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1. Introduction

Due to unreliable production system, vendors may not deliver
products to the buyers when needed, resulting in lost sales.
However, excessive supplies to ful customer's requirement
results in higher inventory cost. The inventory cost is one of the
dominant costs for many industries. [t represents approximately
25% of the total assets (Philips and White, 1981), while the
business investment on inventory is from 15-20% of the annual
gross national product in the United States (Tersine, 1994).
Industries should plan their strategy to provide products and
services to the customers at a minimum cost. The order quantity
and the time to c&r are critical decisions for both the manu-
facturing and the S&rvice industries. Some industries implement
Just in Time (JIT) system to reduce their inventory cost. In order to
support an efficient JIT system, it is important to ensure the
reliability of the vendor's production system.

Since ]JIT concept can reduce inventory cost, extensive
researches on vendor-buyer inventory problems with small batch
deliveries have been done recently. A finite rate of production for
product with lot shipment policy was initially introduced by
Banerjee (1986). Goyal and Mebebe (2000) extended the model
by developing a single-vendor single-buyer inventory model with
small and equal sized shipment. Hoque and Goyal (2000) devel-
oped a single-vendor single-buyer integrated production-inventory
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system by considering the capacity of transport equipment. A JIT
model in a single-vendor single-buyer inventory system with
gperfect product quality was developed by Huang (2004).

leuwenhuyse and Vandaele (2006) proved that lot splitting
policies have benefited both the supplier and the buyer. A
coordinating vendor-buyer inventory model with permissible
delay in payments as trade credit scenario was developed by
Jaber and Osman (2006). Ertogral et al. (2007) developed an
integrated vendor-buyer model under equal-size shipmen@@ind
incorporated transportation cost explicitly into the model. Zhou
and Wang (2007) built a singl@W¥endor single-buyer inventory
model with shortages, wherein the buyer's unit holding cost is
not required to be greater than the vendor's unit holding cost and
deteriorating items. Pasandideh and Niaki (2008) developed a
production inventory model with multiple deliveries, multiple
products and warehouse space limitation. A single-vendor single-
buyer inventory model with linearly decreasing demand was
developed by Omar (2009). Lin (2009) developed an integrated
single-vendor single-buyer inventory model with backorder price
discount and variable lea e.

All the studies above assumed that the production process is
perfect and there is no delay in the production process. However
in reality, there are possibilities that the production process is
delayed due to machinﬂ]availahility and shortages of materials
and facilities. Abboud et al. (2000) developed EPQ models by
considering random machine unavailability with backorders and
lost sales. The models were extended by Jaber and Abboud 001
who assumed learning and forgetting in production. Later Chung
et al. (2011) extended the work of Abboud et al. (2000) by
considering deteriorating items. Some researchers have
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considered preventive maintenance time in a production inven-
tory model (Meller and Kim, 1996; Chen, 2006; El-Ferik, 2008).
The effects of machine breakdown and corrective maintenance
were first studied by Groenevelt et al. (1992). Machine break-
down and corrective maintenance for a production inventory

el have been extended recently by Abboud (2001), Aghessaf
et al. (2007) and Chiu et al. (2008).

According to the author's extensive literature studies, there are
no researches that analyze a single-vendor single-buyer (SV-5B)
inventory model with JIT system al stochastic machine unavail-
ability time. In an integrated SV-5B model, the vendor and the buyer
decide jointly as a team while for a non-integrated model, the
vendor and the buyer make their own decision without consulting
the other. Our study on an integrated ( SV-5SB) model with stochastic
inventory is confirmed by some researchers who have shown that
an integrated SV-SB model performs better than a non-integrated
model (Ben-Daya and Hariga, 2004; Lo et al, 2007).

In this study, we assume a JIT system where the buyer who
pays the transportation cost, decides the order quantity size of
items and requests items delivery in multiple shipments. The
vendor produces the items using an economicoduction quan-
tity (EPQ) model. Ideally, the machine starts a production run
when the inventory level is equal to zero. In some periods, there is
a possibility that the machine may not be available. If this
situation occurs, the vendor cannot deliver the predetermined
quantity ordered by the buyer, resulting in the buyer's lost sales.
We consider two distribution models for the random machine
unavailability case. The distribution models represent two differ-
ent types of distribution: uniformly distributed means constant
number of machine unavailability over a period of time while
exponentially distributed means machine unavailability may
increase with time. Both cases can occur in real life. Similar
distribution types were used by Abboud et al. (2000) and Giri and
Dohi (2005).

The paper has four sections. Section 1 introduces the re-
search motivation and literature review. Section 2 shows the
development of the model. Section 3 illustrates the example
and sensitivity analysis. Finally, conclusions are drawn in
Section 4.

2. Problem definition and formulation
2.1. Assumptions

a. A single vendor and single buyer are considered.

. The set-up and transportation times are insignificant and can
be ignored. @

. The demand rate is constant and the time horizon is infinite.

. All costs are known and constant.

. The buyer pays the transportation cost.

. The unsatisfied demands of the buyer will be lost sale.

(=2

- Br

2.2, Notations

cycle time

total production and non production time

lost sales time

pro@iction down time

the vendor's production quantity, units/cycle

shipment quantity, units/delivery

number of shipments placed during a period Ty
number of shipments placed during the production time
production rate, units/year

buyer's demand rate, units/year

oo s=e oSS

w
=~
w

A buyer's ordering cost, $/order

Av vendor's setup production cost, $/cycle

S. vendor's late deli cost, $/year/delivery
Sy buyer’s lost sales cost, ${unit/year

C; FEYer's transportation cost, $/delivery

hy vendor's holding cost, ${unit/year

h buyer's holding cost, ${unit/year

TBC total buyer cost

e totalg&ndor cost

TBUC (TVUC) total buyer (vendor) cost per unit time
Tuc total vendor-buyer unit cost

TBUC,; (TVUCy,) total buyer (vendor) cost per unit time for no
lost sales case

TUGCy;  total vendor-buyer unit cost for lost sales case

TBUC,; (TVUC,) total buyer (vendor) cost per unit time for uni-

form distribution case

total vendor-buyer unit cost for uniform distribution

case P

TBUCg (TVUCg) total buyer (vendor) cost per unit time for

exponential distribution case

total vendor-buyer unit cost for exponential distribu-

tion case

TUCy

TUG,

The vendor inventory model can be seen in Fig. 1. The vendor
produces products for wly/K time and delivers g units every
shipment, where g =Q/K The vendor's production quantity unit
per replenishment cycle is

Ty
Q= WP? (1)
Referring to Wang and Sarker (2006 ), we modify the total inventory
cost to consider the case for one inventory cycle, one has

G*K(K—w+1)

Ir= —Sp (2)

gle vendor's total cost consists of the vendor's setup, the
holding and the shortage cost. The vendor should pay a penalty
cost to the buyer when the items are delivered late. The penalty
cost depends on the delivery delay time and is independent of the
product quantity. The vendor's total cost in one production cycle,
T=1, can be modeled as follows:

heq?K(K—w+1)

E(TVC)=Avr+ 2D

+S.,[' (t=Tg)f (tydt 3)
Jr=Ty

The total replenishment time consists of the production up
time and production down time, and the expected shortage time.

.

WK wi' K

T
(KT K| i

Fig. 1. The vendor inventory model.
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-D
L
Tw T
g 2. The buyer inventory level
The total replenishment time is
ET)=Ty+Ts=Ty+ [ (t—Ty)f (f)dt 4)
SiE=1y

2
Using renewal reward theorem, the total cost per unit time can be
modeled as

Av+ (@K (K—w+1)/2D)+S, 72, (t=Tof (e

TVUC = ,x
Tn+ [i= ¢, (t=Taf(Ddt

(5)

The buyer's inventory level can be represented in Fig. 2. When
the inventory level is equal to zero, g units of product will be
requested by the buyer. However, there is a possibility that the
vendor delays his shipment resulting in the buyer's lost sales
during the period T..

The buyer's total inventory cost consists of ordering cost,
transportation cost, holding cost, lost sales cost and penalty
revenue from the vendor. One has
hg*K =
E(TBC) = A+c K+ — <~ +(5D-S,) [ (t=To)f(tydt (6)
2D Ji=1,

The expected buyer cost per unit time can be modeled as
A+ ccK+(hg?K/2D)+(SpD—Sy) [72 1 (t=Ta)f (D)t
Ty+ Ji— ¢, (t=Tof(D)dt

TBUC = (7

TUCy =TVUCy+TBUCy

TUC,

_ Av+(h,q2K(K(1—(D/P))+1)/2D)+ A+ ;K + (hq*K /2D)+ 5,D((b—(gK /D)1 —(D/P)))* /2b)

Substitute w from (9) and Ty from (8) into (10), one has

K D
n:‘%(l—f—,) (11)

2.3. Uniform distribution case

Assume that the unavailability time t is a random variable
uniformly distributed over the interval [0,b]. The probability
density function, f{t), is given as

1/b, O0=<t=<b
0, otherwise

fity=

ghstitute the uniform probability density function in (5], the
vendor's total cost per unit time can be written as
AV (P K (KO =D/ P+ 1)/2D)+ Sul(b —(gK /D)1 (D /P)F /2b)

TVUC, = L (12)
(gK/D) +((b—(gK /D)1—(D/P))* /2b)

Lost sales in the machine unavailability time does not occur if
the production down time, Ty, is greater or equal to the upper
bound of the machine unavailability time, b. To convey condition
without lost sales, (12} can be remodeled as

5 , .
TVUCy, = DAv+ (hyq"K(K(1—(D/P))+1),/2) (13)
qk
The buyer's total cost per unit time for the uniform machine
unavailability time is

TBUC, — A+CiK+(hg?K /2D) +(SyD—S,)(b—(gK/D)X1—(D/P))*/2b)
u=
& +((b—(gK /D)(1—(D/Py)? /2b)

(14)

Similar to the expected vendor total cost per unit time, the
expected buyer total cost when the non production period (T,) is
greater or equal to the upper bound of machine unavailability
time, b, is

_ AD+cKD+(hg*K/2)

TBUCy, = Q—K (15)

The vendor and the buyer total cost can be modeled as

(16)

The replenishment time is
_ K

Ty )

(8)

(gK /D) +((b—(gK /D)(1—(D /P)))? /2b)

The optimal order quantity can be derived when the equation
below is fulfilled:

dTUCy  (hygK(K(1—(D/P))+1)/D)+(hgK/D)—5,K(1—(D/P))((b—(gK /DX1—(D/P)))/2b)

dq

: : LRk
 Rytay + g2k BB 98 DU AR WG R o) + 5,00 gk /my1— P2 28y

((gK /D) +((b—(qK/D)(1—(D/P)))% /2b))?

From (1) and (8), the value of w can be modeled as
KD
w= 5 9

Since the production up time is wT/K, then the production down
time is

Ta=(1-%)Tw (10)

0 (17)

where

Ry = g—x(1 — f—:) ((b—(gK/D)(1—(D/P)))/bD)

The vendor and buyer total cost when the production down
time is bigger than the upper bound of the machine unavailability
time is

TUCn = TVUC i + TBUCyyp.
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_ Av+(hog®K(K(1—(D/P))+ 1)/2D)+A+cK +(hm?K /2D)
- (gK/D)

TUCy,

(18)

Eking the derivative of {18) with respect to g and set the value
equal to zero, one has

f 2(Ay+cc +A)
*
‘?NL@./m.,:K:1—:D;‘PJJ+1J+ h) a9

e single-vendor single-buyer inventory md#®l with uni-
formly distributed machine unavailability time can be solved
using the following procedure:

Step 1 Set K=1 and TUC(0,q).

Step 2 Calculate g, using (19).

Step 3 Calculate (11) using gy, from step 2. If T is less than b,
g0 to step 4, otherwise g* is found.

Step 4 Calculate (17) to derive g* If TUCK*—1,q)=TUC
(K*,q) = TUC(K* +1,q), the optimal solution is found, otherwise
K=K+1 and go to step 2.

The cost function (16) is a nonlinear equation, and no closed
form solution can be derived. However, the optimal solution can
be guaranteed when 0 < q < Db/(K(1—D(PF)). The detailed calcula-
tions are given in Appendix A.

24. Exponential distribution case

In the second case, the machine unavailability time is a
random variable that is exponentially distributed. Exponential
probability density function with mean (1/4) is given as

fitty=ie* for i=0
The expected machine unavailability time is

ety

E(T;) = (20)

i
The vendor total cost per unit time is

_ Av+(hyg*K(K(1—(D/P))+ 1)/2D) + (S e~ 14K/ D010/ 17

TVuCg (gK /D) + (e—aK/Dii— /Py / )
(21)
The huyergal cost per unit time can be modeled as
24 _ — AR DT =D Py £ 3
TBUCE — A+cK+(hg*K/2D)y+(S,D-S,)(e [2) (22)

qu.,"’DJ 4+ (e—AgK/DN1—(D/Pin ,.";J:-J

The total vendor and buyer cost is

TUCe

_ Av+(h@*K(K(1—(D/P))+1)/2D)+A+ccK + (hq* K/ 2D) + 5, D(e~H@K/DX1-D/P0) 7

Table 1
The optimal solution for different production rate.

K q Buyer cost Vendor cost Total cost
1 1730247 11586.98 938029 20967.27
2 1068.940 6581.28 882060 15401.88
3 771229 4780.77 843003 13210.80
4 603226 3885.32 8186.86 1207218
5 495534 3367.82 802641 11394.23
6 420672 3043.52 791484 10958.36
7 365631 2831.08 783421 10665.29
8 323467 2689.16 777428 10463.44
9 290138 2594.51 772886 10323.37

10 263132 2533.08 769398 10227.06

11 240806 2495.86 7667.00 10162.86

12 222042 2476.83 764607 1012290

13 206050 2471.78 762990 10101.68

14 192259 2477.70 761753 10095.23

15 180243 2492.40 760824 10100.64

16 169.682 251421 760149 10115.70

17 160325 2541.86 7596.83 10138.69

18 151978 2574.34 759396 10168.30

The closed form solution of the total cost per unit time for the
exponential distribution cannot be derived. However, the optimal
solution can be guaranteed when some conditions as shown in
Appendix A are fulfilled.

3. Numerical example

n this section, a numerical example is shown to illustrate the
model. The numerical example is partly adopted from Kim and Ha
(2003). Let the production rate P=19,200 units/year, demand rate
D=4800 units/year, vendo up cost A,=5600(cycle, ordering
cost of buyer A=$25/order, vendor holding cost h,=3$6/unit/year,
buyer holding cost h= $7 unit/year, transportation cost F=$50/
delivery, vendor lateness delivery=3$50/year/delivery and buyer
lost-sales cost=S510/unit/year. The result shows that the optimal
supplchain cost per unit time is $10,095.23, where the vendor
total cost per unit time is $7617.53 and the buyer total cost per
unit time is $2477.70. The optimal solution is derived when the
units per delivery, g=192.259 and the number of delivery, K=14.
In our example (see Table 1), if the buyer act as the leader, then he
prefers to set K=13. If the vendor acts as the leader, he will prefer
to set K=17; if the vendor and the buyer use the service of a third
party decision making, then K=14 will result in a least total

(K /D) (e—1aK/Dy1—D/Pm /1)

The optimal order quantity can be found by taking the derivative
of (23) with respect to g, one has

dTUCE _ gK(he(K(1—(D/P)+ 104K} S(1—(D/P))Ke HasTDFHD)
dqg T gK (e #aKDNT-DPN 13D - (gK /D) + (e AWK DHT-DPW 17y
R Ay + A+ K (G Kh K1 =(D/PY)+ 1) +-h)/2D) 4 (S, De - A4ak/DR1-4DPW ¢ 3y -0
- ((qK/ D) (e HaK/DRT B 1)) =

24)

where

K D e—).qu.-'Dx 1= /Py
e B (1-5) ()

23)

supply chain cost. Table 1 shows that the optimal shipment
frequency depends on who will act as leader in the decision
making process.

For perfect machine, tb is no machine unavailability
time; the solutions derived are shown in Table 2. The optimal
solution is derived when the unit per delivery, g=192.354 and
the number of delivery (K) is equal to 6. It is clear that the
total supply chain cost ($7694.15), the vendor cost ($5669.24)
and the buyer cost ($2024.91) in the perfect machine condition
are lower than the costs in the machine unavailability time
model.

Table 3 shows the optimal solutions for different lost sales
costs. When the lost sales cost increases, as expected the number
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Table 2
Optimal solution for no machine unavailability time.

The numerical example in the exponential distribution model
uses similar data as the uniform distribution model, except for the
machine unavailability rate, where we set i=4. The optimal

K B t Vendor cost Total cost o . - - . L
4 uyer cos e cos solution is derived for the machine with exponentially distributed
1 608.511 2721.40 7027.54 1064894 unavailability time when the optimal order quantity (g) is
2 397921 2146.32 6603.54 8749.86 192.127 units and the number of shipment (K) is 16. The total
3 305.917 1985.99 6120.80 8106.79 supply chain cost is $12,423.94, the buyer cost is $4448.28 and
4 252727 1952.89 5881.65 783454 i dor cost is $§7975.66
5 217.541 1974.96 5747.73 772260 1€ vendor cost s o6,
6 192.354 2024.91 5669.24 7694.15
7 173.344 209013 5623.68 771381
4. Conclusions
Table 3 In this study, a single-vendor single-buyer inventory model
The optimal solution for different lost sales costs. ?th stochastic machine unavailability time has been developed.
he machine unavailability time is assumed to be uniformly and
Sp q i o exponentially distributed. The numerical example illustrates how
4 1 190.1635 3001.25 6227.45 318,70 the‘ multiple deliveries resu!t ina !owe‘r cost than the sil‘lgle
7 13 192.3884 2675.99 7192.10 0868.09 delivery model. The stochastic machine time model results in a
10 14 192.2585 2477.70 7617.53 10095.23 higher cost and more delivery frequencies when compared to a

of shipments tends to increase and the optimal order quantity
tends to be stable. This situation indicates that the expected
replenishment time is increasing and the lost sales probability is
decreasing. Since the lost sales probability is decreasing, the lost
sales cost also decreases but the inventory cost increases. As a
consequence, the total supply chain cost and the vendor cost both
increase.

Appendix A

perfect machine model. The optimal delivery frequency
increases when the lost sales cost increases. This study provides
managerial insight into enterprises that employ JIT systems and
production delay (lost sales) due to machine unavailability. The
proposed model helps enterprises to optimize their profit by
coordinating the number of deliveries for various machine una-
vailability time and lost sales cost. The models can be extended to
consider Poisson distribution machine breakdown and stochastic
delivery time.

The second derivative of the uniform distribution unavailable time in g is

TUC  hyK(K(1—(D/P))+ 1)+ hK—S,K*(1—(D/P))
dg®> —  D((gK /D)+((b—(gK/Dy(1—(D/P)))? /2b))

_ RyhugK(K(1—(D/P)) +1)+(2hgK/D)—S,K(1—(D/P))((b—(gK/D)(1—(D/P))/2D)))

((gK/D)+ ((b—(gK /D)(1—(D,/P))) [ 2b))?

N Ry (2Au+(hu@2K /DYK(1—(D /P))+ 1) +2A+2¢K +(hg?K /D)—Sy D 1—(D/ PY)((b—(qK /D)1 —(D/P))/b)*)

((gK /D) +((b—(gK /D)1 —(D/P)))% /2b))

B K*(1 —HD,J"J')JJ2 tA,,+th,,q2K;"'2DJth 1-(D/PH+1)+A+ CrK+thq2Kﬁ'2DJ—Sth 1—(D/Py)(b—(gK /D)1 —tD,J"PJJJ,f'ijgj

(Al
D?bi(gK /D)+((b—(gK/D)(1—(D/P)))? /2b))? :
where
Ry = (K/D)—K(1—(D/P))((b—(gK/D)(1—(D/P)))/bD)
For T4=0, (A1) is equal to zero; for Ty=Db, (A1) can be rewritten as
dTUC _ 2DA, +A+aK) A2)

dg? K
Since (A2)is true and (A1) is non-increasing in Ty = 0 to b, then the total cost per unit time is convex when 0 < Ty < b. Using (10), we can

prove that the t cost per unit time is convex when 0 < g < Db/(K(1—D|P)).With some simplification, the four conditions that satisfy
the convexity of the total cost per unit time for the exponential distribution case are shown in (A3)-(A5)

DIn(((1/ A)—(K/P—(2K /DY)(D/K))
= 7K(1—(D/P))

DY Gakc-o/pn o) DY _akc—oenm (9K Dy,
2+(1—P)e —4+ l—P e -\ l—P Al=0 (Ad)

AN 1 25 D\? —LAg(1—(D/Py/ D) gk 25 D\? — g 1—(D /Py /D)
(%) ﬁ"‘shK x_(l—;—)) e +(ﬁ) 5K f_(l—;—)) e

(A3)
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D D

- (@ 25K (]_ f_))) e—u‘m1-10_.-r>n.-m)K(] —(1 —fo'PJJP"""‘K”"D"'P”"'D]) (A5)

(A5) is true if

(% —25,K (] _ %) p—tAgKO—D /Py /Dy ) K ( 1-(1- fD;";PJJE"_‘)qK‘ 1-D/PYD)

D

and one has

Sp = hq
b= 2D(1—(D/P))e-aK(1-D/P1/D)

From (A3), (A4) and (A7), we can conclude that
conditions.
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