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Abstract- In this paper, a high-power PV power plant is connected to the weak grid by means of a three-phase power 

transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power 

controller. In general, transformer winding connection can be arranged in star-star (with neutrals grounded) or star-delta. The 

reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control 

strategy is based on utilizing the grid currents to produce a three-phase unbalanced reactive current with a small gain. The gain 

is determined by the system impedance. Simulation results exhibit that the control strategy works very well particularly under 

disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in 

terms of the voltage quality is improved.  

Keywords- Grid connected PV; Reactive power; Transformer winding; Voltage quality 

 

1. Introduction 

Nowadays, the utilization of renewable power sources 

has expanded extensively to replace petroleum product based 

energy sources. Wind, hydro and sunlight based energy 

sources are among those renewable power sources. Those 

energy sources are sustainable, ecologically benevolent and 

do not result in the climate change. 

Renewable energy sources can be connected directly to 

loads (as a stand alone system) or to an electric power AC 

grid. These days, most of the renewable energy sources such 

as Photovoltaic (PV) panels are attached to the grid [1,2]. As 

the output of the PV panel is in DC voltage and current, it 

needs a DC-AC converter to deliver the power to the grid.  

To connect the inverter to the grid, the DC bus voltage of 

the inverter must be higher than the peak value of the grid 

voltage [3]. To achieve the required DC bus voltage level, 

several PV arrays have to be arranged in series. The voltage 

rating of the devices must also be chosen to withstand the 

same level of voltage with enough voltage margin to survive 

during transient events.  

A multilevel inverter could be one of solutions to the 

high voltage problem [4,5,16]. But, the multilevel inverter 

needs many switches and a complex controller. Another 

solution is to install a step-up transformer [1,2,6,7] between 

the PV inverter and the grid so that the PV inverter can work 

in a low voltage level. This solution is simple and easy to 

implement. Complex combination of multilevel inverters and 

a transformer [14,15] is possible for a special application. 

In general, transformer primary and secondary windings 

are connected in star-star (with both neutrals grounded) or 

star-delta. The selection of transformer winding connection 

may affect the inverter controller. Because different winding 

connections may introduce a phase shift between the line 

mailto:Wenzhong.Gao@du.edu
mailto:tumbeh@petra.ac.id
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currents in the primary winding and in the secondary 

winding. The phase shift, if not considered, will give 

incorrect output than the commanded reference values. 

Hence, this paper will study the impact of transformer 

winding connection on the PV inverter operation especially 

under fault conditions. 

The main contribution of this paper is to develop a new 

control strategy so that the PV inverter can support voltage 

regulation at the point of common coupling particularly 

under transient faults, which include both symmetrical and 

unsymmetrical faults. The control strategy is based on fault 

analysis and calculation of a grid current to compensate for a 

three-phase unbalanced reactive current. The paper first 

presents an average circuit model for PV generator along 

with the new reactive power control strategy. Typical 

transformer connection types for PV inverter application are 

described in details. Then a power system with PV 

distributed generation via weak connection is analyzed to 

reveal the compensation strategy for voltage quality 

improvement. Extensive simulation studies are presented to 

show the effectiveness of the new control strategy under 

different faults and different transformer connections. 

2. PV Installation  

2.1 PV Model 

The PV generator consists of PV arrays and a grid-

connected PV inverter. The DC bus of the PV inverter is 

connected to PV panels, and the AC output terminal is 

attached to the grid via a step-up transformer. PV arrays 

usually work as a current source controlled by the strength of 

solar irradiance. The PV inverter more often operates in a 

current-controlled mode. The current controller regulates the 

inverter output currents delivered to the grid. Assumed that 

the switching frequency of the inverter is very high, as such 

that the output currents of the three-phase inverter are purely 

sinusoidal. Hence, the average circuit model uses a three-

phase dependent current source model to represent the PV 

arrays with the three phase PV inverter. 

 

Fig. 1. A three-phase PV average model. 

The PV inverter output current comprises of the active 

and reactive current. The measure of active power conveyed 

to the power system is dictated by the intensity of sunlight as 

well as the environment surrounding the PV panels. To get 

maximum active power, the PV inverter is upheld by a 

MPPT controller. The amount of reactive power flow is 

regulated by a reactive power controller of the PV inverter 

since the PV arrays just generate active power. The Norton 

equivalent circuit of the PV model is appeared in Figure 1, 

where Ia-pv, Ib-pv and Ic-pv are the reference or commanded 

currents of the PV inverter. 

2.2 Reactive Power Control 

Since power system demands reactive power for voltage 

regulation, the PV inverter is equipped with a reactive power 

controller. Subsequently, the PV inverter should be able to 

compensate for the voltage drop along the line impedance in 

normal and under fault conditions to a certain extent, with 

the purpose to regulate the grid voltage. Thus, it reduces 

network losses and increases transmission limit.  

Many literatures can be found about reactive power 

control for a grid-connected PV inverter [7-11,17]. A PV 

inverter generally can be controlled to draw or to supply 

reactive power depending upon inverter control strategies 

chosen (e.g constant voltage, constant reactive power, and 

constant power factor). The control strategy could employ a 

PI controller or a V-Q slope characteristic as well as an 

intelligent controller [12]. Moreover, the amount of reactive 

power provided by the PV inverter could likewise be 

resolved from the active power flow related to system 

impedance R/X ratio.  

In this paper, a new control strategy is applied. The 

strategy utilizes the actual reactive power flowing in the 

power system. The reactive current generated by the PV 

inverter actually compensates for the grid reactive current. 

This strategy is simple to actualize and is viable under all 

conditions particularly unbalanced disturbances.  

2.3  Reactive Power Controller Operation 

The PV inverter output currents are generated based on a 

three-phase reference or commanded current. The reference 

current will be used by the PV inverter controller to drive the 

PV inverter. The reference current comprises of active and 

reactive currents as well as unbalanced currents.  

The reactive power controller works based on the idea 

that the reactive power created by the PV power plant relates 

to the actual reactive power in the power system. A current 

sensor on each phase is used on the grid side to generate the 

three-phase grid currents. From the sensor output currents, 

the control strategy aims at making a three-phase balanced 

active current (I+ active(a,b,c)). Then, the controller will naturally 

create reactive currents (I+ reactive(a,b,c)) as well as negative- 

and zero-sequence currents (I−0 (a,b,c)) for unbalanced system.  

 

Fig. 2. A block diagram of a PV inverter controller for 

reactive power. 

The block diagram of the PV inverter control strategy is 

described in Figure 2. From the output of grid current 

sensors, the controller segregates the three-phase grid 

currents into positive-, negative- and zero-sequence currents 
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using a symmetrical component extractor. Only the positive-

sequence current is used. At that point, the three-phase 

positive-sequence current is divided into three-phase active 

and reactive positive-sequence currents by synchronizing to 

the grid voltages using a phase-locked loop (PLL) controller. 

The active currents are in-phase with the grid voltages, while 

the reactive currents are in quadrature with respect to the grid 

voltages. At last, the three-phase active positive-sequence 

current is subtracted from the measured grid currents to 

acquire a three-phase unbalanced reactive current (Ir(a,b,c)).  

𝐼𝑟(𝑎,𝑏,𝑐) = 𝐼𝑔𝑟𝑖𝑑(𝑎,𝑏,𝑐) − 𝐼+ 𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) (1) 

or       𝐼𝑟(𝑎,𝑏,𝑐) = 𝐼+ 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) + 𝐼−0(𝑎,𝑏,𝑐) (2) 

However, for improving the voltage regulation at the 

PCC bus, the PV inverter will not support the full unbalanced 

reactive current (Ir(a,b,c)) for the entire power system. The 

inverter supplies just a small amount of the unbalanced 

reactive current according to the system impedance 

(multiplied by a gain, KgPV).  

The unbalanced reactive current is summed up with the 

PV active current (IPV active) determined by solar irradiance. 

The result is the three-phase reference current.  

𝐼𝑟𝑒𝑓(𝑎,𝑏,𝑐) = 𝐼𝑃𝑉 𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) + 𝐾𝑔𝑃𝑉 𝐼𝑟(𝑎,𝑏,𝑐) (3) 

where  KgPV is a constant between 0 and 1.  

If the PV inverter works very well, then the PV inverter 

output currents (IPV) are the same as the reference currents. 

𝐼𝑃𝑉(𝑎,𝑏,𝑐) = 𝐼𝑃𝑉 𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) + 𝐾𝑔𝑃𝑉(𝐼+ 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐)

+ 𝐼−0(𝑎,𝑏,𝑐)) 
(4) 

2.4 Transformer Winding Connection 

Standard winding connection of a three-phase power 

transformer is delta and star. Delta connection is more 

reliable than star connection. If one of the three windings 

fails, the delta configuration still works as open-delta 

connection with a three-phase balanced nominal voltage. On 

the other hand, the star connection can provide multiple 

voltages (phase-neutral and phase-phase voltages). The star 

configuration can supply single-phase and three-phase loads 

simultaneously.  

The common primary and secondary windings of a 

three-phase transformer are star-delta and star-star [6][15]. 

The neutral of the star connection usually is grounded. In 

many applications, the star-delta configuration is popular 

because it is reliable and effective. Whereas, the star-star 

arrangement would be potentially unbalanced. In the star-

delta winding connection, the star provides a neutral point, 

which is usually grounded for safety reasons to serve single-

phase loads. The delta provides a better current balance for 

the grid. Compared to the star-star configuration, the star-

delta configuration creates a voltage/current phase shift 

between primary and secondary sides. The delta connection 

also prevents the zero-sequence current flowing to the grid. 

For PV applications, there is Le-Blanc connection [14] for a 

special and complex configuration.  

For grid-connected PV system, a step-up transformer is 

applied. The PV inverter is connected to the low voltage side 

of the transformer. For a delta and star configuration, the 

delta winding is usually connected to the high voltage grid, 

while the star winding is connected to the output terminal of 

the PV inverter.   

3. Power System Under Study 

A typical power system with PV installation under study 

is described in Figure 3. Bus 3 is a terminal of a main strong 

grid, which is represented by the Thevenin equivalent circuit 

(a voltage source with small impedance (Z34)). Small 

distribution system is connected to the bus 3. The typical PV 

installation is connected to the grid by means of long weak 

lines. The main interest is mostly on the power quality 

(voltage quality) at the point of connection of the PV 

inverter, since on the same bus (PCC), there may be regular 

and sensitive loads (e.g. electronic hardware). 

 

Fig. 3. A typical power system with PV installation. 

From Figure 3, a high power PV generator is connected 

to the PCC (bus 2) through a power transformer (represented 

by impedance Z12). The PV generator, which is a kind of 

distributed generation (DG), is usually situated far from the 

transmission line. Bus 2 is connected to bus 3 by means of a 

long weak line. It is considered a weak grid connection, 

which is ordinarily described by high impedance (Z23 = 

Zweak). The short circuit ratio (SCR) at this point is smaller 

than 10. SCR is the ratio of PCC short circuit power to 

maximum apparent power of generator [13]. The system 

parameters under study are recorded in Table 1.  

Table 1. System Parameter under Study. 

MVA base 10MVA 

KV base (L-L) 20kV 

Z12 7%  

Zweak (Z23) 50%  (SCR ≈ 2) 

Z34 5%  

Z35 7%  

Load (bus 5) 0.4pu, PF = 0.9 lag 

KgPV 0.1 

Zf 1% 

 

From Figure 3, the voltage equation can be presented as 

follow: 

𝑉2 = 𝑉4 − 𝐼43𝑍34 + 𝐼𝑃𝑉𝑍23 (5) 



INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH  
H. H. Tumbelaka et al. ,Vol. 8, No. 1, March, 2018 

 

 10 

where      𝑰𝟒𝟑 + 𝑰𝑷𝑽 = 𝑰𝟑𝟓 (6) 

3.1 Transient Fault Conditions 

The system in Figure 3 is examined under transient 

faults. When the system experiences a fault at bus 5, the high 

power PV installation is still connected to the electric 

network (fault ride-through) and attempts to support the 

voltage quality at the PCC. Only the main grid generates a 

large fault current. The PV generator as a current source will 

basically produces currents according to its control strategy. 

During the fault, I35 = If.  Since If >> IPV, the current 

contribution from the PV inverter will not affect considerably 

the voltage at bus 3, so that I43 ≈ If.  For a solid ground fault, 

the bus-5 voltage is theoretically zero. While at bus 3 and bus 

2, there is a severe voltage drop depending on the ratio Z35 to 

Z34.  

However, IPV can be controlled such that the reactive 

currents produced by the PV inverter will improve the 

voltage at the PCC (bus 2). Assuming that X/R of the system 

impedance is high, and the PV unbalanced reactive current 

(KgPV Ir(a,b,c)) supports the voltage regulation,  KgPV  will be 

chosen as 

𝐾𝑔𝑃𝑉 ≈
𝑍34

𝑍23
 (7) 

So that according to equation (4) and (5) the voltage at bus 2 

is corrected to  

𝑉2 ≈ 𝑉4 − (𝐼+ 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) + 𝐼−0(𝑎,𝑏,𝑐)) 𝑍34

+
𝑍34

𝑍23
(𝐼+ 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒(𝑎,𝑏,𝑐) + 𝐼−0(𝑎,𝑏,𝑐)) 𝑍23 

(8) 

Then the value of bus 2 voltage is close to bus 4 (V2 ≈ 

V4).  Thus, the disturbance effect of the fault is neutralized by 

the additional reactive power generated by the PV inverter 

and the ratio of the line impedance. The value of KgPV is also 

applied to the normal condition.  

4. Simulation Results 

4.1 Star-star Winding Connection 

a. Symmetrical faults   

There is a three-phase to ground fault at bus 5 through Zf  

in a brief timeframe (t = 0.7s – 1s). During the fault, the grid 

fault-current (If) ascends high (Figure 4 top). The fault will 

disturb the voltage of the neighboring buses. Without 

reactive power control, the three-phase voltage at PCC drops 

significantly to 0.732p.u (Figure 4 bottom). 

The PV inverter with its controller senses the three-phase 

fault current (If) streaming in the grid and reacts rapidly by 

generating reactive currents to counteract the voltage dip at 

the PCC. A symmetrical fault creates only positive-sequence 

currents. Figure 5 (top) describes that the PV inverter output 

current is a summation of the active current (from solar 

irradiance, PPV = 0.7pu) and the reactive current relative to 

the grid fault current. The PV inverter output current is 

conveyed to the grid through the star-star transformer with 

neutrals grounded. Figure 5 (bottom) exhibits that the system 

is stable and the PCC voltage is improved extremely well to 

a normal value (0.991p.u) ) as projected by equation (8). The 

PCC voltage is balanced as well. Hence, the voltage quality 

is enhanced. 

 

Fig. 4. A three-phase to ground fault (symmetrical fault): 

Grid fault currents (top), and voltages at PCC (bottom) 

without reactive power control. 

 

Fig. 5. A three-phase to ground fault (symmetrical fault): PV 

inverter output currents (top) and voltages at PCC (bottom) 

with reactive power control. 

b. Unsymmetrical faults 

The unsymmetrical faults observed in this paper are a 

line-to-line (LL) fault and a single-line to ground (SLG) 

fault. The faults through Zf create unbalanced voltage and 

current. Thus, the PV inverter has to produce unbalanced 

reactive currents to compensate for the unbalanced faults. 

The active power from solar irradiance (PPV) = 0.7pu.  

b.1  Line-to-line (LL) fault 

Figure 6 and 7 illustrate voltages at the PCC and grid 

currents when bus 5 experiences a LL fault between phase A 

and B (t = 0.7s – 1s). The grid currents are unbalanced. The 

phase-A and phase-B grid currents ascend high and stream to 

the faulty bus. Without reactive power control, phase A-B 

short circuit causes voltage drop to 0.755p.u at the phase A 

and to 0.898p.u at phase B, while the phase-C voltage stays 

around the normal value (1.07p.u).  

The current sensors on the grid detect the fault currents. 

From the output of current sensors, a three-phase positive-

sequence current is yielded by a symmetrical component 

extractor (Figure 8 top). The three-phase positive-sequence 
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current consists of three-phase active and reactive positive-

sequence currents. As indicated by the control strategy, only 

the active positive-sequence current (Figure 8 bottom), which 

is in-phase with the fundamental grid voltage is developed 

for the following procedure. 

 

Fig. 6. A LL fault (unsymmetrical fault): Grid fault currents 

(top), and PCC voltages (bottom) without reactive power 

control. 

 

Fig. 7. A LL fault: the PCC voltage waveforms without 

reactive power control. 

Furthermore, a three-phase unbalanced reactive current 

(Ir(a,b,c)) is naturally generated by comparing the three-phase 

active positive-sequence current to the three-phase grid 

current (Figure 9 top). Since the inverter delivers only a 

small amount of this current (Figure 9 bottom) to improve 

the PCC voltage quality, the unbalanced reactive current is 

normalized by a small gain (KgPV). 

At last, the three-phase reference current is obtained by 

adding the active current (IPVactive = 0.7p.u) to the unbalanced 

reactive current as appeared in Figure 10 (top). The measure 

of active power is not affected by the disturbances. For 

dependent current source’s gain equals one, the PV inverter 

output currents are the same as the reference currents. The 

PV inverter output currents are delivered to the grid through 

the star-star transformer with both neutrals grounded. 

Figure 10 likewise shows that the system is stable, and 

the line voltage drop is corrected significantly. Figure 11 

shows that the PCC voltages during disturbance are 

balanced. The voltage quality is improved. 

b.2  Single line to ground (SLG) fault 

Figure 12 illustrates the voltages at the PCC when bus 5 

experiences a SLG fault at phase A (t = 0.7s – 1s). The 

phase-A grid current increases significantly flowing into the 

faulty bus. The phase-A grid current peak is about 10p.u 

(Figure 12 top). The grid currents are unbalanced as well. 

Without reactive power control, the phase-A voltage 

decreases to 0.732p.u, while other phases are a slightly 

greater than the nominal voltage (1.07p.u). 

Using the same control strategy, the PV inverter 

generates unbalanced reactive currents similar to the grid 

fault currents with a small gain (KgPV = 0.1). From Figure 13, 

the PV inverter produces total currents of unbalanced 

reactive currents and active currents (IPVactive = 0.7p.u). Then, 

The PV inverter output current is delivered to the grid 

through the star-star transformer with neutrals grounded. The 

unbalanced voltage drop is compensated very well to be a 

three-phase balanced voltage (Figure 13 bottom). The system 

is stable and the voltage quality is upgraded.   

 

Fig. 8. A LL fault: A three-phase positive-sequence current 

(top), and a three-phase active positive-sequence currents 

(bottom). 

 

Fig. 9. A LL fault: A three-phase unbalanced reactive current 

(top), and a fraction of a three-phase unbalanced reactive 

current (bottom). 

 

Fig. 10. A LL fault: PV inverter output currents (top), and 

voltages at PCC (bottom) with reactive power control. 
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Fig. 11. A LL fault: The PCC voltage waveforms with 

reactive power control. 

 

Fig. 12. A SLG fault (unsymmetrical fault): Grid fault 

currents (top), and voltages at PCC (bottom) without reactive 

power control. 

 

Fig. 13. A SLG fault: PV inverter output currents (top) and 

voltages at PCC (bottom) with reactive power control. 

4.2  Star-delta Winding Connection 

As mentioned above, the low voltage star winding is 

connected to the PV generator, while the high voltage delta 

winding is connected to the grid. For star-delta winding 

connection (e.g. YnD1), the winding ratio in per-unit system 

is 1:√3, and the phase shift is 30o (lagging). Therefore, the 

grid-connected PV system using a star-delta power 

transformer would create some problems if not corrected.  

First, there is a voltage/current phase shift between the 

primary and the secondary sides of the transformer. The 

phase shift causes incorrect compensation. The PV inverter 

output current waveforms will be delayed 30o on the 

secondary side of the power transformer. The compensation 

currents do not match with the reference currents. 

As a solution to this problem, the controller output is 

delayed with the same phase angle but in the opposite 

direction. As a result, the PV inverter output currents will be 

shifted 30o leading compared to the reference currents. After 

passing through the star-delta power transformer, the current 

waveforms will be in-phase with the reference current. This 

is done by means of a phase-shift controller or a delta-star 

signal transformer. For a YnD1 star-delta power transformer, 

the winding connection for the delta-star signal transformer 

is DYn11. The winding ratio in per-unit system is √3:1. The 

voltage/current is shifted 30o leading. 

Secondly, the star-delta transformer will prevent the zero 

sequence current to flow. The zero-sequence component of 

the PV inverter output currents will circulate within the delta 

winding of the transformer. Therefore, star-delta winding 

connection inherently creates an open circuit for the zero-

sequence currents to flow. If PV inverter output currents 

contain a zero-sequence component, then their waveforms 

will not be the same as the secondary-side current waveforms 

of the power transformer. A delta-star signal transformer and 

a phase shift controller cannot overcome this problem. 

Consequently, a fault that creates a zero-sequence current 

will get incorrect compensation. 

To explain the control process in a star-delta power 

transformer, simulations are conducted for a three-phase to 

ground fault (a symmetrical fault) and a LL fault (an 

unsymmetrical fault) that both of them do not contain a zero-

sequence current. Another simulation is a SLG fault (an 

unsymmetrical fault) that contains a zero-sequence current.  

a. Symmetrical faults 

Figure 14 shows (for phase-A) the controller output 

current after the reference current is shifted by 30o (leading) 

for a three-phase to ground fault. The PV inverter output 

current, which is the same as the controller output current is 

streaming through a star-delta power transformer. This 

current is shifted again by 30o but in the opposite direction 

(lagging). As a result, the secondary winding current is the 

same as the reference current. Figure 14 (bottom) shows that 

the three-phase secondary winding current is the same as the 

three-phase reference current.  

Figure 15 reveals the good impact of a 30o phase shift 

controller on the PCC voltage for a three-phase to ground 

fault. The simulation results using a star-delta transformer 

and using a star-star transformer (Figure 5 and 15) are very 

similar. Without the phase shift strategy, the compensation 

results are incorrect. Figure 16 shows that the PCC voltages 

increase significantly under normal and fault conditions. 

b. Unsymmetrical faults 

b.1  Line-to-line (LL) fault 

The control strategy for a LL fault is the same as for the 

three-phase to ground fault. Figure 17 shows that the three-

phase secondary winding current is the same as the three-

phase reference current for a LL fault when grid connection 

uses a star-delta transformer. During the fault, the PCC 

voltage unbalance are recovered to the normal value. The 

simulation results using a star-delta transformer and using a 
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star-star transformer (Figure 10 and 17) are very similar. 

If the phase-shift strategy is not applied, the 

compensation is incorrect. Figure 18 demonstrates the 

voltages at the PCC for a LL fault without the 30o phase 

shift. As a result, the voltage quality decays. 

 

Fig. 14. A phase shift between the reference current and the 

controller output current (top), the secondary winding current 

is the same as the reference current (bottom) – phase A. 

 

Fig. 15. PCC voltages for a three-phase to ground fault using 

a phase-shift strategy. 

 

Fig. 16. Without a phase-shift strategy: The secondary 

winding current is different from the reference current (top), 

and PCC voltages (bottom) for a three-phase to ground fault. 

 b.2  Single line to ground (SLG) fault 

Figure 19 depicts the PCC voltages under a SLG fault 

using a star-delta transformer with a phase-shift strategy. The 

simulation result during the fault is different from what is 

shown in Figure 13. In this fault, the zero sequence currents 

cease in the delta winding. The phase shift strategy cannot 

correct the disappearance of the zero-sequence current from 

the measured signal. During the fault, the transformer output 

currents are not the same as the reference currents (Figure 

20). As a result, the PV inverter produce incorrect 

compensation. The voltage is not properly corrected.  

 

Fig. 17. With phase shift strategy: The secondary winding 

current is the same as the reference current (top), and the 

PCC voltages (bottom) for a LL fault. 

 

Fig. 18. Without phase shift strategy: The secondary winding 

current is different from the reference current (top), and the 

PCC is poor (bottom) for a LL fault. 

 

Fig. 19. Poor voltage quality at the PCC for a SLG fault 

using a star-delta transformer grid connection. 

 

Fig. 20. Secondary winding currents are not the same as 

reference currents during a SLG fault. 
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5. Conclusions 

This paper introduces the performance of transformer 

winding connections of a grid-connected PV. The high-

power PV installation is connected to the weak grid by 

means of a three-phase power transformer. The PV source is 

modeled by an average model (e.g by a dependent current 

source). The PV inverter includes a reactive power controller 

to support voltage regulation of the system particularly under 

transient faults, which are both symmetrical and 

unsymmetrical faults. The control strategy is based on 

utilizing the grid currents to create a three-phase unbalanced 

reactive current with a small gain. The gain is determined by 

the system impedance. 

Simulation results exhibit that the control strategy works 

very well if the transformer winding connection is star-star 

with both neutrals grounded. The power quality in terms of 

the voltage quality is improved. Under transient disturbances 

as well as normal condition, the PCC voltages are close to a 

nominal value (1p.u). The system is stable and voltage dips 

at the PCC due to the symmetrical and unsymmetrical faults 

are mitigated significantly.  

If the transformer winding connection is changed to 

delta, a fault that creates a zero-sequence current cannot be 

compensated because it circulates within the delta winding. 

As a result, the voltage unbalanced cannot be fully corrected. 

For other faults such as a three-phase to ground fault and a 

line-to-line fault, the incorrect compensation due to star-delta 

winding phase shift can be handled by means of a phase-shift 

strategy. The PV inverter output currents will be shifted 30o 

leading compared to the reference currents. After passing 

through the star-delta power transformer, the current 

waveforms will be in-phase with the reference current. As a 

result, the voltage unbalanced is corrected.   
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