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Abstract: A tapered beam is a beam that has a linearly varying cross section. This paper 
presents an analytical derivation of the solutions to bending of a symmetric tapered cantilever 
Timoshenko beam subjected to a bending moment and a concentrated force at the free end and a 
uniformly-distributed load along the beam. The governing differential equations of the 
Timoshenko beam of a variable cross section are firstly derived from the principle of minimum 
potential energy. The differential equations are then solved to obtain the exact deflections and 
rotations along the beam. Formulas for computing the beam deflections and rotations at the free 
end are presented. Examples of application are given for the cases of a relatively slender beam 
and a deep beam. The present solutions can be useful for practical applications as well as for 
evaluating the accuracy of a numerical method 
 
Keywords: Timoshenko beam; tapered beam; the principle of minimum potential energy; 
slender beam; deep beam. 
  

 
 

Introduction   
 

A tapered beam is a beam with a linearly varying 

cross section and hence has a straight center-line. It 

is within the larger class of non-prismatic beams, i.e. 

“a beam with curvilinear center-line and non-

constant cross-section” [1]. It is commonly used in 

various engineering structures such as buildings and 

bridges to achieve more optimal use of the material 

and to satisfy architectural or esthetical needs. There 

are several approaches for modeling non-prismatic 

beams for structural analysis and design, that is [1, 

2]:  

 Using a modified prismatic beam model, i.e., 

Euler-Bernoulli or Timoshenko beam model with 

varying cross-sectional area and moment of 

inertia, 

 Using a generalized non-prismatic beam theory 

such as that recently developed by Balduzzi et al. 

[1] and Auricchio et al. [2],  

 Using 2D or 3D finite elements.  

 

This paper deals with the first approach, in parti-

cular, the Timoshenko beam model.   
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Several studies have been carried out to obtain 

analytical solutions of non-prismatic beams based on 

a modified Euler-Bernoulli or Timoshenko beam 

model. For example, Fertis and Keene [3] presented 

an elastic and inelastic bending analysis of non-

prismatic beams using the so-called method of the 

equivalent prismatic system. The advantage of this 

approach is that the exact solution of a non-prismatic 

Euler Bernoulli beam model can be obtained with 

reduced mathematical complexity. Romano and 

Zingore [4] obtained analytical solutions of non-

prismatic Euler-Bernoulli beams with a linearly and 

quadratically varying depth or with a linearly vary-

ing width of the rectangular cross section. The 

solutions were obtained by solving the fourth-order 

linear differential equation with variable coefficients 

that govern the beam bending. Romaro [5] then 

extended his previous study [4] to obtain analytical 

solutions of the same non-prismatic beams based on 

a modified Timoshenko beam model including the 

effects of tapering slope on shear stress distribution 

on the cross sections. The solutions were achieved by 

transforming the forth-order differential equation 

with variable coefficients into that with constant 

coefficients. Al-Gahtani and Khan [6] presented an 

exact analysis of non-prismatic Euler-Bernoulli 

beam model with end elastic supports. The boundary 

integral method was used in their study.   

 

This paper presents the derivation of analytical 

solutions of the Timoshenko beam model of a 

symmetric tapered cantilever beam subjected to a 

bending moment and a concentrated force at the free 

end, and a uniformly-distributed load (Figure 1). The 

term „symmetric‟ here means that the longitudinal 

tapered beam geometry has an axis of symmetry, 

mailto:wftjong@petra.ac.id


Wong, F.T. et al. / On the Derivation of Exact Solutions / CED, Vol. 21, No. 2, September 2019, pp. 89–96 

 90 

that is, the line passing through the cross section 

centroids. The effects of the tapering slope on the 

shear stress distribution along the beam is neglected. 

Thus, the model used is simpler than that considered 

in Romano [5] but is finer than the Euler-Bernoulli 

beam model [4].  
 

 
Figure 1. Tapered beam model 

 

In the derivation, the differential equations govern-

ing bending of the beam is firstly derived from the 

total potential energy. The resulting differential 

equations are then analytically solved to obtain the 

exact solutions. For the sake of comparison and 

completeness, the solutions for the case of prismatic 

beams are also derived. Lastly, the solutions are 

applied to determine the deflections of a slender 

beam and a deep tapered beam with different 

tapering angles. In this example, the numerical 

solutions are compared to those obtained using the 

analytical solutions of Romano [5] and the finite 

element analysis of the plane stress model.  

 

It is worth mentioning here that the use of the Timo-

shenko beam model to non-prismatic beams, in 

general, introduces a modeling error, which is pro-

portional to the rate of cross section height variation 

[1,2]. However, due to its simplicity, it is still worthy 

of using this model in engineering practice to 

analyzed a symmetric tapered beam with a small 

tapering angle (i.e., a small rate of change in the 

height variation) [6,7]. For non-symmetric tapered 

beams, however, the modeling error may not be 

negligible even for a small tapering angle as can be 

seen in an example presented in Mercuri et al. [8]. 

The reason for this error is that the Timoshenko 

beam model neglects the coupling between bending 

and axial deformations occurred in non-symmetric 

tapered beams.   

 

Governing Equations of the Tapered 

Beam Model 
 

The beam under consideration is a tapered canti-

lever beam of the length L, as illustrated in Figure 1. 

The cross section is rectangular with the constant 

width b, and the height varies linearly from h(0) = h0 

at the left end to h(L) = hL = αh0 at the right end, 

where α ≥ 1 (if α = 1 then the beam is prismatic). The 

beam is made from a homogeneous, isotropic mate-

rial with the modulus of elasticity E, Poisson‟s ration 

ν, and modulus of shear G = E / (2(1+ν)). It is 

subjected to a bending moment M0 and a concen-

trated load P0 at the left end, and a uniform trans-

versal load q (force/length) along the beam.  

 

A right-handed Cartesian coordinate system x-y-z is 

set up with the point of origin O at the left end, as 

shown in Figure 1. According to the Timoshenko 

beam theory [9: p. 399], the displacement of a 

material point at coordinate (x, y, z) of the beam is; 
 (     )     ( ) 

 (     )   ( )   (1) 

where u(x, y, z) and w(x, y, z) are the displacement 

components of the material point in the x and z 

directions, respectively, w(x) and θ(x) are the 

deflection (z-direction displacement) and rotation of 

the cross section at station x. The positive direction 

for θ(x) is the rotation from the x-axis to the z-axis 

(clockwise rotation).  

 

A functional that governs the deformation of the 

beam is  

 ,   -      (2a) 

  
 

 
∫       

   
 

 
 
 

 
∫    (     )

    
 

 
 (2b) 

      ( )     ( )  ∫      
 

 
 (2c) 

where Π[w, θ] is the total potential energy of the 

beam, U is the elastic strain energy stored in the 

deformed beam, W is the potential work of the 

applied loads, I is the moment of inertia of the cross 

section about the y axis, and As is the effective shear 

area, i.e.  

      (3a) 

 

Commas followed by subscripts x indicate differen-

tiation to x. In Equation (3a), A is the area of the 

cross section, and k is the shear coefficient. This 

coefficient is a correction factor needed to account for 

the difference between the assumed constant shear 

stress in the Timoshenko beam theory and the ac-

tual shear stress distribution. Cowper [10] presented 

a shear coefficient formula based on a derivation 

from the three-dimensional theory of elasticity, that 

is,  

  
  (   )

      
 (3b) 

for a rectangular cross section.  

 

The deflection and rotation fields in the total poten-

tial energy, Equation (2), are required to be 

sufficiently regular and satisfy the essential boun-

dary conditions. These requirements are written as 

follows: 

      *      (   )  ( )   + (4a) 

In this expression, S is the space of admissible 

solutions, H1(0, L) is the Hilbert function space (also 

 

     

      

     

   

  

  

  

Sect. A-A 
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called the first Sobolev space) [11,12], which is 

defined as 

  (   )  *  ∫ (        
 )  

 

 
  + (4b) 

 
The principle of stationary potential energy [9: pp. 
110-116, 13: pp. 137-140] for the beam can be written 
as 

                 *        ( )   + (5) 

where δ is the variational operator,   stands for „for 
all‟, and V is the space of admissible displacement 
variations. Applying this principle to Equations (2)  
and (5) gives;  

∫             
 

 

 ∫ (       )   (     )  
 

 

 

    ( )     ( )   ∫         
 

 
  

             (6) 
 
Interpreting δw and δθ as the virtual deflection and 
virtual rotation, respectively, Equation (6) is recog-
nized as of the principle of virtual displacement for 
the beam model.  
 
Using integration by parts to the first and second 
terms of Equation (6), respectively, and using the 
requirements δw(L) = δθ(L) = 0, these terms can be 
expressed as  

∫             
 

 
  ∫   (     )    

 

 
 

  ( )(     )-     (7a) 

∫ (       )   (     )  
 

 

 

  ∫   (   (     ))    
 

 

 

    ( )(   (     ))]    
 

 ∫       (     )  
 

 
      (7b) 

 

Now, substituting these expressions into Equation 
(6) and arranging the resulting terms yields  

 ∫   ,(     )      (     )-  
 

 

 

 ∫   [(   (     ))    ]  
 

 

 

    ( ) *(     )-    
   + 

   ( )[(   (     ))]       ]    (8) 

 
Since the variations, δw and δθ, are completely 
arbitrary, except at x=L they must be zero, from 
Equation (8) one can extract a set of governing 
differential equations and boundary conditions as 
follows: 

(      )      (     )               (9a) 

(   (     ))                  (9b) 

(     )-        ;  (   (     ))]         (9c) 

 ( )    ;   ( )    (9d) 

 

Equation (9c) are the natural boundary conditions 
while Equation (9d) are the essential boundary 
conditions.  
 

Note that the sign convention for the bending 
moment that consistent with the above derivation is 
positive when the upper longitudinal fibers are in 

tension (in contrast to the commonly used sign 
convention). For the shear force, it is positive when 
its direction is downward (follows the direction of the 
positive z axis) on the cross section with the normal 

vector pointing to the positive x axis.  
 

Analytical Solutions of the Beam Govern-
ing Equations 
 

The varying height, area, and moment of inertia of 
the beam cross sections can be expressed as follows:  

 ( )    (    ) ,    
   

 
 (10a) 

  ( )     (    ) ,           (10b) 

 ( )    (    )
  ,     

   
 

  
 (10c) 

 
Integrating Equation (9b) and imposing the shear 

force boundary condition, i.e., the second equation of 
Equation (9c), yield the shear force field 

 ( )     (     )         (11) 

 
Subsequently, substituting the shear force, Equation 
(11), into Equation (9a), integrating and imposing 

the moment boundary condition, i.e., the first equa-
tion of Equation (9c), yield the bending moment field 

 ( )         
 

 
           (12) 

 
These results, Equations (11) and (12), can be easily 
confirmed by using a simple static principle since the 

beam is statically determinate.  
 
Now, substituting the varying moment of inertia, 

Equation (10c), into Equation (12) and dividing the 
result by EI0 give  

    
 

    

  

(    ) 
 

  

   

 

(    ) 
 
  

   

 

(    ) 
 (13) 

 
Integrating Equation (13) (using the partial fraction 
technique for the first and second terms) yields  

 ( )  
 

    
.
  (    )

  
 

     

   (    ) 
/  

  

   

     

   (    ) 
 

  

   

 

  (    ) 
    (14) 

 

where Cθ is an integration constant. Imposing the 

rotation boundary condition, i.e. the first equation of 
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Equation (9d), and substituting the resulting Cθ into 

Equation (14) yield the rotation field  

 ( )  
 

      
(   (

    

    
)  

     

(    ) 
 
     

(    ) 
) 

 
  

      
(
     

(    ) 
 
     

(    ) 
) 

 
  

     
.

 

(    ) 
 

 

(    ) 
/ (15) 

 

This solution is not applicable in the case of pris-

matic beams since a = 0 causes a division by zero. 

The solution for prismatic beams can be obtained by 

integrating Equation (13) with a = 0, the result of 

which is  

 ( )  
 

    
(     )  

  

    
(     )  

  

   
(   ) (16) 

 

Dividing Equation (11) by GAs, substituting As, 

Equation (10b), and placing θ(x) in the right hand 

side yield 

      
 

    

 

    
 

  

    

 

    
 (17) 

 

Substituting θ in Equation (17) by Equation (15) and 

integrating the equation (using the integration by 

parts for the first term of θ) give 

 ( )  
 

      

(

 
 

 (    )

 
  (

    

 (    )
)

 
 

 
  (    )  

 

 (    )
 
     

(    ) 
 
)

 
 

 

 
  

      
(
 

 
  (    )  

 

 (    )
 
     

(    ) 
 ) 

 
  
     

(
 

 (    )
 

 

(    ) 
 ) 

 
 

      
(     (    )) 

 
  

     
  (    )     (18) 

 

where e = 2.71828… is the Euler number and Cw is 

an integration constant. Imposing the deflection 

boundary condition, i.e. the second equation of 

Equation (9d), and substituting the resulting Cw into 

Equation (18), yield the deflection field  

 ( )     ( )     ( )     ( )     ( )  

   ( ) (19a) 

   ( )  
 

      
  

.
 (    )

 
  .

    

 (    )
/  

 (    )

 
 
 

 
  (

    

    
)  

 

 (    )
 

 

 (    )
 

     

(    ) 
(   )/ (19b) 

   ( )   
 

      
. (   )    .

    

    
// (19c) 

   ( )   
  

      
.
 

 
  (

    

    
)  

 

 (    )
 

 

 (    )
 

     

(    ) 
(   )/ (19d) 

   ( )   
  

     
  (

    

    
) (19e) 

   ( )  
  

     
.

 

 (    )
 

 

 (    )
 

 

(    ) 
(   )/ (19f) 

 

Here, wbq and wsq are the bending and shear con-
tributions to the deflection due to the distributed 

load q, respectively; wbP and wsP are the bending and 
shear contributions to the deflection due to the point 
load P0, respectively; and wbM is the deflection due to 
the moment M0.  

 
The deflection field for prismatic beams can be 
obtained by substituting θ in Equation (17) by 

Equation (16), integrating the equation with setting 
a = 0, and imposing the deflection boundary 
condition. The result is  

 ( )     ( )     ( )     ( )     ( )  

   ( ) (20a) 

   ( )  
 

    
.
 

 
       

 

 
  / ;     ( )  

 
 

     
(     ) (20b) 

   ( )  
  

    
.
 

 
       

 

 
  / ;     ( )  

 
  

    
(   ) (20c) 

   ( )  
  

   
.
 

 
      

 

 
  / (20d) 

 
The deflection and rotation at the free end can be 

obtained by substituting for x = 0 into Equation (19) 
and Equation (15) for the case of tapered beams and 
into Equation (20) and Equation (16) for the case of 

prismatic beams, respectively. The results are, after 
simplifying and substituting for α = 1+aL, presented 
in Tables 1-4. 

 
Table 1. Tip Deflections of the Tapered Cantilever Beam 

Subjected to M0, P0, and q 

Load 
Component 

Bending Shear 

M0    
 

     
  

N.A. 

P0   
      

(
 

 
    

    

  
 ) 

  
     

    

q  

      
(
     

  

 
      

 
 
    

  
 ) 

 

      
(      ) 

 
Table 2. Tip Rotations of the Tapered Cantilever Beam 

Subjected to M0, P0, and q 

Load Rotation 

M0 
 
   

   

   

   
 

P0 
 

   
 

     
  

q  

      
(       

    

  
) 
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Table 3. Tip Deflections of the Prismatic Cantilever Beam 
Subjected to M0, P0, and q 

Load 
Component 

Bending Shear 

M0    
 

    
 

N.A. 

P0    
 

    
 

   

    
 

q    

    
 

   

     
 

 

Table 4. Tip Rotations of the Prismatic Cantilever Beam 
Subjected to M0, P0, and q 

 Rotation 

M0 
 
   

   
 

P0 
 
   

 

    
 

q 
 
   

    
 

 
Remarks 
 

1. Since the deflection and rotation for the case of 
tapered beams should converge to those of pris-
matic beams when the coefficient a approaches 0, 
the results in Tables 3 and 4 can be obtained by 
taking the limit of the corresponding results in 
Tables 1 and 2 as the coefficient a approaches 0. 
This is obvious when the coefficient a = 0 in 
Tables 1 or 2 does not cause a division by zero. 
For the other results, however, one should per-
form a limit calculation. For example, according 
to Table 1, the shear deflection due to P0 is  

   ( )  
  

     
    

  

     
  (    ) (21) 

 Taking the limit as a approaches 0 and applying 
the l‟Hospital rule,  

   ( )        
  

     
  (    ) (22a) 

   ( )  
  

    
      

  (    )

 
 

  

    
      

 

    
 

   

    
 (22b) 

 This result is identical to the shear deflection of 

the prismatic beam due to P0 given in Table 3. 

The convergence of the tapered beam solutions 

towards prismatic beam solutions as the coeffi-

cient a approaches zero will also be demonstrated 

in the following numerical examples.  

2. Equation (15) and (16) and also Tables 2 and 4 

show that there is no contribution of the shear 

deformation to the cross section rotations. 

Therefore, the rotation formulas are the same as 

those given by the classical Euler-Bernoulli beam 

theory. For example, the prismatic beam dis-

placement table in Ghali and Neville [14] gives 

the same results for the free end rotation as those 

given in Table 4.  

3. The bending contribution to the tip deflections of 

prismatic beams due to M0, P0, and q (Table 3) 

are the same as the tip deflection given by the 

classical beam theory presented in Ghali and 

Neville [14].  

4. For a given constant h0, as the beam becomes 

very slender, i.e., as L→∞, the beam approaches 

the prismatic beam, i.e., a→0. From Table 3, it is 

evident that for very slender beam the deflection 

is dominated by the bending contribution and 

hence the deflections converge to the classical 

Euler-Bernoulli deflections. 

 

Examples of Application 
 

Consider symmetric cantilever beams of the slender-

ness ratios L/hL = 10 (a relatively slender beam) and 

L/hL = 2.5 (a deep beam). The lengths of the beams 

are L = 4 m and L = 1 m for the slender and deep 

ones, respectively. The height at the fixed end is hL = 

0.4 m; the width is b = 0.2 m. For the present para-

metric study, the end-thickness ratios α = hL/h0 are 

varied from 1 (prismatic beam), 1.5, 2, and 3. Figure 

2 illustrates the slender beam vs. the deep beam for 

α = 2. Table 5 summarizes the geometric parameters 

of the eight different cases considered. In this table, 

φ is the inclination angle of the top or bottom faces of 

the beam (tapering angle). The material properties 

are E = 20000 MPa and ν = 0.2, which are typical 

properties of normal concrete. The loads are taken as 

follows: M0 = 10 kN-m, P0 = 10 kN, and q = 10 kN/m 

for the slender beam and q = 40 kN/m for the deep 

beam (the total load is taken to be equal, that is, 40 

kN).  
 

 
Figure 2. Symmetrically Tapered Beams with the end-

Thickness Ratios α = 2 (scaled): (a) Slender Beam, (b) Deep 

Beam  

 
Table 5. Geometric Parameters used in the Case Study 

L 

(m) 

α 

 

hL 

(m) 

h0 

(m) 

a 

(/m) 

φ 

(deg) 

4 1 0.400 0.400 0 0.00 

4 1.5 0.400 0.267 0.125 0.95 

4 2 0.400 0.200 0.25 1.43 

4 3 0.400 0.133 0.5 1.91 

1 1 0.400 0.400 0 0.00 

1 1.5 0.400 0.267 0.5 3.80 

1 2 0.400 0.200 1 5.65 

1 3 0.400 0.133 2 7.47 

 

    

0.2 m 0.4 m 

    

0.2 m 0.4 m 
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Numerical Results 
 

Deflections of the slender beam and deep beam due 

to end moment M0 for different cases of end-height 

ratios α are presented in Figures 3 and 4, res-

pectively, due to end concentrated load P0 in Figures 

5 and 6, respectively, and due to distributed load q in 

Figures 7 and 8, respectively. It is seen that the 

deflections of the slender beam are, as expected, 

much larger than those of the deep beam. The tip 

deflections of the slender beam subjected to M0 are 

16 times larger, while those subjected to P0 and q 

(with equal total load) are about 56 to 60 times 

larger. As also expected, the thinner the cross-section 

at the free end (or the larger the end-thickness ratios 

α), the larger the deflections. For the beams 

subjected to M0, the tip deflections become twice 

larger when the free-end cross sections are twice 

thinner. While for the beams subjected to P0 and q, 

the tip deflections are about 1.6 and 1.4 times larger, 

respectively when the free-end cross sections are 

twice thinner.  
 

 

Figure 3. Deflection of the Beam of Length 4 m Subjected 

to M0 = 10 kN-m for Different Values of End Height Ratios 

α. Values in the Legend Indicate the Deflection at the Left 

End.  

 

 

Figure 4. Deflection of the Beam of Length 1m Subjected 

to M0 = 10 kN-m for Different Values of End Height Ratios 

α. Values in the Legend Indicate the Deflection at the Left 

End.  

 

Figure 5. Deflection of the Beam of Length 4 m Subjected 

to P0 for Different Values of end Height Ratios α. Values in 

the Legend Indicate the Deflection at the Left End.  

 

 

Figure 6. Deflection of the Beam of Length 1 m Subjected 

to P0 = 10 kN for Different Values of end Height Ratios α. 

Values in the Legend Indicate the Deflection at the Left 

End.  

 

 

Figure 7. Deflection of the Beam of Length 4 m Subjected 

to q = 10 kN/m for Different Values of end Height Ratios α. 

Values in the Legend Indicate the Deflection at the Left 

End.  
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Figure 8. Deflection of the Beam of Length 1 m Subjected 
to q = 40 kN/m for Different Values of End Height Ratios α. 
Values in the Legend Indicate the Deflection at the Left 
End.  

 
Contribution of Shear Deformation 
 

For the beams subjected to end moment M0, it is 

evident from Equations (19f) and (20d) and from 

Tables 1 and 3 that there is no contribution of shear 

deformation to the deflections. Contribution of shear 

deformation to the tip deflections for the beams 

subjected to concentrated load P0 and q is presented 

in Table 6. The contribution of shear deformation for 

the slender beams (L/hL = 10) is, as expected, 

practically insignificant. While for the deep beams 

(L/hL = 2.5), the contribution of shear deformation 

cannot be neglected. It is seen that the contribution 

of shear deformation multiplies about 14 to 15 times 

when the slenderness, L/hL, decreases four times 

(that is, from L/hL = 10 to L/hL = 2.5). This in 

agreement with the fact that the upper bound of the 

shear deformation contribution is proportional to the 

square of L/hL, which is 16 for this case.  
 
Table 6. Percentages of Shear Deformation Contribution to 
the Tip Deflections of Slender and Deep Beams Subjected 
to P0 and q 

α 
P0 q 

L = 4 m L = 1 m L = 4 m L = 1 m 

1 0.70% 10.20% 0.94% 13.15% 
1.5 0.64% 9.33% 0.85% 12.01% 

2 0.60% 8.78% 0.79% 11.31% 
3 0.55% 8.10% 0.72% 10.46% 

 

Convergence towards Prismatic Beams 
 

To study the convergence of the deflection solutions 
of tapered beams, Equation (19), towards the 
solutions of the prismatic beam, Equation (20), the 
values of the tip deflections, Table 1, are numerically 
examined as the values of α approaches 1 (that is, 
equivalent to coefficient a approaches 0). Tables 7 
and 8 present the tip deflections for the cases of the 
slender and deep beams, respectively. It is seen that, 
as expected, all of the solutions of the tapered beams 
converge well towards the solutions of the prismatic 
beams as α approaches 1.  

Table 7. Tip Deflections of the Tapered Cantilever Beam 
as α→1 for the Case of L = 4 m 

α wbM(0) wbP(0) wsP(0) wbq(0) wsq(0) 

1.5 5.625 13.43 8.636E-02 18.88 0.1611 
1.2 4.500 11.44 7.767E-02 16.69 0.1506 
1.1 4.125 10.74 7.444E-02 15.87 0.1465 

1.05 3.938 10.37 7.275E-02 15.44 0.1443 
1.01 3.788 10.07 7.135E-02 15.09 0.1425 

1.001 3.754 10.01 7.104E-02 15.00 0.1420 
1 3.750 10.00 7.100E-02 15.00 0.1420 

 
Table 8. Tip Deflections of the Tapered Cantilever Beam as 
α→1 for the Case of L = 1 m 

α wbM(0) wbP(0) wsP(0) wbq(0) wsq(0) 

1.5 0.3516 0.2098 2.159E-02 0.2950 4.027E-02 
1.2 0.2813 0.1788 1.942E-02 0.2608 3.766E-02 
1.1 0.2578 0.1677 1.861E-02 0.2480 3.663E-02 

1.05 0.2461 0.1621 1.819E-02 0.2413 3.608E-02 
1.01 0.2367 0.1574 1.784E-02 0.2358 3.562E-02 

1.001 0.2346 0.1564 1.776E-02 0.2344 3.551E-02 
1 0.2344 0.1563 1.775E-02 0.2344 3.550E-02 

 

Comparison with the Solutions of Other Beam 
Models 
 

To assess the validity of the present Timoshenko 
beam model, the tip deflections at the free end for 
the case of the beams with the height ratio of α = 2 
(see Figures 3-8) are compared to the solutions based 
on the beam model presented by Romano [5] and the 
plane stress model (Table 9). The tip deflections of 
Romano [5] were obtained by applying the analytical 
solution of Romano [5] to the cantilever beam 
considered in this paper, that is,  

 ( )         (      )    (     )  
  

     
 

   (     )   (     ) (23a) 

   
  

(   )
   

 (23b) 

where C1, C2, C3, and C4 are integration constants 
that were determined from the boundary conditions: 
Q(0) = −P0; M(0) = −M0  (following the sign conven-
tion in Romano [5]); w(L) = 0; θ(L) = 0. While, the tip 
deflections of the plane stress model were obtained 
from finite element analyses using the mesh of 
160×8 and 80×16 quadrilateral elements for the 
beam of the slenderness ratio L/h = 10 and L/h = 2.5, 
respectively. The element used was the four-node 
quadrilateral element including bending incompa-
tible modes contained in software SAP2000 [15].  
 

Table 9. Tip Deflections (mm) of the Tapered Cantilever 
Beams for α = 2  

Load 
case 

Slenderness 
ratio 

Present 
Romano 

[5] 
Plane 
stress 

M0 
L/h = 10 7.50 7.43 7.49 
L/h = 2.5 0.469 0.401 0.465 

P0 
L/h = 10 16.45 16.51 16.43 
L/h = 2.5 0.280 0.294 0.276 

q 
L/h = 10 22.04 22.01 22.00 
L/h = 2.5 0.385 0.376 0.379 
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The table shows that for the slender beam of L/h = 

10, there is no significant difference among the 

results obtained using different models (the diffe-

rence among the results is less than 1%). For the 

deep beam of L/h = 2.5 subjected to moment M0 and 

concentrated load P0, the present solutions are closer 

to the plane stress results than those of Romano [5]. 

For the deep beam subjected to distributed load q, 

however, Romano‟s solutions are closer. The overall 

results of this comparison demonstrate the validity 

of the present beam model.  

 

Conclusions 
 
Exact solutions of the Timoshenko beam model for 
cantilever tapered and prismatic beams subjected to 
an end moment, an end concentrated force, and a 
uniformly distributed force have been derived by 
solving the governing differential equations. The 
solutions include the shear force and bending mo-
ment distributions, which are in agreement with the 
static principle, as well as the rotation and deflection 
fields. Based on these solutions, the formulas for 
computing the tip deflections and rotations have 
been presented. The numerical examples demon-
strate the validity of the present solutions. The 
solutions and formulas may be useful for evaluating 
a numerical method such as Timoshenko beam finite 
elements [16,17], as well as for evaluating the deflec-
tion of a tapered cantilever beam in real engineering 
practice.  
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