides, the bullying detection stops and action transition detection continues. 

Numerical results will be given in Section 5.5.  

5. Simulations 

5.1. Bullying Detection with Motion Features 

The authors firstly tried to recognize bullying events with motion features only as they did in their 

previous work23, 24. The BPNN is trained by the L-M method, and parameters are set experimentally. 

The number of neurons in the hidden layer is set to be 6. The transfer function of the hidden layer is 

logsig, whereas that of the output layer is purelin. Ten-fold cross validation is used. The involved 

motion features are the 11 features selected by Wrapper in Section 3.1.2, and the confusion matrix is 

given in Table 3.  

Table 3. Confusion matrix of school bullying detection with motion features (%). 

Classified 

as 
Hit Push 

Push 

down 
Walk Run Jump 

Fall 

down 
Play 1 Stand 2 

Hit 50.0 10.0 13.3 0.0 3.3 0.0 3.3 20.0 0.0 

Push 8.3 68.3 9.3 0.0 1.7 6.7 6.7 0.0 0.0 

Push down 0.0 3.3 40.0 10.0 0.0 3.3 10.0 23.3 10.0 

Walk 2.5 1.3 7.5 43.8 0.0 0.0 0.0 42.5 2.5 

Run 0.0 1.4 0.0 0.0 91.4 5.7 0.0 0.0 1.4 

Jump 0.0 0.0 0.0 0.0 12.5 87.5 0.0 0.0 0.0 

Fall down 0.0 20.0 6.7 0.0 0.0 0.0 66.7 6.7 0.0 

Play 4.2 5.0 15.0 5.8 0.0 2.5 4.2 60.8 2.5 

Stand 0.0 0.0 1.1 1.1 0.0 0.0 0.0 3.3 94.4 
1 “Play” includes several types of games or sports, e.g. playing balls such as Ping-Pong. Games and sports 

with lots of run are listed in “Run”. 

2 “Stand” does not mean standing straight, but with slight body movement as people do in real life. 

Since the purpose of this work is to identify bullying events and distinguish them from 

non-bullying ones, classify the activities only as “bullying” or “non-bullying”. “Hit”, “Push”, and 

“Push down” are “bullying”, whereas “Walk”, “Run”, “Jump”, “Fall down”, “Play”, and “Stand” are 

“non-bullying”. The confusion matrix is given in Table 4.  

Table 4. Confusion matrix of school bullying detection with motion features (%). 

Classified as Bullying Non-bullying 

Bullying 71.7 28.3 

Non-bullying 11.2 88.8 

 

Mark “Bullying” as “positive”, and “Non-bullying” as “negative”, i.e. “Bullying” classified as 

“Bullying” is “true positive (TP)”, “Bullying” classified as “Non-bullying” is “false negative (FN)”, 

“Non-bullying” classified as “Bullying” is “false positive (FP)”, and “Non-bullying” classified as 

“Non-bullying” is “true negative (TN)”. Precision=TP/(TP+FP), accuracy=(TP+TN)/(TP+FN+ 

FP+TN), recall=TP/(TP+FN), and F1=2/(precision-1+recall-1). For Table 4, precision=85.1%, 

accuracy=63.7%, recall=71.7%, and F1=76.6%. The recognition performance is worse than those in 

the authors’ previous work23, 24. This is possibly because that on one hand, the types of activities are 

increased, and on the other hand, as can be seen in Table 3, “push down” and “fall down” which are 
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not involved in [24] are easily confused with other activities. The classifier in [23] is not comparable 

because it cannot classify so many types of activities due to thresholds determination problem. 

5.2 Bullying Detection with Audio Features 

Then the authors test the effect of audio features upon bullying detection. Here the emotions are not 

classified as specific emotions, e.g. joy and sorrow, but into bullying and non-bullying, as the authors 

did in Section 5.1.  

In the BPNN, the number of neurons in the hidden layer is set to be 5 experimentally. The 

transfer function of the hidden layer is logsig, whereas that of the output layer is purelin. The 

confusion matrix is given in Table 5.  

Table 5. Confusion matrix of school bullying detection with audio features (%). 

Classified as Bullying Non-bullying 

Bullying 66.8 33.2 

Non-bullying 25.4 74.6 

 

Precision=70.7%, accuracy=73.6%, recall=66.8%, and F1=68.0%. It is clear that audio features 

can be used for school bullying detection, but the result is not as good as that of motion features. This 

is possibly because that the voice signals contain multiple emotions, and the recognition of mixed 

emotions is more difficult than that of single emotion.  

5.3 Bullying Detection with Motion-audio Combined Features 

In this section, audio features are used to assist motion features for school bullying detection. 

Speeches are connected with corresponding activities, i.e. bullying speeches are connected with 

bullying activities, and non-bullying speeches with non-bullying activities. The hidden layer of 

BPNN is still single-layered with the transfer function logsig, and the number of neurons in the 

hidden layer is set to be 9 experimentally. The transfer function of the output layer is purelin. The 11 

motion features elected in Section 3.1.2 and the 16 audio features elected in Section 3.2 are joined 

together and put into BPNN. The confusion matrix with 10-fold cross validation is given in Table 6.  

Table 6. Confusion matrix of school bullying detection with motion-audio combined features (%). 

Classified 

as 
Hit Push 

Push 

down 
Walk Run Jump 

Fall 

down 
Play Stand 

Hit 43.3 0.0 20.0 0.0 3.3 26.7 6.7 0.0 0.0 

Push 6.7 46.7 10.0 0.0 33.3 0.0 0.0 3.3 0.0 

Push down 13.3 5.0 63.3 0.0 0.0 13.3 1.7 1.7 1.7 

Walk 2.2 0.0 0.0 77.8 8.9 8.9 2.2 0.0 0.0 

Run 1.7 13.3 0.8 0.8 70.0 6.7 5.0 0.8 0.8 

Jump 13.3 6.7 0.0 0.0 0.0 73.3 6.7 0.0 0.0 

Fall down 6.3 0.0 2.5 0.0 11.3 25.0 41.3 1.3 12.5 

Play 0.0 2.5 5.0 0.0 2.5 0.0 0.0 82.5 7.5 

Stand 2.9 0.0 5.7 0.0 1.4 0.0 4.3 2.9 82.9 

 

The confusion matrix of 2-class classification result is given in Table 7. Precision=86.6%, 

accuracy=66.4%, recall=89.2%, and F1=87.4%. The results prove that motion-audio combined 

features can provide better performance than either motion features or audio features. Moreover, by 
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comparing Table 4, Table 5 and Table 7, it can be found that both miss alarm ratio (FN) and false 

alarm ratio (FP) decline. 

Table 7. Confusion matrix of school bullying detection with motion-audio combined features (%). 

Classified as Bullying Non-bullying 

Bullying 85.8 14.2 

Non-bullying 10.8 89.2 

 

5.4. Bullying Detection with Dimension-reduced Motion-audio Combined Features 

In this subsection, PCA and LDA are tested to find out the better dimensionality reduction method. 

Parameters of BPNN are the same with those in Section 5.3. Classification results with PCA and 

LDA are given in Table 8 and Table 9, respectively.  

Table 8. Confusion matrix of school bullying detection with PCA (%). 

Classified 

as 
Hit Push 

Push 

down 
Walk Run Jump 

Fall 

down 
Play Stand 

Hit 46.7 20.0 3.3 20.0 10.0 0.0 0.0 0.0 0.0 

Push 6.7 66.7 5.0 3.3 6.7 0.0 10.0 1.7 0.0 

Push down 6.7 0.0 33.3 30.0 3.3 0.0 10.0 6.7 10.0 

Walk 11.3 2.5 2.5 50.0 12.5 0.0 1.3 7.5 12.5 

Run 1.4 1.4 0.0 1.4 91.4 2.9 0.0 1.4 0.0 

Jump 0.0 2.5 0.0 0.0 2.5 87.5 7.5 0.0 0.0 

Fall down 0.0 10.0 0.0 0.0 0.0 10.0 73.3 6.7 0.0 

Play 3.3 2.5 0.8 15.8 4.2 0.0 5.8 60.8 6.7 

Stand 0.0 0.0 1.1 6.7 0.0 0.0 7.8 2.2 82.2 

Table 9. Confusion matrix of school bullying detection with LDA (%). 

Classified as Hit Push 
Push 

down 
Walk Run Jump 

Fall 

down 
Play Stand 

Hit 36.7 0.0 23.3 3.3 3.3 6.7 20.0 0.0 6.7 

Push 3.3 90.0 3.3 0.0 3.3 0.0 0.0 0.0 0.0 

Push down 0.0 1.7 88.3 0.0 0.0 5.0 1.7 0.0 3.3 

Walk 0.0 5.6 0.0 92.2 0.0 0.0 2.2 0.0 0.0 

Run 1.7 5.8 0.0 20.8 66.7 1.7 3.3 0.0 0.0 

Jump 3.3 3.3 6.7 0.0 0.0 80.0 3.3 0.0 3.3 

Fall down 7.5 0.0 0.0 17.5 5.0 13.8 56.3 0.0 0.0 

Play 0.0 0.0 0.0 12.5 0.0 0.0 0.0 87.5 0.0 

Stand 0.0 0.0 2.9 0.0 0.0 1.4 0.0 0.0 95.7 

 

The confusion matrices of 2-class classification with PCA and LDA are given in Table 10 and 

Table 11, respectively.  

With PCA, precision=87.6%, accuracy=80.4%, recall=66.7%, F1=74.4%, whereas with LDA, 

precision=92.2%, accuracy=82.4%, recall=85.8%, F1=88.5%. It can be seen that LDA outperforms 

PCA. Furthermore, the feature dimension after PCA is 19, whereas that after LDA is only 8. In a 

word, LDA can provide higher accuracy with fewer features.  
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Table 10. Confusion matrix of bullying detection with PCA on motion-audio features (%). 

Classified as Bullying Non-bullying 

Bullying 93.5 6.5 

Non-bullying 33.3 66.7 

Table 11. Confusion matrix of bullying detection with LDA on motion-audio features (%). 

Classified as Bullying Non-bullying 

Bullying 94.0 6.0 

Non-bullying 14.2 85.8 

 

In the authors’ previous work24, precision=93.3%, accuracy=78.4%, recall=72.8%, F1=81.8%. 

In this work, precision=92.2%, accuracy=82.4%, recall=85.8%, F1=88.5%. It can be seen that the 

average recognition performance has been improved. Moreover, it should be noted that in their 

previous work24, “push down” and “fall down” were not involved which can have high 

misclassification ratios according to [23]. As mentioned before, the classifier in [23] is not 

comparable because it cannot classify so many activity types.  

The average recognition performance with LDA is better than that without any dimensionality 

reduction method. This is possibly because that not all the selected features are helpful for 

classification, on the contrary, some features are even harmful.  

5.5. Computational Cost Comparison with Action Transition Detecting Algorithm 

Since the purpose of this study is school bullying detection, so the authors do not care about action 

transitions from one type of daily-life activity to another, but those from daily-life activities to 

bullying ones. Moreover, action transitions from bullying activities to any are ignored, because 

bullying events have already been detected, and it does not matter what follows. In this action 

transition experiment, the victims firstly acted a certain daily-life activity for 10 seconds, and then 

bullies bullied them. Table 12 gives a comprehensive numerical result of how computational 

complexity can be reduced with the proposed action transition detection method.  

Table 12. Average performance of action transition detecting algorithm. 

Action after 

transition 

Detection 

delay (s) 

SBD executed 

without ATD 1 

SBD executed 

with ATD 

Computation 

reduced (%) 

Hit 1.1 3.9 2.2 44 

Push 0.3 3.9 1.4 64 

Push down 0.9 3.9 1.7 56 

1 “SBD” is short for school bullying detection algorithm, and ATD is short for action transition detection 

algorithm.  

Although ATD is executed 6.4 times as frequent as SBD, the computational cost of ATD is far 

less than that of SBD. In a SBD procedure, firstly 11 motion features and 16 audio features are 

extracted, and then LDA is executed, followed by BPNN classification. Whereas in an ATD 

procedure, only one sum of squares and one comparison are calculated, which can be ignored 

compared with SBD.  

The number of times of SBD executed with ATD is affected by the type of activities taking 

place before the transition point. For example, irregular movements like “play” can cause higher 

misdetection ratio than regular movements like “walk” and “run”. Only reasonable action transitions 

were acted in this experiment, e.g. “run -> push” and “run -> push down” can happen, but “run -> hit” 
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is not likely to happen whereas “play -> hit” is possible. Therefore, the reduced computations are 

different.  

It should be mentioned that in this experiment, all the action transition points have been detected. 

Although the transition from daily-life activities to hit has a longer response time than the other two, 

the transition point can still be detected as long as the hit action lasts for more than 1.1s.  

6. Conclusions 

This paper proposed a school bullying detection method with motion-audio combined features. For 

motion features, time-domain features and frequency-domain features were extracted, and for audio 

features, classical MFCCs were extracted. Then Wrapper was used for feature selection on motion 

features and audio features respectively. After combining motion features and audio features together, 

LDA was applied for further dimensionality reduction. A BPNN trained with L-M was used for 

classification. On the other hand, an action transition detection algorithm was proposed to reduce 

computational complexity for the purpose of practical use. Simulation results showed that the 

proposed school bullying detection method achieved higher recognition performance than the authors’ 

previous work, and the proposed action transition method saved averagely half of the computations.  
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