E3S Web of Conferences
Volume 130 (2019)

The 1st International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2018)
Kuta, Bali, Indonesia, September 26-28, 2018
R.H. Setyobudi, F.D. Suprianto, M. Mel, O. Anne, P. Soni, T. Turkaaloe, Y. Jardi and Z. Vincavile-Gailie (Eds.)

Export the citation of the selected articles Export
Select all

About the conference
Published online: 15 November 2019
PDF (1.02 MB)

Statement of Peer review
Published online: 15 November 2019
PDF (232 KB)

Simulation-based Prediction of Structural Design Failure in Fishing Deck Machinery a Hydraulic Type with Finite Element Method
Agni Suwandi, Dedel Fia Zariah, Bambang Salaksono, Etsu Prayogi and I Made Wida
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3sconf/201913001001
PDF (599.7 KB) | References | NASA ADS Abstract Service

Effect of Frequency on Droplet Characteristics in Ultrasonic Atomization Process
Amelia Sugendo, Surtrino, Wilyanto Anggono and Olga Anne
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3sconf/201913001002
PDF (413.2 KB) | References | NASA ADS Abstract Service

Sound Absorption Performance of Sugar Palm Trunk Fibers
Anandya Endar Prabowo, Kuncoro Diharjo, Ubaidillah and Iwan Prasetyo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3sconf/201913001003
PDF (645.0 KB) | References | NASA ADS Abstract Service

Characteristics Of Aluminium ADC 12/SiC Composite with the Addition of TiB and Sr Modifier
Astri Indasari, Anne Zulfia Syahrial and Budi Wahyu Utomo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3sconf/201913001004
PDF (677.3 KB) | References | NASA ADS Abstract Service

Optimizing The Addition of TiB to Improve Mechanical Properties of the ADC 12/SiC Composite Through Stir Casting Process
Cindy Retno Putri, Anne Zulfia Syahrial, Saluhudin Yunus and Budi Wahyu Utomo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3sconf/201913001005
PDF (585.7 KB) | References | NASA ADS Abstract Service
Drivers and Barriers of Mobile Phone Remanufacturing Business in Indonesia: Perspectives of Retailers 01006
Didik Wahjuti, Shusan Gan, Yopi Yusuf Tanoto, Jerry Winata and Benny Tjahjono
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001006
PDF (379.7 KB) | References | NASA ADS Abstract Service

Experimental Analysis on Solid Desiccant Used in An Air Conditioning 01007
Ekadewi Anggraini Handoyo, Andristo Slamet and Muhammad Danang Birowosuto
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001007
PDF (605.5 KB) | References | NASA ADS Abstract Service

Influences of Groove Angles and Filler Metals on 304L Stainless Steel to AISI 1040 Carbon Steel Dissimilar Joint by Gas Tungsten Arc Welding 01008
Eriei Wahyu Restu Widodo, Vuri Ayu Setyowati, Suheni and Ahmad Rilio Hardlanto
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001008
PDF (839.9 KB) | References | NASA ADS Abstract Service

The Effect of Biodiesel Blends Made from Carica papaya L. Seeds on the Performance of Diesel Engine 01009
Fandi Dwiputra Suprianto, Willyanto Anggono, Teng Sutrisno, Daniel William Gunawan and Gabriel Jeremy Gotama
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001009
PDF (990.1 KB) | References | NASA ADS Abstract Service

Container Ship Accident Analysis due to Container Stacked on Deck as an Attempt to Improve Maritime Logistic System 01010
Gafero Priapala Rahim and Sunaryo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001010
PDF (474.4 KB) | References | NASA ADS Abstract Service

Automatic Petrol and Diesel Engine Sound Identification Based on Machine Learning Approaches 01011
Hollim Frederick, Astuti Winda and Mahmud Iwan Solhin
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001011
PDF (588.2 KB) | References | NASA ADS Abstract Service

Optimization of Soft Body Armor with Laminates of Carbon-aramid Fiber and Polyester Fiber Using the Taguchi Method 01012
Hari Purwono, Wahyu Ismail Kumla, Farham Haji Muhammad Saleh and Alex Kisanjani
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001012
PDF (565.2 KB) | References | NASA ADS Abstract Service

Hybrid Turbulence Models: Recent Progresses and Further Researches 01013
Haryo Priambudi Setyo Pratomo, Fandi Dwiputra Suprianto and Teng Sutrisno
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001013
PDF (537.1 KB) | References | NASA ADS Abstract Service
Preliminary Study on Mesh Stiffness Models for Fluid-structure Interaction Problems
Herry Priambudi Setyo Pratomo, Fendi Dwi Putra Supranto and Teng Sutrisno
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001014
PDF (828.8 KB) | References | NASA ADS Abstract Service

Development of Real Time Machine Tools Component Utilization Data Acquisition for developing Dynamic Model of Maintenance Scheduling
Herman Budi Harja, Tri Prakosa, Yatna Yuwana Martawiyana, Indra Nurhidai and Andrian Sagisty Januartha
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001015
PDF (456.7 KB) | References | NASA ADS Abstract Service

Probabilistic Evaluation of Fatigue Crack Growth Rate for Longitudinal Tungsten Inert Gas Welded Al 6013-T4 Under Various PostWeld Heat Treatment Conditions
I Made Wirakusuma Ekoputra, Gunawan Dwi Haryadi, Stefan Mandikas and Rando Tungga Dewa
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001016
PDF (515.6 KB) | References | NASA ADS Abstract Service

Experimental Performance Analysis of Shallow Spiral-tube Ground Heat Exchangers in Series and Parallel Configurations
Jakiruddin, Aiko Miyara, Rustan Tariska and Muhammad Ans Ilahi Ramadhani
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001017
PDF (848.2 KB) | References | NASA ADS Abstract Service

Structural Evaluation on Sugarcane Bagasse Treated Using Sodium and Calcium Hydroxide
Juliana Anggono, Hariyati Purwawingsih, Swuandi Sagondo, Steven Henrico, Sangaya Sewooipto and Jay Patel
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001018
PDF (1.559 MB) | References | NASA ADS Abstract Service

The Influence of Room and Ambient Temperatures of Exergy Loss in Air Conditioning Using Ejector as an Expansion Device with R290 as Working Fluid
Kasri Sumera, Pratikto Pratikto, Andryanto Setyawan and Adenikile Moshood Abiyo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001019
PDF (440.2 KB) | References | NASA ADS Abstract Service

Automotive Start-Stop Engine Based on Face Recognition System
 Lim William, Astuti Windia, Dewanto Satrio, Tan Sofyan and Mahmud Iwan Sothin
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001020
PDF (1003 KB) | References | NASA ADS Abstract Service

The Effect of Coconut Shell Powder as Functional Filler in Polystyrene during Compounding and Subsequent Molding
Matu Kirby, Benjamin Lewis, Benjamin Peterson, Juliana Anggono and Walter Bradley
Published online: 15 November 2019
DOI: https://doi.org/10.1051/esconf/201913001021
PDF (623.2 KB) | References | NASA ADS Abstract Service
Automotive Start-Stop Engine Based on Fingerprint Recognition System

Pranoko Rivand, Astuti Windia, Dewanto Satrio and Mahfud Iwan Setihih
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001022
PDF (659.6 KB) | References | NASA ADS Abstract Service

Effect of Ti6 on Mechanical Properties of TiB and Sr Modified ADC12/SiC Composite Produced by Stir Casting

Pintamara Wahyuningtyas, Anne Zulfa Syahril, Wahyuadi Narottama Putra and Budi Wahyu Utomo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001023
PDF (669.7 KB) | References | NASA ADS Abstract Service

Regression Equations to Determine the Stages of Electric Current in Electrical Discharge Machining (EDM) According to the Level of Desired Surface Roughness with Shortest Processing Time

Rochie Alimun, Didik Wahjudi, Haryanto Gunawan and Prayogo Putra Poemomo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001024
PDF (597.2 KB) | References | NASA ADS Abstract Service

Increasing Port Performance through Port Navigation Safety Assessment using the Formal Safety Assessment Method (Case Study Port of Tanjung Priok - Indonesia)

Sahtan Ridwan and Sunaryo
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001025
PDF (554.3 KB) | References | NASA ADS Abstract Service

A Feasibility Study of Mobile Phone Casings Remanufacturing

Shu-San Gan, Julianna Anggoro, Didik Wahjudi, Yopi Tanoto, Randy and Novana Hutasing
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001026
PDF (540.7 KB) | References | NASA ADS Abstract Service

3D Simulative Investigation of Heat Transfer Enhancement Using Three Vortex Generator Types Surrounding Tube in Plate Fin Heat Exchanger

Stefan Marsudikus, Petrus Setyo Prabowo, Vinsensius Tiara Putra, Made Wigaksana Ekaputra and Juris Bureiko
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001027
PDF (770.6 KB) | References | NASA ADS Abstract Service

Investigation on the Sandwich System Hull Materials for Solar Powered Electrical Sport Boat

Sunaryo and Aldy Sahrilhadin Hamta
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001028
PDF (589.6 KB) | References | NASA ADS Abstract Service

Electrical System Design of Solar-Powered Electrical Water Recreational and Sport Vessel

Sunaryo and Pradana Shadu Imtianto
Published online: 15 November 2019
DOI: https://doi.org/10.1051/e3conf/201913001029
PDF (674.8 KB) | References | NASA ADS Abstract Service
Open Access
Experimental Investigation of Avocado Seed Oil Utilization in Diesel Engine Performance
Sutrisno, Willyanto Anggono, Fondi Dwiputra Suprapto, Cikoro Daniel Santosa, Michael Suryajaya and Gabriel Jeremy Gotama
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001030
PDF: 517.8 KB | References | NASA ADS Abstract Service

Open Access
Optimization of Boring Process Parameters in Manufacturing of Polyacetal Bushing using High Speed Steel
The Jaya Suteja, Yon Haryono, Andri Harianto and Esti Rinawiyanti
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001031
PDF: 379.0 KB | References | NASA ADS Abstract Service

Open Access
Development of Total Hip Joint Replacement Prostheses Made by Local Material: An Introduction
Tresna Priyana Soemardi, Agri Suwandhi, Cholid Badri, Arwai Soefli Ibrahim, Sastra Kusuma Widjaya and Januar Partaungan Siregar
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001032
PDF: 649.9 KB | References | NASA ADS Abstract Service

Open Access
Strategy to Improve Recycling Yield of Aluminium Cans
Victor Yuardi Risonarta, Julianna Anggono, Voesas Michael Suhendra, Setyo Nugrowibowo and Yahya Jani
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001033
PDF: 317.9 KB | References | NASA ADS Abstract Service

Open Access
Using Agricultural Waste to Create More Environmentally Friendly and Affordable Products and Help Poor Coconut Farmers
Walter L. Bradley and Sean Conroy
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001034
PDF: 783.3 KB | References | NASA ADS Abstract Service

Open Access
Intelligent Automatic V6 and V8 Engine Sound Detection Based on Artificial Neural Network
Wenny Vincent, Astuti Windia and Mahmud Iwan Solihin
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001035
PDF: 585.9 KB | References | NASA ADS Abstract Service

Open Access
Effect of Various Supercharger Boost Pressure to in-Cylinder Pressure and Heat Release Rate Characteristics of Direct Injection Diesel Engine at Various Engine Rotation
Willyanto Anggono, Watanu Ikema, Hao Yu Chen, Zhiyuan Liu, Mitsuishi Ichyanagi and Takashi Suzuki
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001036
PDF: 791.3 KB | References | NASA ADS Abstract Service

Open Access
Experimental and Numerical Investigation of Laminar Burning Velocities of Artificial Biogas Under Various Pressure and CO2 Concentration
Willyanto Anggono, Akhiro Hayakawa, Ekenechukwu C. Okafor and Gabriel Jeremy Gotama
Published online: 15 November 2019
DOI: https://doi.org/10.1505/133001037
PDF: 560.1 KB | References | NASA ADS Abstract Service
The Impact of Enterprise Resources Planning Implementation in Cross-Functional for Sharing Knowledge and Quality Information in Preparing the Financial Statements

Zeplin Jiwa Husada Tarigan¹, Sautma Ronni Basana² and Widjo Suprapto³

¹ Master of Management Department, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121–131, Surabaya, 60236, Indonesia
² Financial Management, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121–131, Surabaya, 60236, Indonesia
³ Business of Management Department, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121–131, Surabaya, 60236, Indonesia

* Corresponding author: zeplin@peter.petra.ac.id
The Impact of Enterprise Resources Planning Implementation in Cross-Functional for Sharing Knowledge and Quality Information in Preparing the Financial Statements

Zeplin Jiwa Husada Tarigan1*, Sautma Ronni Basana2, and Widjojo Suprapto3

1Master of Management Department, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121–131, Surabaya, 60236, Indonesia
2Financial Management, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121–131, Surabaya, 60236, Indonesia
3Business of Management Department, Faculty of Business and Economics, Petra Christian University, Jl. Siwalankerto No.121-131, Surabaya, 60236, Indonesia

Abstract. Enterprise Resources Planning (ERP) has been adopted by the manufacturing and service industries to improve the performance of the company. It helps construct the company's financial statements. There are two main questions: first, how the influence of implementing ERP can enhance the good integration and second, how sharing between departments can affect the quality of information so that the process of making the company's monthly financial reports on time. For company management in East Java, one successful indicator is the on-schedule monthly financial reports. Based on the results there are 102 questionnaires returned, but only 58 replies are coming from the finance and accounting department. Eight questionnaires were incomplete, therefore discharged. As many as 50 questionnaires can be further processed. The results of this study find that ERP implementation gives a positive impact to cross-functional departments and sharing knowledge. However, the impact of cross-functional department does not affect the sharing knowledge because many heads of departments find it difficult to discuss and understand business processes in other departments. The cross functional departments and the sharing of information have a significant influence on the quality of company information. Last, cross-functional departments and the quality of information affect the financial statement.

Key words: Financial report, information sharing, integrated information technology, process integration.

* Corresponding author: zeplin@peter.petra.ac.id
1 Introduction

To win the global competition, many companies try to increase their productivities and performance. Most of the time, the company management implement the information technology to increase the company performance. A research conducted by Bradley [1] states that the implementation of Enterprise Resources Planning (ERP) gives certain impacts to the whole process in the organization and to the company employee to understand a new business system using software and hardware. Many manufacturing companies are still organized partially or departmentally where a manager controls directly through monitoring to the operational fields to know the target achievement of production. Such a condition requires a lot of a certain level in the company to be able to control the employees directly. Up to now, the problem lies on the companies that have not yet integrated the information system in the management. So far, the companies are supported only by individual activities at each department. This fact can bring some misunderstandings in communication of data between one department and others. Since each individual submits the data in his isolated department, it can cause a fundamental difference in the delivery of data, and it may take a long time to clarify the differences. This condition will be likely less time consuming if the company integrates the functions with ERP.

The ERP program helps companies with many broad business processes using database and segmented management reporting tools. Business processes are some activities that need one or several inputs to produce outputs as the consumer value. Baheshti [2] states that the ERP technology can integrate marketing function, production, logistics, finance, human resources, and other functions.

The company strategies set goals and instructions on how organizational capabilities can be the best tool to achieve improved competitive position. The strategic design process is a matter that can increase the competitiveness of the company, because it can provide clues to accomplish the process and the flow of the integrated process. It can also provide variations of work achievements, material flows, workers, and information as the competitive resources. A stronger competition forces the managers to find a strategy to defend and to increase the competitive advantage of the company. The theory of resources indicates unique tangible and intangible resources that are owned by the company to increase the competitiveness of the company. The resources must possess unique values so that the competitor cannot imitate the uniqueness and it becomes the foundation for the competitive advantage [3].

Implementing ERP in a company is very important. Organizational commitment can increase the company performance because ERP creates information sharing, which is a part of knowledge sharing to produce quality information suitable for the company business design processes. Jones et al. [4] states that there are eight dimensions of culture that give impacts to knowledge sharing in a company and they are: the basis of truth and rationality; motivation; orientation to change, orientation to work; orientation to collaboration; control, coordination, and responsibility; orientation and focus; and nature of time horizon. A research by Law and Ngai [5] reveals that knowledge sharing and learning are very important to the success of an industry in running the business process. Hu et al. [6] also reveals that knowledge sharing has become the culture for the company teamwork in giving better service innovation. Implementing ERP has become a better investment as the information flow is running effectively and efficiently. It can also make the cross functional integration in a company better because one department and others are connected with one single data base.

A research conducted by Liao and Cuang [7] states that the individual knowledge formed by agreement and consistency factors correlates with the effectiveness in commitment to
build communication and relation through knowledge sharing. Wasko and Faraj [8] say that a capable teamwork is formed through the ability of each person to communicate and relate with others so that everyone contributes according to the expertise for some period of time. An individual learning orientation is the first step in sharing knowledge and collaboration for every employees in a company. Communication built by each employee will gradually form a unity and coherence about the organizational goals among the workgroup [9]. The group members’ perception about their contribution to the distribution of information on the company can bring benefits to the organization. The shared information among departments can create quality information.

Quality information contains accuracy, timelines, data relevancy, and completeness [10]. Thw top management supports are needed to integrate data across departments using ERP technology. Good data integration across departments will provide good quality information because it is not distorted and delayed. Top managers require good quality information to make the financial statement. The quality information can be the numbers of purchased orders by the customers, daily production reports, routinely monitored good supplies, and on-going inventory on the production floor. The quality of information can reduce uncertainty and bring improvements for the company to increase profitability [11].

2 Research Framework

Companies try to implement ERP in order to improve the performance. ERP implementation can use a single data base and can integrate all departments so that the entry of data in marketing can be used by all departments in a timely manner. Data integration in the company is a form of cross functional departments. Good integration among departments can increase information sharing with other departments through a process of communication and coordination so it can reduce the distortion of the data, and improve the quality of information. As the result, quality information can speed up the process of making the company financial statement.

The problems so far with the ERP system in most companies occur monthly when the accounting department does the closing entry. There are many unavailable data because they are not yet reported to the financial department, such as during the material retrieval from the production warehouse, the warehouse delivery has not performed the data entry so the amount of production has not been recorded yet. Besides, many other departments are entering the data without checking them in advance, so that some data are not based on the reality of production. This condition forces the financial department to verify the relevancy of the data one by one to different divisions, which ultimately causes tardiness to the report preparation. Under such circumstances in the companies, the researcher proposes the following model that is described in Figure 1.

![Research framework](image-url)
Based on the model in Figure. 1, there are several hypotheses proposed for this research:

H1: ERP implementation gives positive influences on sharing knowledge in manufacturing industries in East Java, Indonesia

H2: ERP implementation gives positive influences on cross functional departments in manufacturing industries in East Java, Indonesia

H3: Sharing knowledge brings positive influences on cross functional departments in manufacturing industries in East Java, Indonesia

H4: Sharing knowledge gives positive influences on quality information in manufacturing industries in East Java, Indonesia

H5: Cross functional departments have positive influences on quality information in manufacturing industries in East Java, Indonesia

H6: Cross functional department has positive influences on financial statement in manufacturing industries in East Java, Indonesia

H7: Quality information gives positive influences on financial statement in manufacturing industries in East Java, Indonesia

3 Research Methods

Data are collected from manufacturing companies that have implemented the ERP technology. There are several ways to collect the data, among others are the questionnaire and the interviews. The questionnaire is used to collect the descriptive data to test the hypothesis and assessment model. The questionnaire is designed with closed questions, that means the respondents are limited to select one or two already given answers. Each questionnaire is for one of the key users in one company, so one questionnaire is for one company. The questionnaire distribution is conducted by visiting each company, explaining the questionnaire to one key user, and deciding the interview date. While picking up the questionnaires, the interviews are conducted by questioning the key users to describe the real condition of the company.

For this research, the emphasis is on the data collection by interviewing the key users while filling in the questionnaire. During the interview, the key users are inquired to observe and analyze the real conditions of the company, and then put them in the questionnaire. The scale of measurement used in this research is a Likert scale, with the score of one to five. To test the hypotheses and surrender a fit model, this research is using the Partial Least Square (PLS) with the help of application program Software Smart PLS to calculate. The reason to use this software is that there is a tiered structure of relationship among variables [12].

Variables for ERP implementation are: the ability of the management to communicate clearly the importance of ERP for the company, the constant collaboration built by the management in implementing ERP, the ability of the management to create things as form of creative improvement, and the ability of the management to communicate effectively and well with the ERP team. Indicators for knowledge sharing are the sharing atmosphere among departments, the existence of a good effort in the sharing of knowledge among departments, the enthusiasm of each department to share knowledge with other departments, and the existence of the facility in knowledge sharing among departments inside the company. Indicators for cross functional departments are the integration of data among departments within the company, the regular meetings between the departments within the company, the existence of the document control system among the departments within the company, and the real-time connections among departments. Variables for quality information are the availability of the required data among departments in the ERP system, the data within the ERP considered as accurate as needed, the relevancy of the...
existing data in the ERP with the needy departments, and the comprehensiveness of the data in the ERP. Indicators for financial statements are the necessity of the financial statements on the ERP, the description in financial statements reflecting the activities of the company’s operation, the financial statements providing the company’s operational performance, and the usage of the financial reports in ERP by all parties.

4 Result and analysis

The respondents for this research are gathered from various manufacturing industries in East Java, Indonesia, particularly in the areas of Surabaya, Mojokerto, Gresik, Sidoarjo, and Pasuruan. From a total of 110 questionnaires, only 102 questionnaires are returned. From the returned questionnaires, those from the accounting and finance department are only 58 respondents but eight questionnaires are incomplete, so as many as 50 questionnaires are further processed.

The data processing is using PLS, with regard to the value of goodness of fit outer model. First, convergent validity, that is a correlation between the reflexive indicator score and the latent variable score, is used. For this research, loading of 0.5 to 0.6 is considered fair, because it is still in the early stage of measurement scale development and the numbers of indicators per construct is not large, ranging from three to seven indicators. Second, composite reliability is used, that is a block indicator that measures the internal consistency of construct forming indicators and shows the degree that indicates common latent. The acceptable value limit for the degree of composite reliability is 0.7, although not an absolute standard. Based on Table 1 below, the convergent validity reveals the relationship between the indicators with each variable as indicated by the value of the weighting factor. Based on Table 1, all variables have complied with the convergent validity as all loading factors are above 0.5.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Composite reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>0.817</td>
</tr>
<tr>
<td>Sharing</td>
<td>0.831</td>
</tr>
<tr>
<td>Cross</td>
<td>0.746</td>
</tr>
<tr>
<td>Quality</td>
<td>0.886</td>
</tr>
<tr>
<td>Finance</td>
<td>0.953</td>
</tr>
</tbody>
</table>
The prerequisite values of composite reliability (Table 2) are met by all variables, with the values above 0.7. The structural model is evaluated using the R-square dependent latent variables with similar interpretation of regression. The Q-square predictive relevance for the construct model measures how well the observed values generated by the model with also its parameter. Q-square value greater than zero indicates that the structural model has predictive relevance; on the other hand, the Q-square value less than zero indicates that the model lacks predictive relevance.

Table 3. R-Square value

<table>
<thead>
<tr>
<th>Variable</th>
<th>R-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP</td>
<td>0.535</td>
</tr>
<tr>
<td>Sharing</td>
<td>0.792</td>
</tr>
<tr>
<td>Cross</td>
<td>0.281</td>
</tr>
<tr>
<td>Quality</td>
<td>0.786</td>
</tr>
</tbody>
</table>

Based on Table 3 below, it is obtained that the value of Q-square is 0.952, which is greater than zero, and indicates that the model has the predictive relevance.

Table 4. Result for inner weight output PLS

<table>
<thead>
<tr>
<th></th>
<th>original sample estimate</th>
<th>mean of subsamples</th>
<th>standard deviation</th>
<th>T-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP -> Sharing</td>
<td>0.732</td>
<td>0.744</td>
<td>0.068</td>
<td>10.787</td>
</tr>
<tr>
<td>ERP -> Cross</td>
<td>0.821</td>
<td>0.833</td>
<td>0.098</td>
<td>8.376</td>
</tr>
<tr>
<td>Cross -> Sharing</td>
<td>0.091</td>
<td>0.089</td>
<td>0.106</td>
<td>0.855</td>
</tr>
<tr>
<td>Sharing -> Quality</td>
<td>0.385</td>
<td>0.343</td>
<td>0.200</td>
<td>1.921</td>
</tr>
<tr>
<td>Cross -> Quality</td>
<td>0.718</td>
<td>0.630</td>
<td>0.277</td>
<td>2.592</td>
</tr>
<tr>
<td>Cross -> Finance</td>
<td>0.326</td>
<td>0.426</td>
<td>0.207</td>
<td>1.945</td>
</tr>
<tr>
<td>Quality -> Finance</td>
<td>0.898</td>
<td>0.897</td>
<td>0.059</td>
<td>15.202</td>
</tr>
</tbody>
</table>

The first statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The first hypothesis (H1) of this research states a presumption that the ERP implementation in a company will create sharing knowledge. Statistically, this hypothesis relates to the γ_1 test result that can be formulated with statistical hypothesis as follows:

$$H_0 : \gamma_1 = 0 \quad \text{There is no significant influence in the ERP implementation on sharing knowledge.}$$

$$H_1 : \gamma_1 \neq 0 \quad \text{There is a significant influence in the ERP implementation on sharing knowledge.}$$

Based on Table 4, the gamma coefficient (γ_1) is 0.732, and t-statistic is 10.787, which is higher than the t-table of 1.96, therefore H_1 is accepted. It means there is a significant influence in the ERP implementation on the sharing knowledge with the significant level of 0.05.

The second statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The second hypothesis (H2) assumes that the ERP implementation in a company will affect cross functional departments. Statistically, this hypothesis relates to the γ_2 test results that can be formulated with statistical hypothesis as follows:

$$H_0 : \gamma_2 = 0 \quad \text{There is no significant influence in the ERP implementation on cross functional department.}$$

$$H_2 : \gamma_2 \neq 0 \quad \text{There is a significant influence in the ERP implementation on cross functional department.}$$
Based on Table 4, the gamma coefficient (γ_2) is 0.821, and t-statistic is 8.376, which is higher than the t-table of 1.96, therefore H_2 is accepted. It means there is a significant influence in the ERP implementation on the cross functional departments with the significant level of 0.05.

The third statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The third hypothesis (H_3) presumes that the cross functional departments in a company will affect the sharing knowledge. Statistically, this hypothesis relates to the test result of β_3 that can be formulated with statistical hypothesis as follows:

$H_0 : \beta_3 = 0$ There is no significant influence in the cross functional departments on sharing knowledge.

$H_3 : \beta_3 \neq 0$ There is a significant influence in the cross functional departments on sharing knowledge.

Based on Table 4, the beta coefficient (β_3) is 0.091, and t-statistic is 0.855, which is lower than the t-table of 1.96, therefore H_0 is accepted. It means there is no significant influence in the cross functional departments on the sharing knowledge with the significant level of 0.1.

The fourth statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The fourth hypothesis (H_4) states that there is an influence of the sharing knowledge on quality information. Statistically, this hypothesis relates to the test results of β_4 which can be formulated with statistical hypothesis as follows:

$H_0 : \beta_4 = 0$ There is no significant influence of the sharing knowledge on quality information.

$H_4 : \beta_4 \neq 0$ There is a significant influence of the sharing knowledge on quality information.

Based on Table 4, the beta coefficient (β_4) is 0.385, and t-statistic is 1.921, which is higher than the t-table of 1.65, therefore H_4 is accepted. It means there is a significant influence of the sharing knowledge on quality information with the significant level of 0.1.

The fifth statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The fifth hypothesis (H_5) states that there is an influence of the cross functional departments on sharing knowledge. Statistically, this hypothesis relates to the test results of β_5 which can be formulated with statistical hypothesis as follows:

$H_0 : \beta_5 = 0$ There is no significant influence of the cross functional departments on sharing knowledge.

$H_5 : \beta_5 \neq 0$ There is a significant influence of the cross functional departments on sharing knowledge.

Based on Table 4, the beta coefficient (β_5) is 0.718, and t-statistic is 2.592, which is higher than the t-table of 1.96, therefore H_5 is accepted. It means there is a significant influence of the cross functional departments on the quality information with the significant level of 0.05.

The sixth statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The sixth hypothesis (H_6) indicates that there is an influence of the cross functional department on financial statement. Statistically, this hypothesis relates to the test results of β_6 which can be formulated with statistical hypothesis as follows:

$H_0 : \beta_6 = 0$ There is no significant influence of the cross functional departments on financial statement.

$H_6 : \beta_6 \neq 0$ There is a significant influence of the cross functional departments on financial statement.
Based on Table 4, the beta coefficient (β_6) is 0.326, and t-statistic is 1.945, which is higher than the t-table of 1.65, therefore H_6 is accepted. It means there is a significant influence of the cross functional departments on the financial statement with the significant level of 0.1.

The seventh statistical hypothesis for the inner model is the exogenous latent variable to endogenous. The seventh hypothesis (H_7) assumes that there is an influence of the quality information on the financial statement. Statistically, this hypothesis relates to the test results of β_7 which can be formulated with statistical hypothesis as follows:

$H_0 : \beta_7 = 0$ There is no significant influence of the quality information on the financial statement.

$H_7 : \beta_7 \neq 0$ There is a significant influence of the quality information on the financial statement.

Based on Table 4, the beta coefficient (β_7) is 0.898, and t-statistic is 15.202, which is higher than the t-table of 1.96, therefore H_7 is accepted. It means there is a significant influence of the quality information on the financial statement with the significant level of 0.05.

5 Conclusion

The purpose of this study is to examine the impact of ERP implementation in cross-functional for knowledge sharing and quality information in preparing the financial statements. The result of the study demonstrated the following findings. First, ERP implementation influence the. Second, the ERP implementation affects cross functional analysis. Third, the cross functional cooperation influences the sharing knowledge. Fourth, knowledge sharing influences the quality information. Fifth, cross functional affects the quality information. Sixth, cross functional influence financial statement. The last finding, quality information affects the financial statement. This study provides an insight for the manager how to improve the financial statement through the implementation of ERP, cross functional, knowledge sharing, and provision of quality information. This study also contributes to the on-going research in the field supply chain management with the involvement of the financial issue.

References

 http://digitalcommons.wcupa.edu/cgi/viewcontent.cgi?article=1002&context=ma
 n_facpub
 https://journals.aom.org/doi/abs/10.5465/20159559
The purpose of this study is to examine the influence of the quality information on the financial statement. There is a significant influence of the quality information on the financial statement. There is no significant influence of the quality information on the financial statement. Statistically, the beta coefficient is 0.898, and the statistic is 15.202, which is higher than the critical table of 1.96, therefore H7 is accepted. It means there is a significant influence of the quality information on the financial statement through the implementation of ERP, cross functional departments, cooperation, and knowledge sharing influences. The last finding, the sharing knowledge, also provides an insight for the cooperation in influencing the exogenous latent variable to the endogenous latent variable. The seventh hypothesis (H7) assumes that there is an influence of the quality information on the financial statement. Statistically, the beta coefficient is 0.326, and the statistic is 0.898, and the critical table of 1.65, therefore H7 is not accepted. It means there is no significant influence of the cross functional departments on the financial statement.

References: