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Abstract. This study introduces an improved artificial intelligence (AI) 

approach called intelligence optimized support vector regression (IO-SVR) 

for estimating the compressive strength of high-performance concrete 

(HPC). The nonlinear functional mapping between the HPC materials and 

compressive strength is conducted using the AI approach. A dataset with 

1,030 HPC experimental tests is used to train and validate the prediction 

model. Depending on the results of the experiments, the forecast outcomes 

of the IO-SVR model are of a much higher quality compared to the 

outcomes of other AI approaches. Additionally, because of the high-quality 

learning capabilities, the IO-SVR is highly recommended for calculating 

HPC strength.  

1 Introduction 

High-performance concrete (HPC) is widely used in the construction sector in a variety 

of projects because its superior strength, workability and durability surpass those of regular 

concrete. Specific materials are used to produce these concretes in order to meet the 

performance demands. The most critical property of HPC is its compressive strength. As 

HPC is being used more and more in the construction field, improving the forecasting 

capabilities of the compression strength of this concrete is extremely helpful in choosing 

the proper concrete mixtures [1,2]. 

The uniaxial compression test is commonly used to determine the compressive strength 

of concrete. The usual formula-based approaches restrict predictive functionality and have 

been proven to be unable to deliver acceptable performances, due to a variety of conditions 

and materials which could affect the compressive strength. Since the correlation between 

compressive strength and concrete materials are highly nonlinear, mathematical modeling 

of HPC is rather difficult, and in many cases inaccurate [3]. 

 In past decades, artificial intelligence (AI) methods have proven to be feasible and 

powerful techniques for studying and evaluating the compressive strength of HPC. In 1998, 

Yeh [3] collected a large set of HPC database and proposed an artificial neural network 

(ANN) for establishing the compressive strength model of HPC. Following the dataset 

collected by Yeh [3], many investigations have been carried out to establish the accurate 
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prediction model. Chou, et al. [4] proposed five different AI methods to optimize the 

prediction accuracy of compressive strength of HPC. Among AI strategies, the least squares 

support vector regression (LS-SVR) is a highly efficient procedure for handling learning 

and prediction issues in complex situations [5-7]. Even so, to the best of our understanding, 

the use of the LS-SVR in approximating the compressive strength of concrete is restricted 

when compared with other AI methods. 

Additionally, the LS-SVR execution requires a suitable setting of its hyper-parameter 

[8]. This is because the LS-SVR hyper-parameter directly affects the complexity of the 

model. Given that the process of parameter estimation could be developed as an integrated 

optimization problem, applying metaheuristic optimization algorithms, together with AI-

based learning techniques, may create a potential new compressive strength predictive 

method. 

This study develops an improved AI method for estimation of the compressive strength 

of HPC. The method is called intelligence optimized support vector regression (IO-SVR), 

and it is based on the integration of the LS-SVR with a symbiotic organisms search (SOS) 

optimization algorithm for hyper-parameter selection. A dataset of HPC laboratory 

experiments was used to construct and verify the new prediction model. Subsequently, its 

prediction performance was compared with other prediction methods in terms of mean 

absolute percentage error (MAPE), mean absolute error (MAE), root mean squared error 

(RMSE), and linear correlation coefficient (R). 

2 Methodology 

2.1 Regression model: least squares support vector regression 

LS-SVR was first introduced by Suykens and Vandewalle [9] as a modification of the 

conventional support vector regression (SVR). Where highly nonlinear spaces occur, an 

RBF kernel is chosen as the kernel function in LS-SVR, bringing more promising results 

than other kernels [9]. The following model of interest underlies the functional relationship 

between one or more independent variables along with a response variable:  

bxwxy T += )()(          (1) 
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where Rek   are error variables; 0  denotes a regularization constant. 

In the previous optimization problem, a regularization term and a sum of squared fitting 

errors make for the objective function. The Lagrangian is given by: 
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where ),,,( ebwL  is Lagrange multiplier of w, b, e,  variables, and  represents SVM 

alpha dot products. The conditions for optimality are given by: 
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After elimination of e and w, the following linear system is obtained: 
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where  Nyyy ,...,1= , ]1;...;1[1 =v , and ];...;[ 1 N = . And the kernel function, 

),( lk xxK , is applied as follows:  
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The resulting LS-SVR model for function estimation is expressed as: 
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k  and b are the solution to the linear system (5). The kernel function that is often 

utilized is an RBF kernel; a description is given as: 
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where  is the kernel function parameter.  

With the  parameter, the imposed penalty (to data points that move away from the 

regression function) can be controlled. For the  parameter, this will have a direct impact 

on the smoothness of the regression function. To ensure the best performance of the 

predictive model, it should be noted that proper setting of these tuning hyper-parameters is 

required. 



2.2 Hyper-parameter tuning: symbiotic organisms search optimization 
algorithm 

In numerous optimization applications, the quest for optimality represents a challenging 

task. In nature, perfect solutions to problems have occurred through evolution, as the 

mechanism of natural selection has eliminated all deficient solutions. According to the 

studies presented in the literature reviews, nature-inspired metaheuristic algorithms such as 

SOS are efficient in solving difficult optimization problems. Hence, this study uses the 

adjusted SOS to optimize LS-SVR hyper-parameters, and to ensure superior prediction 

accuracy. 

Cheng and Prayogo developed one of the most widely-used metaheuristic algorithms, 

named the SOS algorithm [10]. It is based on the symbiosis–dependency-based interaction–

typical among natural organisms. As in the cases of other metaheuristic algorithms, the 

purpose of the SOS is to lead the search process through special operators using candidate 

solutions. More precisely, it searches for organisms with candidate solutions to identify the 

global solution in the search space. A maximum number of evaluations and additional 

typical control parameters are needed. A selection mechanism is used to preserve improved 

solutions.  

However, several crucial distinctions exist between SOS and other metaheuristic 

algorithms. To illustrate, algorithm-specific parameters are not necessary for the SOS, 

while metaheuristic algorithms such as particle swarm optimization (PSO) needs a proper 

parameter setting of a cognitive factor, inertia weight, and a social factor. In other words, 

SOS does not require additional work to tune the parameters. Inadequate parameter tuning 

is likely to lead to a finding of the obtained solutions in local optima regions. The SOS has 

been applied to optimization problem solving in many research areas since its development 

in 2014 [11-17]. 

First, the SOS generates a random ecosystem matrix (population). All problems have 

particular viable candidate solutions. The ecosystem size refers to the number of organisms 

that can be entered into the ecosystem. In each matrix row, it represents organisms identical 

to individuals in numerous other solutions. With each virtual organism, the corresponding 

objective and a candidate solution are represented. The search starts following the creation 

of the ecosystem. There are three phases in the searching process, in which the organisms 

benefit from the interaction (mutualism, commensalism, and parasitism). The fitness of the 

updated organism must be enhanced in order to replace the current organisms. The best 

organism can be updated after finishing all phases. To conclude, the phases repeat in a 

continual cycle until the stopping criterion has been met. 

The three rules of symbioses are applied by the SOS. The first one is mutualism 

symbiosis, which refers to the reciprocative benefits of two living organisms. The second 

one is commensalism symbiosis; in this relationship one organism takes all the benefits 

from the other, which is not substantially affected by this interaction. The third one is 

parasitism symbiosis. In this relationship, the benefits that an organism gains from the other 

are a detriment to this other organism.  The mathematical equations used to model the SOS 

are described in the following subsections. 

2.2.1 Mutualism Phase 

The relationship in the mutualism phase is characterized by the benefits of both sides. 

One such case is the relationship between bees and flowers. The following is the 

mathematical formulation of this phase: 

 newOi = currentOi + rand(0,1) * (bestO – mutualOij * BF1) (10) 



 newOj = currentOj + rand(0,1) * (bestO – mutualOij * BF2)  (11) 

where currentOi and currentOj are two current organisms involved in mutualism; bestO 

is the current best organism; rand(0,1) represents the uniform random value between 0 to 1; 

mutualOij models the mutualism interaction of current organisms; newOi and newOj are the 

updated organisms following the interaction; BF1 and BF2 represent two random values of 

either 0 or 1 illustrating the level of benefit each organism has. The following formulation 

is used to calculate mutualOij. 

 mutualOij = (currentOi + currentOj) / 2  (12) 

2.2.2 Commensalism Phase 

In the commensalism phase, one organism establishes a relationship in which it is the 

sole beneficiary, such as, for instance, a relationship between sharks and remora fish. The 

following is a mathematical formulation for this phase: 

 newOi = currentOi + rand(–1,1) * (bestO – currentOj)  (13) 

where rand(–1,1) represents the uniform random value between -1 to 1. 

2.2.3 Parasitism Phase 

The relationship in the parasitism phase is denoted by being harmful to one side and 

beneficial for the other. To illustrate, the plasmodium parasite uses the anopheles mosquito 

to transfer itself from one human to another. The harmed side of this relationship will 

probably perish, whereas the beneficiary will become fitter. The following is a 

mathematical formulation for this phase. 

 parasiteOi = F * currentOi + (1 – F) * [rand(0,1) * (ub – lb) + lb]  (14) 

where parasiteOi is the artificial parasite engaged with currentOi, and it threatens the 

existence of currentOj; F and (1–F) are the binary random matrix and its inverse, 

respectively; ub and lb are the upper and lower bound of the searching area, respectively. 

2.3 Performance measurement methods 

Table 1 shows the performance measures for evaluating the predictive methods. They 

are applied on the predicted output results of the training and test datasets. As MAPE is 

unaffected by the unit and size of predicted and actual values, it is efficient in determining 

the relative differences between models. MAE disregards the direction of errors while 

calculating the average magnitude of errors between actual and predicted errors. The 

average distance of a data point from the fitted line, which is measured along a vertical line, 

is RMSE. The linear association strength between two variables is measured by R. Here, the 

value R = –1 represents a perfect negative correlation, while the value R = 1 represents a 

perfect positive correlation. The best model outcome is indicated by the highest R value and 

the lowest MAE, MAPE, and RMSE values. 



Table 1. Performance measurement methods. 

Performance measurement  Mathematical formula 

Correlation coefficient (R) 
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y represents the actual data point, y’ represents the predicted data point 

2.4 Cross-validation for partitioning the training dataset  

Training and testing processes are critical in setting up the prediction model. First, a 

dataset is implemented in a training process to establish a model using the artificial 

intelligence method. The purpose of the model is to verify a new dataset. However, it is 

possible that an ‘overfitting’ phenomenon may occur when the whole dataset is used for 

training. In this phenomenon, the prediction model fits the dataset very well; however, it 

cannot be used for an unseen, new dataset. Thus, to avoid the overfitting problem, it is 

common to divide the training dataset into two subsets. The greater part of the training 

dataset is called a ‘learning subset’, whereas the smaller is referred to as a ‘validation 

subset’. The smaller subset is employed to validate the model built. 

The k-fold cross-validation technique is used for eliminating the randomness in 

partitioning the training dataset [18]. In the process, k-fold cross-validation generates k 

subsets from training dataset. They are always non-overlapping. As k is an unfixed 

parameter, it can be any adequate number. In this study, the value of k is 10. Accordingly, 

the data is divided into ten random groups of equal size. Nine subsets are employed as 

learning subsets. and one as a validation subset. To train the inference model (IO-SVR), the 

first (k-1) subsets are used, whereas the last k-th subset is employed for the validation of the 

training results. Being based on cross-validation, the process is repeated for k times so that 

all data subsets are employed once as the validation subset.  

2.5 Intelligence optimized support vector regression (IO-SVR) framework 

The IO-SVR procedure describes how the proposed method interacts with and uses 

training and test datasets in order to provide the best prediction results. Initially, the dataset 

obtained from the laboratory was divided randomly into a training dataset and a test dataset. 

The framework of the IO-SVR is presented in Fig. 1. 
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Fig. 1. IOS-SVR model architecture. 

 

The SOS was allowed to identify the optimal LS-SVR parameters, and accordingly the 

predictive model sets were constructed in the training process. There are two parts of the 

training dataset, namely the ‘learning subset’ and the ‘validation subset’. The purpose of 

this division is to eliminate the possibility of overfitting during the training process. To 

prevent bias during the sample partitioning process, the study selected the k-fold cross-

validation procedure. First, the prediction model is made to fit a learning subset. The 

purpose is to fit the  and  of the LS-SVR hyper-parameter of the model. A supervised 

learning method of the LS-SVR is used to train the model on the learning subset.  

Subsequently, the fitted model is employed for predicting the target output from the 

validation subset. It is worth noting that the validation subset offers an unbiased assessment 

of a model fit on the learning subset, and it also tunes the hyper-parameters of the model. 

The prediction error from the validation dataset is observed by RMSE. 

SOS simulates the optimization process of the parameter selection of LS-SVR. The 

searching process of SOS starts with a random initial population of hyper-parameters. For 

each iteration, 10 sets of learning and validation subsets are used to perform simulations of 

parameter searching, which was previously partitioned by the 10-fold cross-validation 

method. The objective value of the searching process is the average RMSE value of the 10 

validation subsets. The parameter set which produces the minimum average RMSE on 

validation subsets, through ten rounds of training simulation, represents the best parameter.  

After the best parameter set in the training process has been identified, the test dataset is 

employed to provide an assessment of the trained LS-SVR model. The IO-SVR framework 

combines the SOS’s ability to optimize the two LS-SVR parameters ( and ) in order to 

reduce prediction errors, with the LS-SVR’s ability to address curve fitting and learning. 

 



3 Data collection and preparation 

A published dataset [3] was utilized to evaluate the efficiency of the proposed AI-based 

regression model. Yeh [3] compiled a large database of uniaxial compression test records 

on HPC samples that was conducted by various university research labs. There are 1,030 

samples in the uniaxial compression test database, each comprises eight input variables and 

one output variable. The input variables consist of many HPC properties, such as the 

amount of ordinary Portland cement, additives, and supplementary materials. The 

compressive strength of HPC is denoted as the only output variable. The performance of the 

proposed hybrid AI system to forecast the compressive strength of the HPC was assessed 

by those data. 

The statistical descriptions of the variables are given in Table 2. As mentioned earlier, 

the HPC dataset was randomly partitioned into a training dataset and a test dataset 

containing 90% and 10% of dataset respectively. Based on the machine learning paradigm, 

the amount of training dataset must be significantly greater than the amount of test dataset. 

The language of technical computing called MATLAB was used to develop the IO-SVR 

code for modeling the HPC test database. 

Table 2. HPC compression test properties and statistical descriptions.   

Variables Unit Min Mean Max 
Standard 

deviation 

X1: Cement kg/m3 102.0 281.17 540.0 104.51 

X2: Blast-furnace slag kg/m3 11.0 107.28 359.4 61.88 

X3: Fly ash kg/m3 24.5 83.86 200.1 39.99 

X4: Water kg/m3 121.8 181.57 247.0 24.35 

X5: Superplasticizer kg/m3 1.7 8.49 32.2 4.04 

X6: Coarse aggregate kg/m3 801.0 972.92 1,145.0 77.75 

X7: Fine aggregate kg/m3 594.0 773.58 992.6 80.18 

X8: Age of testing Day 1.0 45.66 365.0 63.17 

Y: HPC compressive 

strength 
MPa 2.3 35.82 82.6 16.71 

 

Following the original dataset partitioning, a data transformation process (e.g., 

normalization) is carried out to enhance the efficiency and accuracy of the support vector 

regression. The data input for analysis should be scaled to particular ranges, for instance, 

[0,1], to obtain adequate results. The dominance of a variable can be reduced by data 

transformation. 

The following is a mathematical formulation for the attribute scaling method. 

  Xi
norm = ( Xi – Xi

min ) / ( Xi
max – Xi

min ) (15) 

where Xi is the original data, which are transformed into a normalized value Xi
norm, with 

Xi
norm ∈ [0, 1], and Xi

max denotes the maximum value for Xi, and Xi
min denotes the minimum 

value for Xi. 

 



4 Experimental results 

The efficiency and applicability of the given hybrid model in predicting HPC strength 

on the basis of laboratory test records were assessed by benchmarking its performance 

relative to the performance levels of other AI models (i.e., LS-SVR and SVR). Training and 

test datasets were utilized to establish the HPC strength model. The following are 

determined suitable parameters: (1) maximum number of iterations for SOS is set to be 20, 

(2) population size for SOS is set to be 20, (3) search range for the γ and  are varied from 

10-10 to 1010.  

A random initial population of hyper-parameter is used to start the training procedure 

and to build the initial strength prediction model. Moreover, 10-fold cross-validation of 

learning and validating subsets are simulated by IO-SVR for each iteration. The average 

RMSE value of the validation subset of each fold is kept as the objective value. This cross-

validation technique is also utilized to prevent the sampling bias, and to ensure the optimum 

accuracy of the strength prediction model. A summary of the cross-validation training 

performance for the validation subset in the training period is given in Fig. 2. 

 
Fig. 2. Training performance of the proposed IO-SVR method.  

 

 

The test results of IO-SVR are shown in Fig. 3. The predicted and actual output of 

testing phases demonstrated a good fit to a straight line. The R for the training and test 

phase obtained in this study demonstrate the superior performance and high accuracy of the 

trained IO-SVR model. As aforementioned, MAE, MAPE, and RMSE were used in addition 



to R to provide a more precise assessment of the performing methods. The prediction 

results of each method are given in Table 3 for the future analysis. 

 

 
Fig. 3. Obtained results of IO-SVR strength prediction model for both training and test dataset. 

 

Table 3. Comparative prediction results on test dataset. 

Methods R 
RMSE 

(MPa) 

MAE 

(MPa) 

MAPE 

(%) 
Parameters 

SVR 0.7394 12.8244 10.2790 45.82 C=1, = 0.125 

LS-SVR 0.7874 9.8838 7.7592 33.11 = 1, = 1 

IO-SVR 0.9267 6.0288 4.9473 18.65 

= 

9976023522, 

= 1050.8 

 

According to the results, the IO-SVR model facilitated efficiently the construction of an 

optimized predictive model over the default LS-SVR method. The performance measures 

of the MAE, MAPE, RMSE, and R of IO-SVR test results were enhanced by 2.8119 MPa, 

14.46%, 3.8550 MPa, and 0.1873, respectively, by implementing the self-optimized 

framework. The capacity of LS-SVR and SOS for modeling the accurate compressive 

strength on the basis of laboratory test records was confirmed by this comprehensive 

assessment. 

5 Conclusions 

This study established an innovative method for predicting HPC concrete strength on 

the basis of an HPC compressive test. This research explored the capacity of the prediction 

of LS-SVR, and accordingly has contributed to the current body of knowledge. This model 

utilized real laboratory test records to obtain accurate prediction results. The primary 

purpose of this study was to explore the efficacy of a hybrid AI system in optimizing the 

LS-SVR parameters in order to enhance the accuracy of strength forecasting of HPC 

compressive strength. 

Following the further analysis of the results, it is suggested that the combination of SOS 

and LS-SVR can significantly facilitate the creation of an optimized predictive model for 



forecasting the compressive strength. The accuracy errors (R, MAE, MAPE, and RMSE) 

obtained are quite remarkable, considering that modeling of nonlinear HPC material 

behavior is challenging. This proposed hybrid AI system represents a robust and reliable 

tool for estimating HPC compressive strength, and it can greatly facilitate the work of 

concrete mix designers. 
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