
Inverse Static Analysis of Massive
Parallel Arrays of Three-State Actuators via

Artificial Intelligence

Felix Pasila*, Rocco Vertechy†,
Giovanni Berselli‡ and Vincenzo Parenti Castelli*

* Dept. of Mech. Eng., University of Bologna, Italy
† Percro Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy

‡ Dept. of Mech. Eng., University of Modena and Reggio Emilia, Italy

Abstract Massive parallel arrays of discrete actuators are force-
regulated robots that undergo continuous motions despite being
commanded through a large but finite number of states only. Real-
time control of such systems requires fast and efficient methods for
solving their inverse static analysis, which is a challenging problem.
Artificial intelligence methods are investigated here for the on-line
computation of the inverse static analysis of a planar parallel array
featuring eight three-state force actuators and possessing one degree
of revolute motion.

1 Introduction

Discrete-State Manipulators (DSM) are a special kind of mechanisms whose
actuators can be made switching among a finite number of states only. In-
troduced in the early 1970’s [1] in an attempt to conceive sensor-less robots
as well as to reduce the complexity of control systems and computer inter-
facing, nowadays DSM can be classified into two different groups depending
on whether their actuators act as either discrete displacement generators
[2-5] or discrete force generators [6]. This work deals with the latter type of
DSM, usually referred to as Massively Parallel Robots (MPR). In essence,
MPR are dynamically constrained mechanisms employing a large number of
on-off actuators that exert either a constant force (active state) or no force
(inactive state) irrespective of their arbitrary kinematically unconstrained
configuration. To achieve high force capabilities (both in terms of variation
range and accuracy), the architecture of these MPR practically requires a
large number of actuators (typically 4-10 times greater than the number
of degrees of freedom desired for the robot) that are usually arranged in a

1

Figure 1. Ternary Massively Parallel Robot (MPR) actuated by eight
three-state force generators.

prevalently in-parallel configuration. Owing to the large number and the
discrete nature of the actuator variables, the Inverse Static Analysis (ISA)
of MPR, i.e. to find the states of the actuator variables for a given exter-
nal (force/moment) action, turns out to be a very challenging problem. To
tackle this issue, in the last twenty years several elegant solution methods
have been proposed [2-6], which however require too many calculations for
on-line MPR control. In this paper, the potentialities of artificial intelli-
gence methods are investigated for the real-time ISA solution of a planar
ternary (i.e. with three states being -1, 0 and 1) MPR with one degree of
rotational motion that is actuated by eight three-state force generators.

2 Ternary Massively Parallel Mechanism

The ternary MPR considered in this study is depicted in Fig. 1. It fea-
tures eight identical Crank and Slotted-Lever (CSL) 3RP planar mecha-
nisms (where R and P are for revolute and prismatic joints respectively)
sharing the same crank and its moving revolute joint, which is centered
at point A(α). The common crank is hinged to the base at point O, the
eight links with variable length (hereafter called slotted-levers) A(α)Bi (for
i = 1, 2, . . . , 8) are hinged to the crank at the common point A(α) and to
the base at points Bi, which are symmetrically located with respect to the
Y axis along a circular arc having radius r = OBi and with a spread angle
2β (here β = 11.25◦).
The output link of the considered MPR is the common crank. A discrete

2

actuation is provided by the eight P joints through identical three-state
force generators which, irrespective to the relative position of the slider and
the slotted-lever, supply the forces

Fi = Fui [A (α)−Bi] / ∥A (α)−Bi∥ , i = 1, .., 8, (1)

with F being a constant magnitude force and ui being the activation state
(namely ui∈ {1, 0, −1}) of the i -th actuator. Irrespective to the discrete
actuation, the common crank can undergo continuous motion which is lim-
ited here in the range 0 ≤ α ≤ 180◦. By considering all force contributions,
the resulting torque M that can be generated at the output crank is

M (α, ui) = F

8∑
i=1

ui [k · [A (α)−O]× [A (α)−Bi] / ∥A (α)−Bi∥] , (2)

where k is the unit vector normal to the plane of motion of the mechanism.
Equation (2) represents the static equilibrium condition of the considered
ternary MPR (link weight and friction are ignored). For any desired contin-
uous value αD (i.e. for any desired MPR configuration), the Direct Static
Analysis problem amounts to find the torque M∗, within a range M of
discrete values, which corresponds to a known combination of the activa-
tion states uD

i . Conversely, for any αD, the Inverse Static Analysis (ISA)
problem amounts to find the best combination of the activation sates u∗

i

(among a total of 38 possibilities for each αD) which enables the genera-
tion of the moment M∗ (i.e. M∗ = M (αD, u∗

i) that more closely matches
a desired torque MD; that is, to find u∗

i , i = 1, . . . ,8, for which the error
e∗ =

∥∥MD −M∗
∥∥ is

e∗ = min
ui∈{1,0,−1}

(∥∥MD −M
(
αD, ui

)∥∥) . (3)

Note that since the desired MD can be any real value, whereas M is only
a discrete subset, in general the minimum error e∗ is different than zero.
Moreover, owing to the discrete nature of the eight variables ui, the ISA
described by Eq. (3) cannot be solved via standard pseudo-inverse methods.
To give an idea of the potential performances of the considered ternary
MPR, the ranges M of available torques that can be generated at the out-
put crank by discretely activating the eight actuators ui are shown in Figs.
2 and 3 with cyan dot marks (data are computed via Eq. (2) with F = 10N,
||A(α) – O ||= 0.1m and r = 0.38m). In the plots, each line corresponds to
a different angular position of the crank (specifically with α ranging from 0
to 90◦ and from 15◦ to 85◦ with 10◦ step in Figures 2 and 3 respectively).

3

As shown, despite the discrete activation, this MPR is capable of generating
torques in a rather ample range and with a reasonable resolution. Addi-
tionally, owing to the possibility of spatially distributing the partitioned
actuation system, this MPR also exhibits a rather uniform torque genera-
tion capability within its full range of motion (0 ≤ α ≤ 180◦). Note that this
latter feature cannot be achieved by a standard CSL mechanism actuated
by a single continuously regulated force generator.

3 Inverse Static Analysis Models

This section presents five different methods for the solution of the ISA prob-
lem described in the previous section, namely: one Look-Up Table model;
two Neuro-Fuzzy models; two Neural Network models. Essentially, each of
these models is a computational machine that associates an output ternary
number u = [u1, . . . , u8] with eight trits (ternary digits) to an input couple
of continuum real numbersX = [X 1, X 2] = [α, M]. Set-up of all these meth-
ods requires the knowledge of an appropriate input-output (X -u) dataset
D with finite dimensions. Here, D consists of 10·38 X -u correspondences
that are generated via Eq. (2) for ten different values of α, ranging from
0 to 90◦ with 10◦ step, and for all possible (38) combinations of u (note
that all the X -u pairs contained in D satisfy Eq. (3) with e∗ = 0). Given
the continuity of α, D is not an exhaustive enumeration of all the possible
solutions of the ISA problem. Thus the considered methods are required to
provide some generalization ability (namely the ability to find X -u pairs for
arbitrary α which are not contained within D). To discuss about their suit-
ability for real-time control, the five ISA models are compared in terms of
time of off-line preparation tp, time of on-line calculation tc, modeling error
em (i.e. the error calculated via Eq. (3) in predicting X -u correspondences
for input pairs XD = [αD, MD] contained in D), and generalization error
eg (i.e. the error calculated via Eq. (3) in predicting X -u correspondences
for input pairs XD not contained in D).

3.1 Look-Up Table Model

The Look-Up Table (LUT) model is a brute-force solution approach and it
is the simplest method considered here. LUT uses a stored data structure
as a pattern collection of the entire dataset D described above. As such,
LUT does not require any learning mechanism. During model preparation,
the input values X of D are first normalized between 0 and 1, then the so
modified dataset D is sorted and stored row-by-row in an array. During
model usage, the desired inputs XD are first normalized, second they are

4

compared to the corresponding entries of the LUT using a row-by-row sim-
ilarity procedure, finally the suitable outputs u∗

i (for i = 1, .., 8) are chosen
from the LUT row which provides the minimum error between XD and X .

3.2 Neuro-Fuzzy Models

Two Neuro-Fuzzy models are considered which are based on the Neuro-
Fuzzy Takagi-Sugeno inference scheme with Gaussian membership functions
[7]. Models of this kind are precise fuzzy systems which are static, easy to
interpret, focus on accuracy and provide a strong connection between input
X and output u . Both models are based on the same overall architecture
and only differ in the defuzzification operation. In particular, introducing
the Gaussian membership functions Gn

j (j = 1, 2; n = 1, . . . , N)

Gn
j (Xj) = exp

[
−
(
Xj − cnj

/
σn
j

)2]
, (4)

with characteristic mean cnj and variance σn
j , together with the fuzzy rules

Rn : IF X1 is Gn
1 AND X2 is Gn

2 THEN yni = wn
0i + wn

1iX1 + wn
2iX2, (5)

with wn
0i, w

n
1i and wn

2i being the Takagi-Sugeno weights, the common part
of the two Neuro-Fuzzy models calculates the continuous variables

ūi =

N∑
n=1

yni

 2∏
j=1

Gn
j (Xj)

/
N∑

n=1

2∏
j=1

Gn
j (Xj)

 . (6)

From Eq. (6), the two different models, hereafter briefly referred to as NFTS
and NFLUT, are derived by alternatively estimating the actuator activation
states ui through one of the following defuzzification operations

ui = round (ūi) or ui = RLUT (ūi) (7)

where RLUT indicates a properly predisposed Reduced Look-Up Table in-
volving ūi as only input. Prior to their use, NFTS and NFLUT models
require the tuning of the parameters cnj , σ

n
j , w

n
0i, w

n
ji (for j = 1, 2; i = 1,

. . . , 8; n = 1, . . . , N ; in the following N = 11). Here, the optimal values of
these 308 parameters are found by a learning procedure which employs 12%
of the X -u pairs known from D. In particular, the learning is performed via
the Levenberg-Marquardt Algorithm [8]. Additionally, the NFLUT requires
the generation of the RLUT, which is here constructed by storing the most
significant u − u correspondences that occurred during training with the
known dataset D.

5

3.3 Recurrent Neural Network Models

Two Neural Network models are considered which are based on Elman-type
Recurrent Neural Networks with hyperbolic-tangent activation functions.
Approximators of this kind are dynamic models that feature short-term
memory so as to be capable of representing time-dependent mappings [9].
Both models are based on the same overall architecture and only differ in
the presence or absence of the context layer. In particular, for a given
input X (t) = [X 1(t), X 2(t)] = [α(t), M (t)] at the time step t, both models
calculate the actuator activation states ui(t) (for i = 1, . . . , 8) as

ui (t) = round

[
G

(
b2i +

L∑
l=1

wHO
il G (al (t))

)]
with G (y) = y

/√
1 + y2,

(8)

al (t) = b1l + wCLal (t− 1) +
2∑

j=1

wIH
lj Xj (t) with al (0) = 0, (9)

where b1l, b2i, w
HO
il , wIH

lj and wCL (for i = 1, . . . , 8; j = 1, 2; l = 1, . . . , L; in
the following L = 27) are model parameters to be determined. From Eq. (8)
and (9) the two different models, hereafter briefly referred to as MLP (Multi-
Layer Perceptron) and ERNN, are derived by respectively selecting wCL = 0
and wCL = 1/L. Regarding the remaining 305 parameters, the optimal
values are found by a learning procedure which employs 12% of the X-u
correspondences known from D. In particular, the learning is performed
here via an accelerated version of the Back-Propagation Algorithm [10].

3.4 Comparison of the Five Inverse Static Analysis Models

Comparison of the five considered models is reported in Figs. 2 and 3, as
well as in Table 1. From these results, it can be concluded:
• LUT provides the worst generalization capabilities and the largest com-
putational time during the on-line phase which makes it unsuited for
real-time control applications.

Method/Description LUT NFTS NFLUT MLP ERNN
Off-line preparation time tp (s) 48 965 983 11358 639
On-line computation time tc (s) 0.3502 0.0014 0.0135 0.0026 0.0026
Modeling error em (N) 0 0.658 0 0.464 0.377
Generalization error eg (N) 0.805 0.985 0.528 0.515 0.389
Standard deviation of eg (N) 0.499 0.585 0.328 0.431 0.347
Full Scale General. error (%) 16.1 19.7 10.5 10.3 7.8
Note: the CPU has 32 bit operating system, dual core processor, 2.6 GHz, RAM 4 GB.

Table 1. Performance comparison of the considered methods.

6

0 1000 2000 3000 4000 5000 6000 7000
−6

−4

−2

0

2

4

Training sample enumeration (samples sorted for di"erent angles and for ascending moments)

M
o

m
e

n
ts

 (
N

m
)

NFTS MLPNN CCERNN Training Data

α = 90α = 80α = 70α = 60α = 50α = 40α = 30α = 20α = 10α = 0

Figure 2. Training performance of different inverse static analysis methods.

0 200 400 600 800 1000 1200 1400 1600
−6

−4

−2

0

2

4

Test sample enumeration (samples sorted for di"erent angles and for ascending moments)

M
o

m
e

n
ts

 (
N

m
)

LUT NFTS NFLUT MLP ERNN Test Data

α = 15 α = 25 α = 35 α = 45 α = 55 α = 75 α = 85

Figure 3. Testing performance of different inverse static analysis methods.

• ERNN is the most accurate model, features the best generalization ability,
and requires a rather small computational time during the on-line phase.
These features make ERNN very suited for real-time control.

• MLP is comparable to ERNN in terms of modeling accuracy, general-
ization capability and required on-line computational time. However, it
needs very long time for off-line learning.

• NFTS features the shortest on-line computational time; however it is more
inaccurate than MLP and ERNN both for modeling and for generalizing.

• NFLUT is rather similar to ERNN in terms of accuracy, but requires a
larger on-line computational time.

4 Conclusions

This paper presented: 1) a planar massively parallel robot with 8 three-
state force actuators and one continuous degree of rotational motion; 2) one

7

brute-force method, two Neuro-Fuzzy methods and two Recurrent Neural
Network methods for the solution of inverse static analysis. Thanks to the
partitioned and spatially distributed actuator architecture, the considered
discrete robot features rather ample, uniform and accurate torque genera-
tion capabilities. Comparison among the considered inverse static analysis
methods highlighted that Elman type Recurrent Neural Network model is
best suited for real-time control applications.

Bibliography

[1] B. Roth, J. Rastegar, and V. Sheinman, “On the design of com-
puter controlled manipulators,” in First CISM-IFTOMM Symposium
on Theory and Practice of Robots and Manipulators, 1973, pp. 93–113.

[2] G. S. Chirikjian, “Inverse kinematics of binary manipulators using a
continuum model,” J. of Intelligent and Robotic Systems, vol. 19, pp.
5–22, 1997.

[3] I. Ebert-Uphoff and G. S. Chirikjian, “Inverse kinematics of discretely
actuated hyper-redundant manipulators using workspace densities,” in
IEEE Int. Conf. on Robotics and Automation, 1996, pp. 139–245.

[4] J. Suthakorn and G. S. Chirikjian, “A new inverse kinematic algorithm
for binary manipulators with many actuators,” Advanced Robotics,
vol. 15, no. 2, pp. 225–244, 2001.

[5] D. Lichter, V. A. Sujan, and S. Dubowsky, “Computational issues in
the planning and kinematics of binary robots,” in IEEE Int. Conf. on
Robotics and Automation, 2000, pp. 341–346.

[6] P. Yang and K. J. Waldron, “Massively parallel actuation,” in
IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2001,
pp. 868–873.

[7] J. S. R. Jang, “Anfis: adaptive-network-based fuzzy inference system,”
IEEE Trans. on Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665
–685, 1993.

[8] A. Palit and R. Babuska, “Efficient training algorithm for takagi-sugeno
type neuro-fuzzy network,” in IEEE Int. Conf. on Fuzzy Systems,
vol. 3, 2001, pp. 1367–1371.

[9] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179–211, 1990.

[10] A. K. Palit and D. Popovic, Computational Intelligence in Time Series
Forecasting, Theory and Engineering Applications. Springer, 2005.

8

