Book Loan Recommendation System for Petra Christian University Library using PrefixSpan and Generalized Sequential Pattern Algorithm
Gregorius Satia Budhi 1, Andreas Handojo 2, Stefano Gerry Sutrisno 3
1,2,3 Information Technology, Petra Christian University

Siwalankerto Street 121-131 Surabaya Indonesia
1 greg@petra.ac.id, 2 handojo@petra.ac.id
1. Introduction

The library at Petra Christian University at this moment has the outstanding system of book searching. The library collection could be in Library and Digital Collection. To leveraging the services at the library, it is necessary to develop the automatic system which recommends the book or the correlation or the book which often being lend at the same time or sequentially by the students.

It needs data processing using data mining to support this recommendation system. The recommendation system will mine sequential patterns between the collections using Prefix-Projected Sequential Pattern Mining (PrefixSpan) Algorithm or Generalized Sequential Patterns (GSP) Algorithm. Those two algorithms will be compared and chosen which one is the better one and fast enough to use for automatic recommendation system at the Library.
2. Basic Concept
2.1 Data Mining Overview

We define data mining in terms of [2]:
· The use of statistical or other analytical techniques to process and analyze raw data to find meaningful patterns and trends.
· The extraction and use of meaningful information and insight to produce actionable business recommendations and decisions.

The focal point of effective data mining is to analyze data in order to make actionable business recommendations. Without the latter, data mining is an intellectual exercise with no real life application [2].

Many people treat data mining as a synonym for another popularly used term, Knowledge Discovery from Data, or KDD. Alternatively, others view data mining as simply an essential step in the process of knowledge discovery [5]. Knowledge discovery as a process is depicted in Figure 1.

[image: image1.png]Tanstomed
b

[

Figure 1: Data mining as a step in the process of knowledge discovery [4]
2.1 Sequential Pattern Mining

Sequence data is pervasive in our lives. For example, your schedule for any given day is a sequence of your activities. When you read a news story, you are told the development of some events which is also a sequence. If you have investment in companies, you are keen to study the history of those companies stocks. Deep in your life, you rely on biological sequences including DNA and RNA sequences [3].

Given a set of sequences, where each sequence consists of a list of events (or elements) and each event consists of a set of items, and given a user-specified minimum support threshold of min sup, sequential pattern mining finds all frequent sub sequences, that is, the sub sequences whose occurrence frequency in the set of sequences is no less than minimum support [1].
2.2 Generalized Sequential Patterns (GSP)

A typical sequential pattern mining method, GSP, mines sequential patterns by adopting a candidate subsequence generation-and-test approach based on the Apriori property [1].

The method is illustrated in this following example [3]: Given the database S and the minimum support threshold. GSP first scans S, collects the support for each item, and finds the set of frequent items, that is, frequent length-1 sub sequences (in the form of “item : support”): a : 4, b : 4, c : 3, d : 3, e : 3, f : 3, g : 1.

By filtering out the infrequent item g, we obtain the first seed set
L1 = {a, b, c, d, e, f}, where each member of L1 represents a 1-element sequential pattern. Each subsequent pass starts with the seed set found in the previous pass and uses it to generate new potential sequential patterns, called candidate sequences.
From L1 (a set containing 6 length-1 sequential patterns), we generate the following set of 6(6 + (6(5)/2 = 51 candidate sequences:

C2 = {aa, ab, . . . , af, ba, bb, . . . , ff, (ab), (ac), . . . , (ef)}.

Then, the sequence database is scanned again, and the supports of sequences in C2 are counted. Those sequences in C2 passing the minimum support threshold are the length-2 sequential patterns. Using the length-2 sequential patterns, we can generate C3, the set of length-3 candidates. The multi-scan mining process is shown in Figure 2. The set of candidates is generated by a self-join of the sequential patterns found in the previous pass.
[image: image2.png]The 4th scan, 6 candidates
4length—4 sequential patterns

<a(bc)a> <(ab)de> | <efbe>| ..

The 3rd scan, 64 candidates
21 length-3 sequential patterns

13 candidates not appear in database

The 2nd scan, 51 candidates

22 length-2 sequential patterns <aa> <ab> .

<(ef)>{

9 candidates not appear in database

The Ist scan, 7 candidates —

6 length—1 sequential patterns <@ <> <> <e>

Candidate cannot pass support threshold

D Candidate does not appear in database at all

<e>

Figure 2: Candidates and sequential patterns in GSP [3]
2.3 Prefix-Projected Sequential Pattern Mining (PrefixSpan)

The general idea of PrefixSpan is to examine only the prefix sub sequences and project only their corresponding postfix sub sequences into projected databases. In each projected database, sequential patterns are grown by exploring only local frequent patterns. Its major idea is that, instead of projecting sequence databases by considering all the possible occurrences of frequent sub sequences, the projection is based only on frequent prefixes because any frequent subsequence can always be found by growing a frequent prefix [6, 7]. The algorithm of PrefixSpan is presented in Figure 3.
[image: image3.png]Input: A sequence database S, and the minimum support threshold min_support.
Output: The complete set of sequential patterns.
Method: Call PrefizSpan(®, 0, S).

Subroutine PrefizSpan(a, 1, S|a)
The parameters are (1) a is a sequential pattern; (2) L is the i-length of a; and (3)
S is the a-projected database if a # 0, otherwise, it is the sequence database
S.
Method:
1. Scan S|, once, find each frequent item b such that
a) b can be assembled to the last element of o to form a sequential pattern;
or
b) b can be appended to « to form a sequential pattern.
2. For each frequent item b, append it to a to form a sequential pattern a’, and
output a’;
3. For each o, construct o/-projected database S|/, and call PrefizSpan(a’, 1+
1,5]ar).

Figure 3: PrefixSpan Algorithm [3]
PrefixSpan Example [6, 7]:

Let our running database be sequence database S given in Table 1. and min support = 2. The set of items in the database is {a, b, c, d, e, f ,g}.

A sequence <a(abc)(ac)d(cf)> has five elements: (a), (abc), (ac), (d) and (cf), where items a and c appear more than one respectively in different elements. It is also a 9-equence since there are 9 instances appearing in that sequence. Item a happens three times in this sequence, so it contributes 3 to the length of the sequence. However, the whole sequence <a (abc)(ac)d(cf)> contributes only one to the support of <a>. Also sequence <a(bc)df> is a subsequence of <a (abc)(ac)d(cf)>. Since both sequences 10 and 30 contain subsequence s = <(ab)c>, s is a sequential pattern of length 3 [7].
Table 1: A sequence database [7]

[image: image4.png]Sequence_id

Sequence

10 alabe) (ac)d(c]
20 (ad)e(be)(ac)
30 (e ahdne
10 cglaf)che]

Sequential patterns in S can be mined by a prefix-projection method in the following steps.
Step 1:
Find length-1 sequential patterns. Scan S once to find all frequent items in sequences. Each of these frequent items is a length-1 sequential pattern. They are <a>:4, : 4, <c>:4, <d>:3, <e>:3 and <f>:3, where <pattern>:count represents the pattern and its associated support count.
Step 2:
Divide search space. The complete set of sequential patterns can be partitioned into the following six subsets according to the six prefixes: (1) the ones having prefix <a>; ... ; and (6) the ones having prefix <f>.

Step 3:
Find subsets of sequential patterns. The subsets of sequential patterns can be mined by constructing corresponding projected databases and mine each recursively. The projected databases as well as sequential patterns found in them are listed in Table 2.

Table 2: Projected databases and sequential patterns [6]
[image: image5.emf]
3. Application Design

The design flowcharts of this application are shown in Figure 4 to Figure 12.

[image: image6.emf]Start Login

Change

Password?

Change

Password

Create

Connection

Create Period

yes

no

GSP/

PrefixSpan

Generate

Frequent

Itemsets

GSP

Generate

Frequent

Itemsets

PrefixSpan

PrefixSpan

GSP

Generate

Rules

Generate

Recomendation

Create Table

End

Figure 4: Flowchart of the application design
	
[image: image7.emf]Generate

Frequent

Itemsets

GSP

Input

minimum

support

K=1

>=minimum

support?

K++

return

Y

N

Generate

candidate

length-k

Count support

each candidate

Create

sequence table

Prune candidate

	
[image: image8.emf]Create sequence

table

Get sirculation

data based on

visitor

Calculate the

amount data

displayed

For j

ß

0 to total

sirculation

Find any same

date?

Insert into arraylist

which have same

date

Create new

arraylist

j

A

No

Yes

A

Count the amount

arraylist

For k

ß

0 to total

arraylist

Temp+=arraylist(k)

k

Save temp into

SEQUENCE table

return

	Figure 5: Flowchart of Generate

Frequent Itemsets (GSP)
	Figure 6: Flowchart of

Create sequence table

	
[image: image9.emf]Generate

candidate

 length=1?

Candidate=Select

distinct kd_buku

from sirkulasi

Save candidate

into tabel

TEMP_RULE

ya

Length=2?

Cand1=cand2=sel

ect candidate from

rule where

length=1

Count the total of

cand1 & cand2

For j

ß

0 to jum cand1

For k

ß

0 to jum cand2

j

Temp=cand1(j)+”,”

+cand2(k)

k

tidak

ya

Join candidate

return

tidak

	
[image: image10.emf]Count

support

Count the amount

of sequence

For j

ß

0 to total

sequence

j

Change

sequence(j) into

arraylist

Change candidate

into arraylist

Candidate in

sequence(j)?

Support++

Passing support

value

return

YES

NO

	Figure 7: Flowchart of generate

candidate (GSP)
	Figure 8: Flowchart of count

support (GSP)

	
[image: image11.emf]Generate

Frequent

Itemsets

Input

minimum

support

Generate

candidate length-1

>=minimum

support?

return

N

Count support

each candidate

Count support

each candidate

Y

Divide search space

each candidate

Find subset

of sequential

patterns

	
[image: image12.emf]Divide search space

each candidate

For c =each candidate

length-1

For d =each sequence

Insert into

temp_ps2(subsequence)

C

D

return

Candidate is in

sequence

no

Subsequence

ß

sequence after candidate

yes

	Figure 9: Flowchart of Generate

Frequent Itemsets (PrefixSpan)
	Figure 10: Flowchart of divide

search space each candidate

	
[image: image13.emf]Find subset of

sequential patterns

Table_seq

ß

Select* from

temp_ps2

For c =0 to count

table_seq

For d =0 to arraylist

Table_seq(d)->arraylist

Arraylist(d) is in

new_cand?

New_cand.add(arraylist(d)

C

D

Yes

Support(arraylist(d)

>=min support

No Yes

no

	
[image: image14.emf]Generate rule

Find any frequent

itemsets in selected

table rule

Change into rule

form

return

Show rule in

the aplication

	Figure 11: Flowchart of find subset of

sequential patterns
	Figure 12: Flowchart of

generate rule

The design of this application is simple and straight forward. After login and make a connection to the database, user can create new table based on the circulation table in the PCU Library database. After that the user can choose the period of the data that user want to mine.

Thus, user could choose whether the data which being mined using Generalized Sequential Patterns sub system or Prefix-projected Sequential Pattern Mining (PrefixSpan) sub system. The results of those sub systems are Sequential Patterns Rules. The appearance of these mining results from the application as well as the appearance at the web recommendation could be seen at Figure 13 and Figure 14.
	[image: image15.png]Generate.

| Selctabl | Show Sequence | Generate Langink | Seect e |

RULE

Select Rl [janl506_s2 ieS v

Fule Code Fule SupportValue Sertence

1 2186602.2186619 |2 2186602-> 2186613
(2204 2183238) |2 72204218929
(2204 2188521) |2 72204 2188521
EO0IEE1Z12) |2 6301661212
(@184027.21850.. |2
(218923321885, |2 2185298 2186521
a6 |2 2734426475

2185081 Retailng management

Uit Recomendation®]

Cick an the Sentence Calumn ta see the book tle in the belon

	[image: image16.png]Simple Searc

in[Tte] (et]

Advanced Search | Directortes | Help

cormme
Search result

Collections found: 21 record(s)

1 [Total quality management in higher education [permalink]

Author Seymour, Daniel
Year 19911

People who after borrowed this book will borrow :

2 [Total quality management [permalink]

Author Gaspersz, Vincent
Year 2001

People who after borrowed this book will borrow :
1. Implementing six sigma
2. Design and analysis of experiments

	Figure 13: Sample of

the Mining Result
	Figure 14: Sample of the

Recommendation Webpage

4. 5.
Testing And Analysis

The device specification used for testing is:

· Processor
: Intel Core 2 Duo T5300
· RAM

: 2.5Gb DDR2

· Harddisk
: 120Gb

· O/S

: Windows XP SP2

· Compiler
: Microsoft Visual Basic.NET and PHP
Time processing tests are arranged 6x using transaction data in one/two/three month(s) with some of test settings. As you can see at the Table 3 it could be seen all of the test results. Otherwise, the test results graphs could be seen at Figure 15 and Figure 16.
Table 3: The results of time processing and memory usages tests

	Num.
	Data

Range
	Transactions & Items Number
	Processing Time & Memory Usage
	Minimum

Support
	Rule

Count

	
	
	
	GSP
	PrefixSpan
	
	

	1
	January

to

February 2005
	Transactions numbers: 1433

Items numbers: 1369
	Processing Time: 88s

Memory Usage: 49528 Kb
	Processing Time: 21s

Memory Usage:

63192 Kb
	2
	54

	
	
	
	Processing Time: 21s

Memory Usage:
46514 Kb
	Processing Time: 21s

Memory Usage:

61027 Kb
	3
	7

	2
	January 2005

and January 2006
	Transactions numbers: 2595

Items numbers: 2263
	Processing Time: 5952s

Memory Usage

38904 Kb
	Processing Time: 64s

Memory Usage:

41253 Kb
	2
	271

	
	
	
	Processing Time: 64s

Memory Usage:

37876 Kb
	Processing Time: 58s

Memory Usage:

42906 Kb
	3
	43

	3
	January

to

March 2005
	Transactions numbers: 6769

Items numbers: 5301
	Processing Time: 87164s

Memory Usage:

44740 Kb
	Processing Time: 277s

Memory Usage:

50792 Kb
	2
	1206

	
	
	
	Processing Time: 3996s

Memory Usage:

49468 Kb
	Processing Time: 312s

Memory Usage:

51726 Kb
	3
	204

	[image: image17.png]SECOND

100000

TIME

—&—GSP(min. supp 2)

—m—PS(min. supp 2)

/‘/ . GSP (min. supp 3)
PS (min. supp 3
L - ¢ Pp3)
© %]) N S
N V) o) > ©
& N 2 w &

TOTAL TRANSACTION

	[image: image18.png]Kb

70000
60000
50000
40000
30000
20000
10000

MEMORY USAGE

=~ _===E=’Ef:’

GSP(min. supp 2)
—m—PS(min. supp 2)
~ GSP (min. supp 3)

PS (min. supp 3)

)
)
NS

o N >

o 3 S

® N &
PERIOD

	Figure 15: The Graph of Time

Processing Comparison

	Figure 16: The Graph of Memory

Usages Comparison

The questioner results from user candidate of this application is the decision maker at Petra Christian University Library could be seen at Table 4. The average result is 75%.
Table 4: Questioner Result

	No
	Jobs
	Criteria

	
	
	1
	2
	3
	4
	5
	6

	1
	Head of Library
	3
	4
	4
	4
	3
	4

	2
	Circulation Staff
	3
	3
	4
	3
	3
	4

	3
	Circulation Staff
	5
	4
	3
	4
	4
	4

	4
	Circulation Staff
	4
	4
	4
	4
	4
	4

	Total
	15
	15
	15
	15
	14
	16

	Mean (Percentage)
	75%
	75%
	75%
	75%
	70%
	80%

Scoring: 1 (Very Bad to 5 (Very Good

The criterias:

1. User friendly application

2. Interface design

3. The accuracy of the information results.

4. The application could answer the library needs.

5. The user guide which is given for this application

6. Language application to explain the information
5. Conclusion

Finally, from the above processing time could be concluded that algorithm PrefixSpan is better than algorithm GSP especially for the application. The reason is the time processing that is needed in algorithm PrefixSpan is less than algorithm GSP. Beside that, memory usages comparison is not quite different. The questioner test results from the user candidates are only 75%, so it could be summarized that this application is being fixed and re-tune to use easier.
References

[1] Agrawal, Rakesh, R. Srikant, "Mining sequential patterns", Proc. 1995 Int. Conf.Data Engineering (ICDE’95), pages 3–14, Taipei, Taiwan, Mar. 1995.
[2] Chiu, Susan, Domingo Tavella, Data Mining and Market Intelligence for Optimal Marketing Returns, Elsevier Inc., 2008.

[3] Dong, Guozhu, Jian Pei, Sequence Data Mining, Springer Science+Business Media, 2007.

[4] Fayyad, U. M., G. Piatetsky-Shapiro, P. Smyth, "From data mining to knowledge discovery in databases", AI Magazine, 37-54. 1996.

[5] Han, Jiawei, Micheline Kamber, Data mining: Concepts and techniques, 2nd Edition, San Fransisco: Morgan Kaufmann. 2006.
[6] Pei, Jian, Jiawei Han, B. Mortazavi, H. Pinto, Q. Chen, U. Dayal, M. C. Hsu, "PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In Proc. 2001 Int. Conf. Data Engineering (ICDE’01), pages 215–224, Heidelberg, Germany, April 2001.
[7] Pei, Jian, Jiawei Han, B. Mortazavi, J. Wang, H. Pinto, Q. Chen, U. Dayal, M. C. Hsu, "Mining sequential patterns by pattern-growth: The prefixspan approach", IEEE Trans. Knowledge and Data Engineering, 16:1424–1440, 2004.
_1335812205.vsd
1

Create sequence table

Get sirculation data based on visitor

Calculate the amount data displayed

_1347610230.vsd
Start

Login

Change Password?

Change Password

Create Connection

Create Period

yes

no

GSP/PrefixSpan

Generate Frequent Itemsets GSP

Generate Frequent Itemsets PrefixSpan

PrefixSpan

GSP

Generate Rules

Generate Recomendation

Create Table

End

_1347612312.vsd
1

Generate candidate

 length=1?

Candidate=Select distinct kd_buku from sirkulasi

Save candidate into tabel TEMP_RULE

ya

Length=2?

Cand1=cand2=select candidate from rule where length=1

Count the total of cand1 & cand2

_1336410786.vsd
1

Count support

Count the amount of sequence

_1335813308.vsd
Generate rule

Find any frequent itemsets in selected table rule

Change into rule form

return

Show rule in the aplication

_1333875107.vsd
Generate Frequent Itemsets

Input minimum support

Count support each candidate

Generate candidate length-1

>=minimum support?

Find subset of sequential patterns

return

N

Count support each candidate

Y

Divide search space each candidate

_1333918635.vsd
1

Divide search space each candidate

_1333917001.vsd
1

Find subset of sequential patterns

Table_seqßSelect* from temp_ps2

_1331335536.vsd
Generate Frequent Itemsets
GSP

Input minimum support

K=1

Create sequence table

>=minimum support?

K++

return

Y

N

Generate candidate length-k

Count support each candidate

Prune candidate

