36th Conference on

OUR WORLD IN CONCRETE & STRUCTURES

14 – 16 August 2011, Singapore

Conference Theme:
“Recent Advances in the Technology of Fresh Concrete”

Conference Documentation
Volume XXX

Conference Co-sponsors:
• BASF South East Asia Pte Ltd (gold)
• WAK Technologies Pte Ltd (gold)
• Unibeton Ready Mix, UAE
• Novaars International Pte Ltd
• Ready-Mixed Concrete Assn of Singapore
• Cement and Concrete Assn of Singapore
• Japan Concrete Institute

Organisers:
• CI-Premier Conference Organisation, Singapore
36th Conference on
Our World in Concrete & Structures

OWICS 2011 Conference Advisors

- Mr David Ball, UK
- Dr O Vallevik, Iceland
- Prof V Ramakrishnan, USA
- Dr C C Chang, USA
- Prof M C Tandon, India
- Mr R Sundaram, India
- Prof K Carter, USA
- Prof Issam Harik, USA
- Prof H Wallbaum, Switzerland
- Prof Mario Collepardi, Italy
- Mr Michael Khrapko, New Zealand
- Mr Chung-Ming Ho, Taiwan

OWICS 2011 Conference Committee

Conference Chairpersons: A/Prof K C Gary Ong, NUS, Singapore
A/Prof Min-Hong Zhang, NUS, Singapore

Co-ordinator: Mr Yogesh Chhabra, Novaars International Pte Ltd

Conference Director: Er John S Y Tan, CI-Premier Conference Organisation

Secretary: Ms Peggy L P Teo, CONLOG

IT Manager: Ms Amanda Quek, Singapore

The OWICS Steering Council

OWICS Honorary Emeritus Chairmen
- Em Prof S L Lee, Singapore
- Dr C T Tam, Singapore

OWICS Honorary Chairmen
- Prof Franco Mola, Italy
- Prof G M Sabnis, USA
- Prof Shoji Ikeda, Japan
- Mr C R Alimchandani, India
- Mr Chris Stanley, UAE
- Prof N Otsuki, Japan

OWICS Advisors
- Yukio Aoyagi, Japan
- Ken Day, Australia
- Willie Kay, Singapore
- Robert G Lee, USA
- Hoe-Peng Lim, Singapore
- Steven Loh, Singapore
- Kiat-Huat Seow, Singapore
- Teng-Hooi Tan, Singapore
- Petr Prochazka, Czech Republic
- JiaBiao Jiang, Singapore
- Desmond King, UK
- Ryoji Sakurada, Japan
- Gary K C Ong, Singapore

OWICS Corporate Advisors
- W R Grace Singapore Pte Ltd
- BASF South East Asia Pte Ltd

OWICS Organisation Advisors
- Ready-Mixed Concrete Association of Singapore
- American Concrete Institute-Singapore Chapter
- Singapore Concrete Institute
- Prestressed & Precast Concrete Society
- Cement and Concrete Association of Singapore
- Japan Concrete Institute
- Indian Concrete Institute
Proceedings of the 36th Conference on
OUR WORLD IN CONCRETE & STRUCTURES
14-16 August 2011, Singapore

Theme. “Recent Advances in the Technology of Fresh Concrete”

Editors
Dr C T Tam (OWICS)
Prof. K C G Ong (NUS)
Dr S Teng (NTU)
Prof. M H Zhang (NUS)

Conference Co-sponsors:
• BASF South East Asia Pte Ltd (gold)
• WAK Technologies Pte Ltd (gold)
• Unibeton Ready Mix, UAE
• Novaars International Pte Ltd
• Ready-Mixed Concrete Assn of Singapore
• Cement and Concrete Assn of Singapore
• Japan Concrete Institute

Organisers:
• CI-Premier Conference Organisation, Singapore
Conference Secretariat

CI-PREMIER PTE LTD
150 Orchard Road #07-14, Orchard Plaza
Singapore 238841
Tel: +65 67332922 Fax: +65 62353530
E-mail:ci-p@cipremier.com
Web: http://www.cipremier.com

Copyright

Not to be reprinted without written authority

The Organising Committee is not responsible for the statements made or for the opinions expressed in this Proceedings. Papers included in this proceedings are peer reviewed.
FOREWORD

The 36th Conference on Our World in Concrete and Structures (OWICS11) is themed “Recent Advances in the Technology of Fresh Concrete”. This has always been a major area of focus in this series of conference. Over the years many papers have been presented in this area of concrete research. The intention this year is to bring together all those who share a common interest in this subject area to promote the sharing of new ideas and to sharpen the focus on the significant development and innovation that has taken place in recent years.

OWICS11 is also very special as we are dedicating it to Professor Olafur H Wallervick of the Innovation Centre Iceland for his support of this conference series and for his acknowledged contributions to concrete technology. He will deliver the OWICS11 Conference lecture.

The number of eminent and world renown speakers we have this year have exceeded all our expectations and I would like to thank all speakers, authors and participants for their contributions. Thanks are also due to the OWICS Honorary Chairmen, the OWICS Advisors, our Sponsors and the Organizing Committee.

Khim Chye Gary ONG
&
Min-Hong ZHANG
Conference Chairpersons
Table of Contents

Foreword iii
OWICS 2011 Dedication to Prof O H Wallevik v
Conference Co-sponsors xv
OWICS – Brief Milestone xix
OWICS – Conference Awards 2010 xxix
Table of Contents xxxiii

Conference (Dedication) Lecture 2011
Rheology – My Way of Life 1

Special Papers Session in honour of Prof. O H Wallevik
Theme: Chemical and mineral admixture for more sustainable structure

High performance concrete (HPC) (revisited in 2011) 13
P.-C. Aitcin

Water on the molecular scale: solvation and the hydrated torsions method 27
[abstract only]
K.F. Alexandersson and D.C. Clary

The structural behaviour of SCC at rest 29
P.H. Billberg

Enhancing durability and sustainability of concrete structures 37
Yogesh Chhabra

Effect of limestone filler as mineral addition in self-compacting concrete 49
G. De Schutter

Ecological concrete and workability: a marriage with future? 55
S.A.A.M. Fennis and J.C. Walraven

Longterm creep of concrete made with porous basaltic aggregate 65
[abstract only]
J.G. Gudmundsson, G. Jónsson, O.H. Wallevik, H. Jónsson and K. Khayat

Eco-crete with flaky aggregates [abstract only] 69
Hreinn Jonsson, Richard Morton and O.H. Wallevik

Calcined marl and clay as mineral addition for more sustainable concrete structures 73
H. Justnes, T. Østnor, K. De Weerdt and H. Vikan

The development of microstructure of portland cement mortars – from the fresh to 83
the hardened state
Knut O. Kjellsen and Sidney Diamond
Special Papers Session in honour of Prof. O H Wallevik

Chloride penetration and rheological measurements of high performance concrete [abstract only] 91
T. I. Kristjansson and O.H. Wallevik

On assessment of the influence of mineral additions on early age cracking of concrete [abstract only] 95
T.A Martius-Hammer

Particle packing by gyratory intensive compaction as tool to optimize the aggregate gradition of low binder scc, eco-scc [abstract only] 97
Florian V. Mueller and Olafur H. Wallevik

Application of nanotechnology in concrete [abstract only] 101
Surendra P. Shah

The particle flow interaction theory – thixotropic behavior and structural breakdown 103
J. E. Wallevik

Alkali activated volcanic ash: steps towards a alkali activated self compacting concrete [abstract only] 109

Concrete incorporating supplementary cementing materials: effect of curing on compressive strength and resistance to chloride-ion penetration [abstract only] 111
Min-Hong Zhang, Alain Bilodeau, V. Mohan Malhotra, Kwang-Soo Kim, and Jin Choon Kim

OWICS Steering Council Keynote Papers

Eugène Freyssinet - his incredible journey to invent and revolutionize prestressed concrete construction 113
Authors: Pierre Xercavins, Daniel Demarthe and Ken Shuskewich, presented by C.R. Alimchandani

The disaster due to the March Eleven 2011 East Japan earthquake and tsunami [abstract only] 129
Shoji Ikeda, Akira Hosoda and Kazuhiko Hayashi

Possibility of sea water as mixing water in concrete 131
Nobuaki Otsuki, Daisuke Furuya, Tsuyoshi Saito and Yutaka Tadokoro

The use and abuse of the slump test for measuring the workability of concrete 139
Christopher Stanley

Shape optimization of fibers in fiber reinforced concrete 149
Petr Prochazka and Martin Valek

OW11 Keynote Papers

Present and future potentials in concrete engineering 165
G. L. Balázs

Highly sustainable, high durability concrete for the 21st century 179
David M J Ball

Damaged concrete structures by East Japan natural disaster 185
K. Maruyama
Technical Papers

Study on compressive strength of concrete using low quality recycled coarse aggregate
Y. Akiyoshi, Y. Sato, T. Otani, K Ueda, N. Ito and H. Okada

Effects of solution concentration and spray amount on the results of silver nitrate solution spray method
Yusuke Aoki, Keiji Shimano and Kazuya Satoh

Formwork – a concrete quality tool
Chirag K. Baxi

Self-compacting alkali activated concrete for production of concrete elements
Vlastimil Bilek

Analytical study on high strength concrete shear walls
Jimmy Chandra, Yu Liu#, and Susanto Teng

Survey on the mechanical properties of SCC: 20 years of research
P. Desnerck, P. Van Itterbeeck, V. Boel, B. Craeye and G. De Schutter

Strengthening of reinforced concrete beams under torsion using CFRP sheets
El Mostafa Higazy and Mahmoud El-Kateb

Preliminary design of high-rise shear wall with outriggers and basement fin walls on non-rigid foundation
J.C.D. Hoenderkamp

Evaluation of shrinkage cracking resistance for concrete containing mineral admixture by embedded reinforcing bar test
H.Y. Jiang, T. Otani, Y. Sato, K. Ueda, T. Mishima and A. Oshiro

Synthesis and properties of high calcium fly ash based geopolymer for concrete applications
P. Kamhangrittirong, P. Suwanvitaya, P. Suwanvitaya and P. Chindaprasirt

Assessment of strength, permeability and hydraulic diffusivity of concrete through mercury intrusion porosimetry
B. Kondraivendhan, B. Sabet Divsholi and Susanto Teng

Chloride penetration profiles in existing harbor structures constructed with blast furnace cement concrete
M. Kubota, T. Saito, N. Otsuki and M. Miura

Effect of ultra fine slag replacement on durability and mechanical properties of high strength concrete
Darren T.Y. Lim, Da Xu, B. Sabet Divsholi, B. Kondraivendhan and Susanto Teng

Evaluation of high performance concrete using electrical resistivity technique
Darren T.Y. Lim, B. Sabet Divsholi, Da Xu and Susanto Teng

Shear analysis of reinforced concrete slabs with effective moment of inertia
Yu Liu, Jimmy Chandra and Susanto Teng

Performance of rehabilitated rc beam-column sub-assemblage under cyclic loading
C. Marthong, S.K. Deb and A. Dutta
Development of monitoring system for corrosion protect effect after patch repair
Kenyu Muratan, Suguru Takeuchi, Shinichi Miyazato, Kosuke Yokozeki and Toshinori Oyamato

Impact of high temperature on different combinations of fiber reinforced concrete
S. Peskova and P.P. Prochazka

Behaviour of high strength metakaolin concrete at elevated temperatures

Durability of reinforced fly ash-based geopolymer concrete in the marine environment
D.V. Reddy, J-B Edouard, K. Sobhan and S.S. Rajpathak

Effect of doping position of Sr Atom on crystal stability of beta-form belite
R. Sakurada, A. K. Singh and Y. Kawazoe

Development on specific evaluation technique for the prediction of neutralization of concrete
S. Sato, Y. Masuma, Y. Hasegawa, I. Natsuka, S. Aoyama and K. Yokoi

Influence of excessive bleeding on frost susceptibility of concrete incorporating ferronickel slag as aggregates
Takayasu Sato, Kohei Watanabe, Akihiro Ota, Minoru Aba and Yuki Sako

The Asian experience in low fines self consolidating concrete (SCC) in everyday applications
Seow Kiat Huat, Nilotpol Kar, Dr Feng Giuling

Creep deformations on high strength concrete made of montmorillonite mineral nano particles
A. SPrince, L. Pakrastinsh and A. Korjakins

Some studies on flexural behaviour of glass fibre reinforced concrete members
P. Sravana, P. Srinivasa Rao, K. Chandramouli, T. Seshadri Sekhar and P. Sarika

Studies on thermal cycles of glass fibre concrete mixes
P. Srinivasa Rao, Mouli Chandra, T. Seshadri Sekhar, N. Pannirselvam P. Sravana and P. Sarika

Influence of fine-grained fraction amount in recycled fine aggregate on properties of mortar
Shingo Tabata, Shinichi Miyazato, Takashi Habuchi, Takahiko Amino and Hidechika Tanaka

Sulfuric acid resistance of autoclaved cementitious materials containing γ-CaO · SiO and quartz
Yuriko Tsuburaya, Nobuaki Otsuki, Tsuyoshi Saito and Saphouvong Khambou

Performance evaluation of mortar mixed with fly ash - blast furnace slag and estimate of its enviromental impact
Masayuki Watanabe and Shinichi Miyazato

Mechanical properties and durability of high performance concrete incorporating ultra fine slag and undensified silica fume
Da Xu, B. Sabet Divshoffi, Darren T.Y. Lim and Susanto Teng
A Chapter on The Conceptual Approach to Structural Design

Keynote Papers

Recent developments in the conceptual design of r.c. and p.c. structures 451
F. Mola, E. Mola and L.M. Pellegrini

Seismic sustainability of a contemporary architectural expression 467
M. Mezzi, F. Comodini and F. Marinacci

Innovative retrofit for upgrading reinforced concrete decks on non-composite steel girder bridges 477
A. Peiris and I. Harik

Tall building design inspired by nature 485
Mark Sarkisian

Technical Papers

Assessment and statically loading of haraz r.c frame type arch bridge 495
M.H.A. Beygi, R. Moradi, A. R. Azizian, N. Ranjbar and H. R. H. A. Beygi

Ultra high performance and high early strength concrete 503
Mehdi Sadeghi e Habashi

Study of fracture energy properties of portland blast furnace cement type-b concrete with partial replacement of aggregate with porous ceramic course aggregate 509
M.M. Macharia, R. Sato, A. Shigematsu and H. Onishi

Architecture towards seismic engineering 517
M. Mezzi and A. Parducci

Study of the hybrid structures changed from the steel bridges for railroad which considered construction 525
Nozomu Taniguchi, Masanori Hansaka, Norio Koide, Kazuo Ohgaki, Fujikazu Okubo and Toshiyuki Saeki

Index of Authors xxxix
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Pg No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aba, Minoru</td>
<td>381</td>
</tr>
<tr>
<td>Abdul Rahim, Z.</td>
<td>349</td>
</tr>
<tr>
<td>Altin, P.-C.</td>
<td>13</td>
</tr>
<tr>
<td>Akiyoshi, Y.</td>
<td>187</td>
</tr>
<tr>
<td>Alexandersson, K.F.</td>
<td>27, 109</td>
</tr>
<tr>
<td>Alimchandani, C.R.</td>
<td>113</td>
</tr>
<tr>
<td>Amino, Takahiko</td>
<td>419</td>
</tr>
<tr>
<td>Aoki, Yusuke</td>
<td>197</td>
</tr>
<tr>
<td>Aoyama, S.</td>
<td>373</td>
</tr>
<tr>
<td>Azizian, A.R.</td>
<td>495</td>
</tr>
<tr>
<td>Balázs, G.L.</td>
<td>165</td>
</tr>
<tr>
<td>Ball, David M.J.</td>
<td>179</td>
</tr>
<tr>
<td>Baxi, Chirag K.</td>
<td>205</td>
</tr>
<tr>
<td>Beygi, H. R. H. A.</td>
<td>495</td>
</tr>
<tr>
<td>Beygi, M.H.A.</td>
<td>495</td>
</tr>
<tr>
<td>Bilek, Vlastimil</td>
<td>215</td>
</tr>
<tr>
<td>Billberg, P.H.</td>
<td>29</td>
</tr>
<tr>
<td>Bilodeau, Alain</td>
<td>111</td>
</tr>
<tr>
<td>Boel, V.</td>
<td>231</td>
</tr>
<tr>
<td>Chandra, Jimmy</td>
<td>221, 313</td>
</tr>
<tr>
<td>Chandramouli, K.</td>
<td>407, 413</td>
</tr>
<tr>
<td>Chhabra, Yogesh</td>
<td>37</td>
</tr>
<tr>
<td>Chindaprasirt, P.</td>
<td>269</td>
</tr>
<tr>
<td>Clary, D.C.</td>
<td>27</td>
</tr>
<tr>
<td>Comodini, F.</td>
<td>467</td>
</tr>
<tr>
<td>Craeye, B.</td>
<td>231</td>
</tr>
<tr>
<td>De Schutter, G.</td>
<td>49, 231</td>
</tr>
<tr>
<td>De Weerdt, K.</td>
<td>73</td>
</tr>
<tr>
<td>Deb, S.K.</td>
<td>323</td>
</tr>
<tr>
<td>Demarthe, Daniel</td>
<td>113</td>
</tr>
<tr>
<td>Desnerck, P.</td>
<td>231</td>
</tr>
<tr>
<td>Diamond, Sidney</td>
<td>83</td>
</tr>
<tr>
<td>Dutta, A.</td>
<td>323</td>
</tr>
<tr>
<td>Edouard, J-B</td>
<td>355</td>
</tr>
<tr>
<td>El-Kateb, Mahmoud</td>
<td>241</td>
</tr>
<tr>
<td>Feng Qiuling</td>
<td>389</td>
</tr>
<tr>
<td>Fennis, S.A.A.M.</td>
<td>55</td>
</tr>
<tr>
<td>Furuya, Daisuke</td>
<td>131</td>
</tr>
<tr>
<td>Gudmundsson, J.G.</td>
<td>65, 109</td>
</tr>
<tr>
<td>Habashi, Mehd Sadeghi e</td>
<td>503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Pg No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habuchi, Takashi</td>
<td>419</td>
</tr>
<tr>
<td>Hansaka, Masanori</td>
<td>525</td>
</tr>
<tr>
<td>Harik, I.</td>
<td>477</td>
</tr>
<tr>
<td>Hasegawa, Y.</td>
<td>373</td>
</tr>
<tr>
<td>Hayashi, Kazuhiko</td>
<td>129</td>
</tr>
<tr>
<td>Higazy, El Mostafa</td>
<td>241</td>
</tr>
<tr>
<td>Hoenderkamp, J.C.D.</td>
<td>249</td>
</tr>
<tr>
<td>Hosoda, Akira</td>
<td>129</td>
</tr>
<tr>
<td>Ikeda, Shoji</td>
<td>129</td>
</tr>
<tr>
<td>Ito, N.</td>
<td>187</td>
</tr>
<tr>
<td>Jiang, H.Y.</td>
<td>259</td>
</tr>
<tr>
<td>Jönsson, G.</td>
<td>65</td>
</tr>
<tr>
<td>Jönsson, H.</td>
<td>65, 69</td>
</tr>
<tr>
<td>Justnes, H.</td>
<td>73</td>
</tr>
<tr>
<td>Kamhangrittirong, P.</td>
<td>269</td>
</tr>
<tr>
<td>Kar, Nilotpol</td>
<td>389</td>
</tr>
<tr>
<td>Kawazoe, Y.</td>
<td>365</td>
</tr>
<tr>
<td>Khamhou, Saphouvong</td>
<td>425</td>
</tr>
<tr>
<td>Khayat, K.</td>
<td>65</td>
</tr>
<tr>
<td>Kim, Jin Choon</td>
<td>111</td>
</tr>
<tr>
<td>Kim, Kwang-Soo</td>
<td>111</td>
</tr>
<tr>
<td>Kjellsen, Knut O.</td>
<td>83</td>
</tr>
<tr>
<td>Koide, Norio</td>
<td>525</td>
</tr>
<tr>
<td>Kondraivendhan, B.</td>
<td>277, 293</td>
</tr>
<tr>
<td>Korjakins, A.</td>
<td>397</td>
</tr>
<tr>
<td>Kristjansson, T. I.</td>
<td>91, 109</td>
</tr>
<tr>
<td>Kubota, K.</td>
<td>287</td>
</tr>
<tr>
<td>Lim, Darren T.Y.</td>
<td>293, 303, 441</td>
</tr>
<tr>
<td>Liu, Yu</td>
<td>221, 313</td>
</tr>
<tr>
<td>Macharia, M.M.</td>
<td>509</td>
</tr>
<tr>
<td>Malhotra, V. Mohan</td>
<td>111</td>
</tr>
<tr>
<td>Marinacchi, F.</td>
<td>467</td>
</tr>
<tr>
<td>Marthong, C.</td>
<td>323</td>
</tr>
<tr>
<td>Mishima, T.</td>
<td>259</td>
</tr>
<tr>
<td>Martius-Hammer, T.A.</td>
<td>95</td>
</tr>
<tr>
<td>Maruyama, K.</td>
<td>185</td>
</tr>
<tr>
<td>Masuma, Y.</td>
<td>373</td>
</tr>
<tr>
<td>Mezzi, M.</td>
<td>467, 517</td>
</tr>
<tr>
<td>Miura, M.</td>
<td>287</td>
</tr>
<tr>
<td>Miyazato, Shinichi</td>
<td>333, 419, 433</td>
</tr>
</tbody>
</table>
INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Pg No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mola, E.</td>
<td>451</td>
</tr>
<tr>
<td>Mola, F.</td>
<td>451</td>
</tr>
<tr>
<td>Moradi, R.</td>
<td>495</td>
</tr>
<tr>
<td>Morton, Richard</td>
<td>69</td>
</tr>
<tr>
<td>Mueller, Florian V.</td>
<td>97</td>
</tr>
<tr>
<td>Muratani, Kenyu</td>
<td>333</td>
</tr>
<tr>
<td>N.V. Ramana Rao, N.V.</td>
<td>349</td>
</tr>
<tr>
<td>Natsuka, I.</td>
<td>373</td>
</tr>
<tr>
<td>Ohgaki, Kazuo</td>
<td>525</td>
</tr>
<tr>
<td>Okada, H.</td>
<td>187</td>
</tr>
<tr>
<td>Okubo, Fujikazu</td>
<td>525</td>
</tr>
<tr>
<td>Onishi, H.</td>
<td>509</td>
</tr>
<tr>
<td>Oshiro, A.</td>
<td>259</td>
</tr>
<tr>
<td>Østnor, T.</td>
<td>73</td>
</tr>
<tr>
<td>Ota, Akihiro</td>
<td>381</td>
</tr>
<tr>
<td>Otani, T</td>
<td>187, 259</td>
</tr>
<tr>
<td>Otsuki, Nobuaki</td>
<td>131, 287, 425</td>
</tr>
<tr>
<td>Oyamoto, Toshinori</td>
<td>333</td>
</tr>
<tr>
<td>Pakrastinsh, L.</td>
<td>397</td>
</tr>
<tr>
<td>Pannirselvam, N.</td>
<td>413</td>
</tr>
<tr>
<td>Parducci, A.</td>
<td>517</td>
</tr>
<tr>
<td>Peiris, A.</td>
<td>477</td>
</tr>
<tr>
<td>Pellegrini, L.M.</td>
<td>451</td>
</tr>
<tr>
<td>Peskova, S.</td>
<td>339</td>
</tr>
<tr>
<td>Prochazka, Petr</td>
<td>149, 339</td>
</tr>
<tr>
<td>Rajpathak, S.S.</td>
<td>355</td>
</tr>
<tr>
<td>Ranjbar, N.</td>
<td>495</td>
</tr>
<tr>
<td>Reddy, D.V.</td>
<td>355</td>
</tr>
<tr>
<td>Sabet Divsholi, B.</td>
<td>277, 293, 303, 441</td>
</tr>
<tr>
<td>Saeki, Toshiyuki</td>
<td>525</td>
</tr>
<tr>
<td>Saito, Tsuyoshi</td>
<td>131, 287, 425</td>
</tr>
<tr>
<td>Sakoi, Yuki</td>
<td>381</td>
</tr>
<tr>
<td>Sakurada, R.</td>
<td>365</td>
</tr>
<tr>
<td>Sarika, P.</td>
<td>407, 413</td>
</tr>
<tr>
<td>Sarkisian, Mark</td>
<td>485</td>
</tr>
<tr>
<td>Sato, R.</td>
<td>509</td>
</tr>
<tr>
<td>Sato, Takayasu</td>
<td>381</td>
</tr>
<tr>
<td>Sato, Y.</td>
<td>187, 259</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Pg No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sato, S.</td>
<td>373</td>
</tr>
<tr>
<td>Satoh, Kazuya</td>
<td>197</td>
</tr>
<tr>
<td>Seow Kiat Huat</td>
<td>389</td>
</tr>
<tr>
<td>Seshadri Sekhar, T.</td>
<td>349, 407, 413</td>
</tr>
<tr>
<td>Shah, S.P.</td>
<td>101</td>
</tr>
<tr>
<td>Shigematsu, A.</td>
<td>509</td>
</tr>
<tr>
<td>Shimano, Keiji</td>
<td>197</td>
</tr>
<tr>
<td>Shushkewich, Ken</td>
<td>113</td>
</tr>
<tr>
<td>Singh, A.K.</td>
<td>365</td>
</tr>
<tr>
<td>Sobhan, K.</td>
<td>355</td>
</tr>
<tr>
<td>Sprince, A.</td>
<td>397</td>
</tr>
<tr>
<td>Sravana, P.</td>
<td>407, 413</td>
</tr>
<tr>
<td>Srinivasa Rao, P.</td>
<td>349, 407, 413</td>
</tr>
<tr>
<td>Stanley, Christopher</td>
<td>139</td>
</tr>
<tr>
<td>Suwanvitaya, P.</td>
<td>269</td>
</tr>
<tr>
<td>Tabata, Shingo</td>
<td>419</td>
</tr>
<tr>
<td>Tadokoro, Yutaka</td>
<td>131</td>
</tr>
<tr>
<td>Takeuchi, Suguru</td>
<td>333</td>
</tr>
<tr>
<td>Tanaka, Hidechika</td>
<td>419</td>
</tr>
<tr>
<td>Taniguchi, Nozomu</td>
<td>525</td>
</tr>
<tr>
<td>Teng, Susanto</td>
<td>221, 277, 293</td>
</tr>
<tr>
<td>Tsuburaya, Yuriko</td>
<td>425</td>
</tr>
<tr>
<td>Ueda, K.</td>
<td>187, 259</td>
</tr>
<tr>
<td>Valek, Martin</td>
<td>149</td>
</tr>
<tr>
<td>Van Itterbeeck, P.</td>
<td>231</td>
</tr>
<tr>
<td>Vikan, H.</td>
<td>73</td>
</tr>
<tr>
<td>Wallevik, J.E.</td>
<td>103</td>
</tr>
<tr>
<td>Wallevik, O.H.</td>
<td>1, 65, 69, 91</td>
</tr>
<tr>
<td>Wallevik, S.O.</td>
<td>97, 109</td>
</tr>
<tr>
<td>Walraven, J.C.</td>
<td>55</td>
</tr>
<tr>
<td>Watanabe, Kohei</td>
<td>381</td>
</tr>
<tr>
<td>Watanabe, Masayuki</td>
<td>433</td>
</tr>
<tr>
<td>Xercavins, Pierre</td>
<td>113</td>
</tr>
<tr>
<td>Xu, Da</td>
<td>293, 303, 441</td>
</tr>
<tr>
<td>Yokoi, K.</td>
<td>373</td>
</tr>
<tr>
<td>Yokozeki, Kosuke</td>
<td>333</td>
</tr>
<tr>
<td>Zhang, Min-Hong</td>
<td>111</td>
</tr>
</tbody>
</table>

For Link, please click on page numbers
JCI-OWICS AWARD 2011

is awarded to the

outstanding & original paper on

"Analytical Study on High Strength Concrete Shear Walls"
(authors: Jimmy Chandra, Yu Liu and Susanto Teng)

presented by

Jimmy Chandra

at the

36th Conference on
Our World in Concrete & Structures
14 - 16 August, 2011, Singapore

PROFESSOR YOSHIHIRO MASUDA
PRESIDENT, JAPAN CONCRETE INSTITUTE
SHEAR ANALYSIS OF REINFORCED CONCRETE SLABS WITH EFFECTIVE MOMENT OF INERTIA

Yu Liu*, Jimmy Chandra* and Susanto Teng*

*School of Civil & Environmental Engineering
Nanyang Technological University
Blk N1, #50 Nanyang Avenue, Singapore 639798
e-mail: <cliuy@ntu.edu.sg> webpage: http://www.cee.ntu.edu.sg/

Keywords: Reinforced concrete slabs, Finite element analysis, Shear failure, Effective stiffness

Abstract. The effective moment of inertia concept has been used to evaluate the bending stiffnesses of reinforced concrete (RC) members in design codes. Later, it was combined with finite element (FE) methods to calculate the deflection responses of RC slabs. However, the failure of the slabs cannot be predicted by the effective moment of inertia based method. In this work, an empirical failure criterion for RC slabs under bending and shear was adopted and modified to consider the stiffness degradation of shell elements in FE analysis. In order to predict the shear failure of the slabs, a softening curve for the bending and shear stiffnesses was proposed. The model parameters in the failure criterion were calibrated according to published test results. The comparison between the numerical and the experimental results shows that the proposed method can predict the deflection response and the shear strength of the analyzed slabs with acceptable accuracy.

1 INTRODUCTION

The finite element (FE) analysis of reinforced concrete (RC) slabs is generally carried out by adopting either a layered element approach or an effective stiffness approach. The layered approach divides the plate or shell elements into several layers through the thickness, and each layer has its own independent material properties. The layered plate or shell elements can be used to easily consider the nonlinear properties of concrete and the presence of steel reinforcements. Hence, their application in the FE analysis of RC slabs has been popular. With the layered approach, one needs to call the constitutive model of concrete for each layer at each integration point of the elements. Hence, the analysis can be expensive and time consuming. Furthermore, the difficulties and complexities in modeling the concrete restrict the accuracy of the analysis results.

On the other hand, the effective stiffness approach adopts an empirical effective bending stiffness of the element cross section to replace the iteration through the thickness for summing up the contributions of each layer. This approach can provide reasonable estimates of slab deflections in the early stage of loading. The computational cost is also much lower as compared with the layered method. However, the failure of the slabs cannot be predicted by using this method.

In this work, efforts have been made to predict the shear failure of reinforced concrete (RC) slabs through FE analysis using the effective stiffness approach. In the next section, the used

*a Nanyang Technological University, Singapore
finite element is described. Then, in Section 3, the material matrix based on the effective moment of inertia concept is derived. In order to predict the shear failure of the slabs, a softening curve for the bending and shear stiffnesses is also proposed based on an empirical failure criterion for RC slabs under bending and shear. Some numerical examples are worked out and compared with the experimental results in Section 4 and the paper is summarized in Section 5.

2 FINE ELEMENT FORMULA

In this work, a 9-node heterosim shell element \(^7\) is adopted. It had been modified to be a non-layered form\(^8\). In the non-layered shell element, the general strain vectors comprises of 8 components, i.e.,

\[
\varepsilon = \begin{bmatrix}
\varepsilon_{0x} & \varepsilon_{0y} & \gamma_{0xy} & \gamma_{ox} & \gamma_{oy} & \varphi_x & \varphi_y & \varphi_{xy}
\end{bmatrix}^T
\]

(1)

where \(\varepsilon_{0x}, \varepsilon_{0y}\) and \(\gamma_{0xy}\) are the in-plane strains at mid-plane \((z = 0)\); \(\gamma_{ox}\) and \(\gamma_{oy}\) are the transverse shear strains; \(\varphi_x, \varphi_y\) and \(\varphi_{xy}\) are the curvatures. The new 8×45 geometric matrix which maps the general nodal displacements into the general strains, \(B_n\), was derived to replace the original 5×45 geometric matrices, \(B\), for the layered element where the general strain vectors include only 5 components \((\varepsilon_{0x}, \varepsilon_{0y}, \gamma_{0xy}, \gamma_{ox} \text{ and } \gamma_{oy})\).

The first 5 rows of \(B_n\) are the same as those of matrix \(B\) at mid-layer \((z = 0)\). The last 3 rows of \(B_n\) are obtained from

\[
\begin{bmatrix}
\varphi_x \\
\varphi_y \\
\varphi_{xy}
\end{bmatrix} =
\begin{bmatrix}
\partial_x & 0 \\
0 & \partial_y \\
\partial_y & \partial_x
\end{bmatrix}
\begin{bmatrix}
\theta_x \\
\theta_y \\
\end{bmatrix}
= \sum_{i=1}^{s} \begin{bmatrix}
N_i^x & 0 \\
0 & N_i^y
\end{bmatrix}
\begin{bmatrix}
\theta_i^x \\
\theta_i^y
\end{bmatrix}
\]

(2)

where \(\theta_i^x\) and \(\theta_i^y\) \((i = 1 \cdots 9)\) are the nodal rotation angles; \(N_i^x\) and \(N_i^y\) \((i = 1 \cdots 9)\) are the partial derivatives of the shape functions \(N_i\) with respect to \(x\) and \(y\), respectively. With material matrix, \(D\), and the geometric matrix, \(B_n\), the element stiffness matrix can be obtained by numerical integration as

\[
K_e = \int_{\Omega} B_n^T \cdot D \cdot B_n \cdot d\Omega.
\]

(3)

The selective integration scheme is adopted in Eq.(3) to avoid the locking problem. The material matrix \(D\) is discussed in the next section.

3 MATERIAL MATRIX

3.1 Material matrix before cracking

For an orthotropic elastic plane stress problem, the stress-strain relationship is

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = \frac{1}{1-\nu_x \nu_y}
\begin{bmatrix}
E_x & \nu_x E_y & 0 \\
\nu_x E_y & E_y & 0 \\
0 & 0 & (1 - \nu_x \nu_y) G_{xy}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
\]

(4)

where \(E_x, \nu_x, \text{ and } E_y, \nu_y\) are the moduli and Poisson's ratios in \(x\) and \(y\) directions, respectively; \(G_{xy}\) is the shear modulus in \(x-y\) plane. In the shell element, the in-plane strains can be calculated from the curvatures and the mid-plane strains as

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} = \begin{bmatrix}
\varepsilon_{0x} \\
\varepsilon_{0y} \\
\gamma_{0xy}
\end{bmatrix} + \begin{bmatrix}
\varphi_x \\
\varphi_y \\
\varphi_{xy}
\end{bmatrix} z.
\]

(5)
The in-plain forces are thus calculated as

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} = \int_{-t/2}^{t/2} \begin{bmatrix} E_x & v_x E_x & 0 \\ v_x E_y & E_y & 0 \\ (1 - v_x v_y)G_{xy} \end{bmatrix} \begin{bmatrix} \varepsilon_{0x} \\ \varepsilon_{0y} \\ \gamma_{0xy} \end{bmatrix} dz$$ \hspace{1cm} (6)

where t is the thickness. The moments are obtained as

$$\begin{bmatrix} M_x \\ M_y \\ M_{xy} \end{bmatrix} = \int_{-t/2}^{t/2} \begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} zdz = \frac{t^3}{12} \begin{bmatrix} E_x & v_x E_x & 0 \\ v_x E_y & E_y & 0 \\ (1 - v_x v_y)G_{xy} \end{bmatrix} \begin{bmatrix} \phi_x \\ \phi_y \\ \phi_{xy} \end{bmatrix}.$$ \hspace{1cm} (7)

The transverse shear forces-strain relationship is

$$\begin{bmatrix} Q_x \\ Q_y \end{bmatrix} = \int_{-t/2}^{t/2} \begin{bmatrix} t G_{xx} \\ 0 \end{bmatrix} dz = t \begin{bmatrix} G_{xx} & 0 \\ 0 & G_{yz} \end{bmatrix} \begin{bmatrix} \gamma_{xx} \\ \gamma_{yz} \end{bmatrix}.$$ \hspace{1cm} (8)

From Eqs.(6)-(8), the material matrix D is obtained as

$$\begin{bmatrix} N_x \\ N_y \\ N_{xy} \\ Q_x \\ Q_y \\ M_x \\ M_y \\ M_{xy} \end{bmatrix} = \begin{bmatrix} \frac{t E_x}{1-v_x v_y} & \frac{t v_y E_x}{1-v_x v_y} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{t v_x E_y}{1-v_x v_y} & \frac{t E_y}{1-v_x v_y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & t G_{xy} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t G_{xx} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & t G_{xz} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{E_x t^3}{12} & \frac{v_x E_x t^3}{12} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{E_y t^3}{12} & \frac{E_y t^3}{12} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{3 G_{xy}}{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{0x} \\ \varepsilon_{0y} \\ \gamma_{0xy} \\ \gamma_{xx} \\ \gamma_{yz} \\ \phi_x \\ \phi_y \\ \phi_{xy} \end{bmatrix}.$$ \hspace{1cm} (9)

Before cracking, the shell elements behave linearly, and

$$E_x = E_y = E_c, \quad v_x = v_y = v_c, \quad G_{xy} = G_{xx} = G_{yz} = G_c = \frac{E_c}{2(1+v_c)}.$$ \hspace{1cm} (10)

where E_c and v_c are the modulus and the Poisson’s ratio of the concrete, respectively.

3.2 Stiffness reduction factors

After cracking, the stiffnesses of the shell element, in Eq.(9), will degrade. Polak and Vecchio & Tata defined the stiffness reduction factors α_x and α_y to consider the concrete cracking induced stiffness degradation in the x- and y- directions, respectively. The stiffness reduction factors α_x and α_y were defined based on the concept of effective moment of inertia, which is calculated as

$$I_e = \left(\frac{M_{cr}}{M^e} \right)^a I_g + \left[1 - \left(\frac{M_{cr}}{M^e} \right)^a \right] I_{cr}.$$ \hspace{1cm} (11)

where $M_{cr} = \frac{f_t}{\gamma_t}$ is the cracking moment; $f_t = 0.6 \sqrt{f_c}$ is the modulus of rupture of the concrete; γ_t is the distance from neutral axis to the tension face of the uncracked section; I_g is the gross moment of inertia; I_{cr} is the moment of inertia of the fully cracked cross section; M^e is the elastic bending moment; and $a = 3$.

Given the details of the element’s cross sections in x- and y- directions and the current general strain vector, the effective moment of inertias in x- and y- directions, I_x and I_y, can be calculated. To account for the torsional moment, M_{xy}, in the shell elements, the elastic bending moment, M^e, in Eq.(11), was suggested to be replaced by a generalized moment, \tilde{M}^e, as

$$\tilde{M}^e = |M^e_x| + |M^e_y|, \quad \tilde{M}^e = |M^e_x| + |M^e_{xy}|.$$ \hspace{1cm} (12)
where the elastic moments M_{E}^{x}, M_{F}^{y} and M_{xy}^{x} are calculated from Eq.(9) when Eq.(10) is used. The stiffness reduction factors α_x and α_y were thus defined as,

$$\alpha_x = l_{xx}/l_{gy}, \quad \alpha_y = l_{xy}/l_{gy} \quad (13)$$

Finally, the concrete cracking induced stiffness degradation of the shell elements is taken into account by α_x and α_y, and Eq.(10) is updated as

$$E_x = \alpha_x E_c, \quad E_y = \alpha_y E_c, \quad v_x = \alpha_x v_c, \quad v_y = \alpha_y v_c$$

$$G_{xy} = \alpha_x \alpha_y G_c, \quad G_{xz} = \alpha_x G_c, \quad G_{yz} = \alpha_y G_c \quad (14)$$

It has been shown that with Eq.(14), the reasonably good estimates to the deflection of RC slabs under service load level can be achieved.

3.3 Modified stiffness reduction factors

To predict the failure of the analyzed slabs, we need to account for the further degradation of the stiffnesses due to steel yielding and shear failure of the concrete. In this work, an empirical failure criterion for RC slabs subjected to shear and bending by Yamada et al. is used, i.e.,

$$\left(\frac{M}{M_n} \right)^2 + \left(\frac{V}{V_n} \right)^2 = 1 \quad (15)$$

where M_n and V_n are the bending moment capacity and the shear capacity of the considered slab, respectively. To measure the further stiffness degradation of the shell elements, a factor R is defined, similar to Eq.(15), as

$$R = \left(\frac{M}{M_n} \right)^2 + \left(\frac{Q}{Q_n} \right)^2 \quad (16)$$

where c_M and c_Q are model parameters which will be discussed in the next section. The bending moment capacity of the considered cross section can be calculated as

$$M_n = \rho d f_y d \quad (17)$$

where ρ is the tension steel reinforcement ratio; d is the effective depth of slab; f_y is the yielding strength of the tension steel; and d_f is the distance from the tension steel to the resultant compressive force of the cross section. The shear capacity is calculated using the empirical formula, i.e.,

$$Q_n = 59 \tau \left[f_y^x (\rho + \rho') d_f \right]^{1/3} + \rho_w f_y \quad (18)$$

where ρ' is the compression steel reinforcement ratio; f_y^x is the compressive strength of concrete in psi; ρ_w is the shear steel reinforcement ratio; and f_y is the yielding strength of the shear steel.

During FE analysis, the factors used to measure the further stiffness degradation in x- and y-directions, R_x and R_y, can be calculated according to Eqs.(16)-(18). The modified stiffness reduction factors are then defined as

$$\alpha_x' = \alpha_x/(1 + R_x), \quad \alpha_y' = \alpha_y/(1 + R_y) \quad (19)$$

In this work, the stiffness reduction factors α_x and α_y in Eq.(14) are replaced by the modified factors α_x' and α_y' in Eq.(19). The softening caused by steel yielding and shear failure of the concrete is thus taken into account.

4 NUMERICAL EXAMPLES

The material matrix discussed above has been implemented as a user defined material in the finite element analysis program FEAP. The secant stiffness scheme is adopted in the computation. The model parameters c_M and c_Q in Eq.(16) are chosen as 3.3 and 1.6 by trial and error method. Three series of slabs are analyzed and the obtained results are compared with the test results. The first and the second serieses include four slabs tested at Talbot laboratory, University of Illinois by Elstner and Hognessad. The third series includes five slabs tested at research and development laboratory of Portland Cement Association also by Elstner and Hognessad.
4.1 Slabs supported on four edges with corners free to lift (Series II)12

The series II of the experiment involved 3 panels of 152.4mm thick slabs loaded monolithically through 356mm column stubs. The slabs were simply supported at four edges with the corners free to lift. The slab details are shown in Table 1.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Dimensions (mm)</th>
<th>Depth (mm)</th>
<th>Concrete (f'_c) (MPa)</th>
<th>Concrete (E_c) (MPa)</th>
<th>Reinforcement (f_y) (MPa)</th>
<th>(\rho %)</th>
<th>(\rho %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4</td>
<td>1828.8 × 1828.8 × 152.4</td>
<td>117.6</td>
<td>26.2</td>
<td>24449</td>
<td>332.7</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>A-5</td>
<td>1828.8 × 1828.8 × 152.4</td>
<td>114.3</td>
<td>27.8</td>
<td>25212</td>
<td>321.7</td>
<td>1.2</td>
<td>2.5</td>
</tr>
<tr>
<td>A-6</td>
<td>1828.8 × 1828.8 × 152.4</td>
<td>114.3</td>
<td>25.1</td>
<td>23947</td>
<td>321.7</td>
<td>1.2</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Table 1: Details of slabs in series II

![Computational modelling of slabs](image)

Figure 1: Computational modelling of slabs

A quarter of slab is modelled using 121 nodes and 25 elements as shown in Figure 1. The loadings were applied equally at nodes 1, 2, 12 and 13 (position of column stub). Since only a quarter of slab is modelled, the rotation angle \(\theta_x \), and the displacement \(v \) of the boundary nodes on line \(y = 0 \) are zeros, because of symmetry. The rotation angle \(\theta_x \), and the displacement \(u \) of the boundary nodes on line \(x = 0 \) are also zeros. The obtained results of load versus central deflection curves are plotted in Figure 2 together with the test results. The typical deflection distributions at the early stage and the near failure stage are shown in Figure 3. From Figure 3b, the deformation localization close to the column can be observed, which indicates that a punching shear failure has happened. The numerical results are generally agreeable with the experimental results.
4.2 Slabs supported at four corners (Series IV)12

The series IV involves one slab supported on four corners and loaded through a 254mm column stub. The details of the slab are shown in Table 2. Similarly, a quarter of the slab is modelled with 121 nodes and 25 elements and the symmetric boundary conditions are applied to the nodes on lines \(x = 0\) and \(y = 0\). The obtained load versus central deflection curve are plotted and compared with the test result in Figure 4. The predicted strength conforms to the experimental result while the predicted central deflection is larger than the experimental observation.
Table 2 Details of slab A7a in series IV

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Dimensions (mm)</th>
<th>Depth (mm)</th>
<th>Concrete</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7a</td>
<td>1828.8 x 1828.8 x 152.4</td>
<td>114.3</td>
<td>28.5</td>
<td>25293</td>
</tr>
</tbody>
</table>

Figure 4: Load-central deflection curves for slab in series IV

4.3 Slabs supported on four edges with corners free to lift (Series VIII)\(^{12}\)

In this work, 5 slabs in series VIII are also selected to analysis. They are loaded through 254mm column stubs, and simply supported at four edges with the corners free to lift. There is no compression steel and the tension steel reinforcement ratios range from 0.5% to 3.0%. For the slab DEH B12, two rows of vertical stirrup with cross sectional area of 1419mm\(^2\) were used, and the shear reinforcement ratio is about 0.57%. The slab details are shown in Table 3. Again, a quarter of the slab is modelled with 121 nodes and 25 elements and the symmetric boundary conditions are applied at lines \(x = 0\) and \(y = 0\). The obtained load versus central deflection curves are compared with the test results in Figure 5.

Table 3 Details of slabs in series VIII

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Dimensions (mm)</th>
<th>Depth (mm)</th>
<th>Concrete</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEH B02</td>
<td>1828.8 x 1828.8 x 152.6</td>
<td>114.3</td>
<td>47.6</td>
<td>32978</td>
</tr>
<tr>
<td>DEH B04</td>
<td>1828.8 x 1828.8 x 152.6</td>
<td>114.3</td>
<td>47.7</td>
<td>33013</td>
</tr>
<tr>
<td>DEH B09</td>
<td>1828.8 x 1828.8 x 152.6</td>
<td>114.3</td>
<td>43.9</td>
<td>31670</td>
</tr>
<tr>
<td>DEH B14</td>
<td>1828.8 x 1828.8 x 152.6</td>
<td>114.3</td>
<td>50.5</td>
<td>33968</td>
</tr>
<tr>
<td>DEH B12</td>
<td>1828.8 x 1828.8 x 152.6</td>
<td>114.3</td>
<td>45.9</td>
<td>32384</td>
</tr>
</tbody>
</table>
In experiment, slabs B09, B12 and B14 are observed to fail by punching shear. The predicted strengths and central deflections generally agree with the test results. For slabs B02 and B04, the numerical results still suggest a shear failure; however, they are actually failed by flexure in the experiment. It shows that, the proposed method maybe only applicable for the slabs subjected to shear failure

5 CONCLUSIONS

In this work, efforts have been made to predict the failure of RC slabs using the FE analysis based on the effective stiffness approach. The non-layered form of the 9-node heterosis shell element is used and the degradation of material matrix due to concrete cracking is reflected by the stiffness reduction factors. In order to predict the failure of the slabs, a softening curve for the bending and shear stiffnesses was proposed based on an empirical failure criterion for RC slabs under bending and shear. The stiffness reduction factors defined by Polak are modified accordingly to consider the further degradation of the stiffnesses due to steel yielding and shear failure of the concrete. The model parameters C_M and C_0 in the softening curve are set to be 3.3 and 1.6, respectively, by trial and error method. Three series of RC slabs were analysed using the proposed method. The computed deflection responses and shear strengths are agreeable with the test results for the slabs subjected to shear failure. Further work is needed to predict the deflection and the strength of slabs subjected to flexure.

REFERENCES