LAPORAN PENELITIAN APLIKATIF-KREATIF No: 09/PEN/SIPIL/2011

CONTOH APLIKASI ASCE 7-10 SEBAGAI STANDAR PERENCANAAN KETAHANAN GEMPA DI INDONESIA

Oleh : Ima Muljati Benjamin Lumantarna Felix Suwadji Lisayuri Limanto Fandy Indra Sutanto Albert Martinus L.

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN PERENCANAAN UNIVERSITAS KRISTEN PETRA SURABAYA Februari 2011

HALAMAN PENGESAHAN

LAPORAN PENELITIAN PELAKSANAAN PENELITIAN APLIKATIF KREATIF

1	a. Judul Penelitian	Contoh Aplikasi ASCE 7-10 Sebagai Standar Perencanaan Ketahanan Gempa di Indonesia
	b. Bidang Ilmu	Teknik Sipil/ Earthquake Engineering
2	Ketua Peneliti:	
	a. Nama Lengkap dan Gelar	Ima Muljati, S.T., M.T., M.Eng.
	b. NIP	93031
	c. Jurusan/Fakultas/Pusat Studi	Teknik Sipil/ Fakultas Teknik Sipil dan Perencanaan
3	Alamat Ketua Peneliti	Jurusan Teknik Sipil, UK Petra Jl. Siwalankerto 121 – 131 Surabaya +62 31 2983398; imuljati@petra.ac.id
4	Jumlah Anggota Peneliti	5
	a. Nama Anggota Penelitian I	Prof. Ir. Benjamin Lumantarna, M.Eng., Ph.D.
	b. Nama Anggota Penelitian II	Felix Suwadji
	c. Nama Anggota Penelitian III	Lisayuri Limanto
	d. Nama Anggota Penelitian IV	Fandy Indra Sutanto
	e. Nama Anggota Penelitian V	Albert Martinus L.
5	Lokasi Penelitian	Surabaya
6	Kerjasama dengan institusi lain	
7	Jangka Waktu Penelitian	6 bulan
8	Biaya yang diusulkan	
	a. Sumber dari UK Petra	
	b. Sumber lainnya	Rp. 3,000,000
	Total	Rp. 3,000,000

Surabaya, 28 Februari 2011 Ketua Peneliti, Mengetahui, Ketua Jurusan Teknik Daniel Tjandra, S Ima Muljati, S.T., M.T., M.Eng. NIP: 03010 Mik SIPIL & PENG Mengetahui, Teknik Sipil dan Perencanaan 5 Mutu 0 THE dello Sugiharto, M.T. NIP:84028 OWN SPIL & PE 1

PRAKATA

Penelitian ini merupakan bagian dari penelitian mengenai Standar Nasional Indonesia (SNI) khususnya SNI 03-1726-2002 tentang Tata Cara Perencanaan Ketahanan Gempa untuk Bangunan Gedung yang dilakukan di Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Kristen Petra. Tujuan utama penelitian ini adalah memberikan kontribusi aktif dalam penyempurnaan peraturan perencanaan ketahanan gema untuk bangunan gedung di Indonesia.

Dalam kesempatan ini Penulis mengucapkan terima kasih yang sebesar-besarnya kepada beberapa pihak yang telah terlibat, yaitu:

- 1. Tuhan Yang Maha Esa, atas perkenan dan hikmatnya sehingga penelitian ini boleh berlangsung dengan lancar.
- 2. Dekan Fakultas Teknik Sipil dan Perencanaan Universitas Kristen Petra dan Kepala Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Kristen Petra yang telah menyetujui pelaksanaan penelitian ini.
- 3. Ketua Jurusan Teknik Sipil UK Petra yang telah membantu proses seleksi dan administratif sehingga penelitian dapat terlaksana dengan baik.

Pada akhirnya penelitian ini tidak lepas dari beberapa kekurangan yang tidak bisa kami hindari. Untuk itu kami mohon maaf jika ada kesalahan, baik itu disengaja maupun tidak. Kami mengharapkan masukan dan semoga penelitian ini dapat berguna bagi semua pihak yang membutuhkan, terutama demi kemajuan dunia teknik sipil di Indonesia.

Surabaya, 28 Februari 2011

Penulis

CONTOH APLIKASI ASCE 7-10 SEBAGAI STANDAR PERENCANAAN KETAHANAN GEMPA DI INDONESIA

ABSTRAK

Adanya data seismotektonik terbaru dan perkembangan peraturan ketahanan gempa di dunia serta adanya keinginan untuk memiliki standar perencanaan yang lebih baik mendorong dilakukannya revisi terhadap SNI 03-1726-2002. Revisi tersebut akan mengacu pada ASCE 7-10. Meskipun filosofi perencanaan ketahanan gempa tidak mengalami perubahan yang signifikan, ASCE 7-10 memuat ketentuan-ketentuan baru yang lebih detail dibandingkan SNI 1726-02. Untuk memudahkan para perencana mengaplikasikan ketentuan-ketentuan baru tersebut diperlukan suatu pedoman perencanaan. Studi ini memberikan contoh aplikasi ASCE 7-10 pada Sistem Rangka Pemikul Momen Khusus dan Sistem Ganda Dinding Geser Beton Bertulang Khusus dan Sistem Rangka Pemikul Momen Khusus Beton Bertulang.

Kata kunci: SNI 03-1726-2002, ASCE 7-10, Sistem Rangka Pemikul Momen Khusus Beton Bertulang, Sistem Ganda.

ABSTRACT

The latest seismotectonic data and the development of seismic provisions around the world as well as the need to have a better design procedure, enforcing the Ministry of Public Work of Indonesia to revise the Indonesian Seismic Code, SNI 03-1726-2002. The revision will be based on ASCE 7-10. Although there is no significant improvement in terms of seismic design philosophy, ASCE 7-10 consists of many new provisions involving more detailed calculation compare to SNI 1726-02. This study is aimed to serve a design example of a simple concrete special moment resisting frame as well as a dual system of concrete structural wall and concrete special moment resisting frame.

Key words: SNI 03-1726-2002, ASCE 7-10, Special Moment Resisting Frame, Dual System.

LATAR BELAKANG

Kejadian gempa besar yang melanda Indonesia dalam sepuluh tahun terakhir menunjukkan bahwa kerusakan struktur tidak hanya terjadi pada bangunan yang tidak direncanakan tahan gempa *(non-engineered buildings)* namun juga pada beberapa bangunan-bangunan yang direncanakan tahan gempa (Konstruksi, 2010). Adanya data seismotektonik terbaru serta perlunya Indonesia memiliki peraturan perencanaan ketahanan gempa yang baik mendorong dilakukan revisi terhadap SNI 03-1726-2002.

Pada bulan Juli 2010, Kementerian Pekerjaan Umum Indonesia telah mengesahkan Peta Zonasi Gempa Indonesia 2010. Peta baru ini lebih mendetail karena memperhitungkan morfologi, kegempaan sesar dan tingkat aktivitas sesar. Peta baru ini juga telah mengacu pada *International Building Code* 2006 serta melibatkan analisis sumber gempa tiga

dimensi dengan periode ulang 475 dan 2475 tahun untuk *peak ground acceleration* (PGA), respons spektral percepatan pada batuan dasar periode pendek 0,2 detik, dan periode 1 detik (Konstruksi, 2010).

Di sisi yang lain, kebutuhan revisi SNI 03-1726-2002 sangat mendesak mengingat beberapa negara kiblat peraturan gempa di dunia juga mengalami perubahan yang pesat. UBC 1997 yang menjadi dasar acuan SNI 03-1726-2002 telah berkembang menjadi IBC 2000, IBC 2006 dan terakhir menjadi IBC 2009. Sedangkan ASCE 7-02 yang mengadopsi dari NEHRP *National Earthquake Hazards Reduction Program* - NEHRP 2000 (FEMA 368, 2001), berkembang menjadi ASCE 7-05 yang menjadi acuan dari IBC 2006 (Tumilar, 2008). Oleh karena itu, pemahaman ASCE 7-05 dan IBC 2006 merupakan satu kesatuan yang tidak terpisahkan. Dengan diluncurkannya IBC 2009 maka terjadi perubahan pada ASCE 7-05 menjadi ASCE 7-10. Oleh sebab itu, pembaruan SNI 1726-2002 akan didasarkan pada ASCE 7-10 dan IBC 2009 .

Setelah dilakukan kajian awal terhadap isi ASCE 7-10, ternyata terdapat perbedaan yang signifikan antara SNI 1726-02 dan ASCE 7-10. ASCE 7-10 tidak menyediakan respon spektrum seperti halnya SNI 1726-02 melainkan harus dibuat berdasarkan percepatan puncak batuan dasar pada periode pendek 0.2 detik dan periode 1 detik yang telah disediakan peta konturnya. Selain itu terdapat hal-hal baru yang sebelumnya belum tercantum dalam SNI 726-02.

Banyaknya perbedaan-perbedaan mendasar antara ASCE 7-10 dan SNI 03-1726-2002, menimbulkan kekhawatiran apabila peraturan ASCE 7-10 diadopsi secara utuh maka akan banyak perencana struktur yang mengalami kesulitan dalam penggunaannya. Oleh karena itu, diperlukan suatu pedoman perencanaan ketahanan gempa untuk struktur atas yang mampu menjembatani perubahan dari SNI 03-1726-2002 menuju ASCE 7-10. Penelitian ini memberikan dua contoh aplikasi ketentuan SNI 1726-02 yang disesuaikan dengan ASCE 7-10 pada Sistem Rangka Pemikul Momen Khusus (SRPMK) beton bertulang dan Sistem Ganda Dinding Geser Beton Bertulang Khusus dan Sistem Rangka Pemikul Momen Khusus (SRPMK) Beton Bertulang.

CONTOH 1:

APLIKASI KETENTUAN SNI 1726-02 YANG DISESUAIKAN DENGAN ASCE 7-10 PADA SISTEM RANGKA PEMIKUL MOMEN KHUSUS BETON BERTULANG

Struktur yang ditinjau memiliki konfigurasi denah dan elevasi struktur seperti yang ditunjukkan pada Gambar 1 – 3.

Gambar 1 Denah Struktur Lantai 1 - 9

Gambar 2 Denah Struktur Lantai Atap

Gambar 3 Elevasi Struktur

Data untuk keperluan analisis struktur dan desain adalah sebagai berikut:

- Jenis struktur : Sistem Rangka Pemikul Momen Khusus (SRPMK)
- Tinggi Struktur (h_n) : 40 m
- Jumlah Tingkat : 10 tingkat
 - Dimensi Elemen : Dimensi elemen-elemen struktur dapat dilihat pada Tabel 1.

Tabel 1 Dimensi Elemen Struktur

Elemen	Ukuran (mm)
Balok	400 x 650
Kolom (lt 1-10)	700 x 700
Pelat	120

Mutu Beton dan Tulangan

Mutu material yang digunakan dapat dilihat pada Tabel 2 berikut ini:

Material	Mutu (MPa)
Beton	30
Tulangan Lentur	400
Tulangan sengkang	240

• Pembebanan

Beban-beban yang digunakan berdasarkan Peraturan Pembebanan Indonesia Untuk Gedung 1983 (PPIUG'83) adalah sebagai berikut:

- 1. Beban Mati
 - a. Berat sendiri elemen struktur (berat jenis beton 2400 kg/m³)
 - b. Spesi penutup tebal 5 cm = 105 kg/m^2
 - c. Penutup lantai = 24 kg/m² (lantai 1-9)
 - d. Plafond dan penggantung = 18 kg/m^2
 - e. Ducting = 60 kg/m^2
 - f. Dinding ½ bata di balok tepi setinggi 4 m (lantai 1-9) dan setinggi 0,8 m (lantai atap) dengan berat per m² sebesar 250 kg/m²
- 2. Beban Hidup
 - Beban hidup lantai 1-9 = 250 kg/m^2
 - Beban hidup lantai atap = 400 kg/m^2

Perhitungan dilakukan dengan tahapan sebagai berikut:

1.1. Kategori Resiko

Struktur ini dimaksudkan untuk bangunan perkantoran sehingga menurut ASCE Tabel 1.5-1, struktur tersebut termasuk ke dalam Kategori Resiko I.

1.2. Faktor Keutamaan (I_e)

Faktor keutamaan menurut ASCE Tabel 1.5-2 sebesar 1,0.

1.3. Parameter S_s dan S₁ Peta Zonasi Gempa Indonesia 2010

Berdasarkan lokasi bangunan yang terletak di kota Surabaya dan meninjau Peta Zonasi Gempa Indonesia 2010 dengan periode ulang 2500 tahun, diperoleh parameter $S_s = 0,6g - 0,7g$, diambil 0,7g. Sedangkan parameter $S_1 = 0,20g - 0,25g$, diambil 0,25g.

1.4. Site Class

Berdasarkan data tanah lokasi tempat berdirinya bangunan yang berupa tanah lunak maka menurut ASCE Tabel 20.3-1, *Site Class* struktur ini termasuk *Site Class E*.

Ps. 4.6

Ps. 4.1.2

Ps. 4.1.2

1.5. Site Coefficient ($F_a \, dan \, F_v$)

Nilai F_a ditentukan berdasarkan *Site Class* dan S_s menurut ASCE Tabel 11.4-1 sebagai berikut:

Site Class E

$$S_s = 0.7g$$
 $F_a = 1.30$ (interpolasi)

Nilai F_v ditentukan berdasarkan Site Class dan S_1 menurut Tabel 4.8 sebagai berikut:

Site Class E $S_1 = 0,25g$ $F_v = 3,00$ (interpolasi)

1.6. Parameter Percepatan Spektral Respons pada Periode Pendek (S_{MS}) dan Periode 1 Detik (S_{M1}) berdasarkan MCE_R Ps. 4.7.3

Menurut ASCE pers. 11.4-1, nilai S_{MS} adalah sebagai berikut:

$$S_{MS} = F_a S_s = (1,30)(0,70g) = 0,910g$$

sedangkan ASCE pers. 11.4-2, nilai S_{M1} adalah sebagai berikut:

 $S_{M1} = F_v S_1 = (3,00)(0,25g) = 0,750g$

Parameter Percepatan Spektral Respons Rencana pada Periode Pendek (S_{DS}) dan Periode 1 Detik (S_{D1}) Ps. 4.7.4

Menurut ASCE pers. 11.4-3, nilai S_{DS} adalah sebagai berikut:

$$S_{DS} = 2/3 S_{MS} = 2/3 (0,808g) = 0,607g$$

Sedangkan menurut ASCE pers. 11.4-4, nilai S_{D1} adalah sebagai berikut:

 $S_{D1} = 2/3 S_{M1} = 2/3 (0,503g) = 0,500g$

1.8. Kategori Desain Gempa (KDG)

Ps. 4.7.7

KDG ditentukan oleh nilai parameter S_{DS} dan S_{D1} beserta Kategori Resiko. Penentuan KDG adalah sebagai berikut:

- 1. Struktur termasuk Kategori Resiko I dan parameter $S_1 = 0,25g < 0,75g$, jadi penentuan KDG tergantung pada Tabel 4.9 dan Tabel 4.10, diambil KDG yang memberikan pengaruh terburuk pada struktur.
- 2. Berdasarkan Tabel 4.9 yang berdasarkan pada S_{DS} dan Kategori Resiko, diperoleh KDG D.
- Berdasarkan Tabel 4.10 yang berdasarkan pada S_{D1} dan Kategori Resiko, diperoleh KDG D.

Maka KDG struktur adalah KDG D.

Ps. 4.7.3

1.9. Pemilihan Sistem Struktur

Telah disebutkan pada bagian informasi perencanaan bahwa jenis struktur yang digunakan adalah Sistem Rangka Pemikul Momen Khusus Beton Bertulang (SRPMK). Penggunaan jenis sistem struktur ini harus diperiksa terhadap batasan ketinggian struktur untuk setiap KDG sesuai dengan ASCE Tabel 12.2-1 sebagai berikut:

KDG D

 h_n max = tinggi maksimum tidak dibatasi

 $h_n = 40 \text{ m}$

Dengan demikian, jenis sistem struktur SRPMK dapat digunakan.

1.10. Faktor Redundansi

KDG struktur adalah KDG D, oleh karena itu diambil nilai faktor redundansi, ρ = 1,3.

1.11. Struktur Beraturan dan Tidak Beraturan

Pemeriksaan iregularitas dilakukan berdasarkan ASCE 7-10 Tabel 12.3-1, 12.3-2, dan SNI Pasal 4.2.1 dan hasilnya dirangkum dalam Tabel 3.

No.	Syarat	Kondisi yang Ada	Keterangan
1	Denah struktur gedung tidak menunjukkan coakan sudut dan kalaupun mempunyai coakan sudut, panjang sisi coakan tersebut tidak lebih dari 15% dari ukuran terbesar denah struktur gedung dalam arah sisi coakan tersebut.	Struktur tanpa coakan	ОК
2	Sistem struktur gedung tidak menunjukkan loncatan bidang muka dan kalaupun mempunyai loncatan bidang muka, dimensi horisontal dari sistem penahan gaya gempa di setiap tingkat tidak lebih dari 130% dari tingkat berikutnya. Dalam hal ini, struktur rumah atap yang tingginya tidak lebih dari 2 tingkat tidak perlu dianggap menyebabkan adanya loncatan bidang muka.	Tidak ada loncatan bidang muka	ОК
3	Sistem struktur gedung terbentuk oleh subsistem-subsistem penahan beban lateral yang arahnya saling tegak lurus dan sejajar dengan sumbu-sumbu utama ortogonal denah struktur gedung secara keseluruhan.	Portal struktur saling tegak lurus	ОК
4	Sistem struktur gedung memiliki kekakuan	Lihat	ОК

Tabel 3 Pemeriksaan Struktur Beraturan dan Tidak Beraturan

Ps. 4.2.4.2

Ps. 4.2

No.	Syarat	Kondisi yang Ada	Keterangan
	lateral yang beraturan, tanpa adanya tingkat lunak. Yang dimaksud dengan tingkat lunak adalah suatu tingkat, di mana kekakuan lateralnya adalah kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan lateral rata-rata 3 tingkat di atasnya. Dalam hal ini, yang dimaksud dengan kekakuan lateral suatu tingkat adalah gaya geser yang bila bekerja di tingkat itu menyebabkan satu satuan simpangan antar-tingkat.	perhitungan no. 1.12	
5	Sistem struktur gedung memiliki berat lantai tingkat yang beraturan, artinya setiap lantai tingkat memiliki berat yang tidak lebih dari 150% dari berat lantai tingkat di atasnya atau di bawahnya. Berat atap atau rumah atap tidak perlu memenuhi ketentuan ini.	Lihat perhitungan pada no. 1.13	ОК
6	Sistem struktur gedung memiliki unsur- unsur vertikal dari sistem penahan beban lateral yang menerus, tanpa perpindahan titik beratnya, kecuali bila perpindahan tersebut tidak lebih dari setengah ukuran unsur dalam arah perpindahan tersebut.	Kolom menerus dan tidak ada eksentrisitas titik berat.	ОК
7	Sistem struktur gedung memiliki lantai tingkat yang menerus, tanpa lubang atau bukaan yang luasnya lebih dari 50% luas seluruh lantai tingkat serta tidak terjadi perubahan kekakuan efektif diafragma lebih dari 50% antara suatu tingkat dengan tingkat berikutnya	Lihat perhitungan pada no. 1.14	ОК

1.12. Kekakuan Lantai Tingkat Beraturan

Sistem struktur gedung memiliki kekakuan lateral tidak beraturan jika terdapat tingkat lunak. Yang dimaksud dengan tingkat lunak adalah suatu tingkat, di mana kekakuan lateralnya adalah kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan lateral rata-rata 3 tingkat di atasnya. Hasil pemeriksaan kekakuan lateral tingkat ditunjukkan pada Tabel 4.

r									
Tingkat		n	<i>I_{Gx}</i> (m ⁴)	$l_{c_{\rm e}}$ (m ⁴)	Arah Gempa X dan Y				
	<i>L</i> (m)			Gy (III)	K _i =n*12EI/L ³	0,7K _{i+1}	0,8*K-rata2 3 lt	Tingkat Lunak?	
1	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327 <i>E</i>	NO	
2	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327 <i>E</i>	NO	
3	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327 <i>E</i>	NO	
4	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327 <i>E</i>	NO	
5	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327 <i>E</i>	NO	
6	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327E	NO	
7	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327E	NO	
8	4	16	0.0408	0.0408	0.1225 <i>E</i>	0.0858 <i>E</i>	0.0327E	NO	
9	4	16	0.0408	0.0408	0.1225E	0.0858 <i>E</i>	0.0327E	NO	
10	4	16	0.0408	0.0408	0.1225E	-	_	NO	

Tabel 4 Pemeriksaan Kekakuan Lateral Tingkat

Hasil perhitungan yang ditunjukkan pada Tabel 4 menunjukkan struktur yang ditinjau memiliki kekakuan lateral tingkat yang beraturan tanpa adanya tingkat lunak.

1.13. Berat Lantai Tingkat Beraturan

Berat lantai tingkat yang tidak beraturan terjadi jika ada tingkat yang memiliki berat yang lebih dari 150% berat lantai di atasnya atau di bawahnya. Berat atap atau rumah atap tidak perlu memenuhi ketentuan ini. Hasil pemeriksaan berat lantai tingkat ditunjukkan pada Tabel 5.

Tingkat	W _i (kg)	150% <i>W_{i+1}</i>	150% <i>W_{i-1}</i>	W _i < 150%W _{i-1} atau W _i < 150%W _{i+1}
Atap	267.601,04	-	489.424,95	ОК
9	326.283,30	401.401,55	489.424,95	ОК
8	326.283,30	489.424,95	489.424,95	ОК
7	326.283,30	489.424,95	489.424,95	ОК
6	326.283,30	489.424,95	489.424,95	ОК
5	326.283,30	489.424,95	489.424,95	ОК
4	326.283,30	489.424,95	489.424,95	ОК
3	326.283,30	489.424,95	489.424,95	ОК
2	326.283,30	489.424,95	489.424,95	ОК
1	326.283,30	489.424,95	-	ОК

Tabel 5 Pemeriksaaan Berat Lantai Tingkat

Hasil perhitungan yang ditunjukkan pada Tabel 5 menunjukkan struktur yang ditinjau memiliki berat lantai tingkat yang beraturan.

1.14. Diskontinuitas Diafragma

Sistem struktur gedung memiliki lantai tingkat yang menerus, tanpa lubang atau bukaan yang luasnya lebih dari 50% luas seluruh lantai tingkat serta tidak terjadi perubahan kekakuan efektif diafragma lebih dari 50% antara suatu tingkat dengan tingkat berikutnya. Pemeriksaan luas bukaan dan perubahan kekakuan efektif diafragma sebagai berikut:

Rasio Luas Bukaan terhadap Luas Kotor Diafragma

$$\begin{array}{ll} A_{opening} &= 5 \mbox{ m } x \ 5 \ m &= 25 \ m^2 \\ A_{gross} &= 15 \mbox{ m } x \ 15 \ m &= 225 \ m^2 \\ \mbox{Rasio} = \frac{A_{opening}}{A_{gross}} \times 100\% = \frac{25}{225} \times 100\% = 11,11\% < 50\% \\ \mbox{Jadi, rasio bukaan} < 50\%. \end{array}$$

Rasio Kekakuan Diafragma antar Lantai Tingkat

Pemeriksaan kekakuan diafragma antar lantai tingkat ini dapat dilakukan melalui *software* analisis struktur yang dilakukan dengan cara pendekatan sebagai berikut:

a. Pada struktur yang telah dimodelkan secara 3D di dalam ETABS, diberikan restraint dalam arah translasi searah defleksi yang akan ditinjau pada joint yang berada pada ujung-ujung bagian eksterior struktur pada suatu diafragma lantai tingkat. Dimensi diafragma yang ditinjau didefinisikan sebagai S, yaitu bentang terpanjang dan De, yaitu bentang terpendek dari suatu diafragma seperti yang dapat dilihat pada Gambar 4.

Gambar 4 Tampak Atas Idealisasi Diafragma yang Ditinjau

Sedangkan pada diafragma lantai tingkat lainnya, *restraint* diberikan pada semua *joint* seperti pada Gambar 5.

Gambar 5 Tampak Atas Idealisasi Diafragma Lainnya

b. Pada joint struktur di sisi yang tidak diberi restraint, diaplikasikan gaya terpusat 10 kN (beban sembarang) seperti terlihat pada Gambar 6. Gaya terpusat tersebut hanya diaplikasikan pada diafragma lantai tingkat yang hendak dicatat defleksi maksimumnya. Pada saat gaya tersebut bekerja, pengaruh beban vertikal yang bekerja pada lantai diabaikan.

Gambar 6 Pembebanan pada Diafragma yang Ditinjau

c. Nilai defleksi maksimum di tengah bentang diafragma, *d_{imax}* dapat ditentukan seperti pada Gambar 7. Bentuk terdefleksi ini hanya dapat diperoleh apabila jenis diafragma lantai tingkat yang dimodelkan pada ETABS berupa *semi-rigid diaphragm*.

Gambar 7 Bentuk Terdefleksi dari Diafragma yang Ditinjau

d. Langkah a-c di atas dilakukan untuk lantai tingkat yang lain.

Hasil dari pengamatan defleksi maksimum, d_{imax} pada setiap diafragma lantai tingkat dan perbandingannya dengan lantai tingkat yang berurutan disajikan pada Tabel 6 berikut ini:

Lantai Tingkat	d _{imax} (mm)	Rasio 1	Rasio 2	Rasio 1 < 1,5 or Rasio 1 > 0,5	Rasio 2 < 1,5 or Rasio 2 > 0,5	Kesimpulan
10	0,007962	1,07	N/A	YES	-	YES
9	0,007416	1,01	0,93	YES	YES	YES
8	0,007328	1,00	0,99	YES	YES	YES
7	0,007328	1,00	1,00	YES	YES	YES
6	0,007327	1,00	1,00	YES	YES	YES
5	0,007327	1,00	1,00	YES	YES	YES
4	0,007327	1,00	1,00	YES	YES	YES
3	0,007327	1,00	1,00	YES	YES	YES
2	0,007322	1,04	1,00	YES	YES	YES
1	0,007051	N/A	0.96	-	YES	YES

Tabel 6 Nilai d_{imax} dan Rasio Defleksi

keterangan:

Rasio 1 = Rasio terhadap kekakuan lantai di bawahnya

Rasio 2 = Rasio terhadap kekakuan lantai di atasnya

Kesimpulan menyatakan YES jika rasio perubahan kekakuan diafragma tidak melebihi 50% lantai tingkat yang berurutan.

Oleh karena Rasio Defleksi pada suatu diafragma juga menggambarkan rasio kekakuan diafragma tersebut, maka dari Tabel 6 dapat dilihat tidak ada rasio perubahan kekakuan diafragma yang lebih dari 50%. Dari kedua pemeriksaan di atas, dapat disimpulkan

bahwa persyaratan mengenai luas bukaan dan perubahan kekakuan efektif diafragma terpenuhi.

Oleh karena struktur tidak mengalami iregularitas apapun maka struktur yang ditinjau termasuk struktur beraturan.

1.15. Pengaruh P-Delta

Pengaruh P-Delta langung diperhitungkan dengan menggunakan pilihan yang terdapat pada program ETABS v.9.07.

1.16. Pengaruh Penampang Retak

Momen inersia penampang utuh kolom dan balok rangka beton bertulang terbuka pada bangunan dikalikan dengan 75% untuk mengikutsertakan pengaruh penampang retak.

1.17. Jenis Diafragma

Dalam contoh ini, pelat lantai terbuat dari beton bertulang dan tidak mengalami iregularitas horisontal diskontinuitas diafragma. Oleh karena itu diafragmanya dapat diasumsi kaku.

1.18. Waktu Getar Alami Fundamental T

Periode fundamental struktur diperoleh melalui analisis modal pada model 3D di dalam ETABS v 9.07 sebesar:

 T_x : 1,5225 detik

T_y : 1,5225 detik

1.19. Gaya Gempa Rencana Analisis Statik Ekuivalen Ps.6.1

a. Koefisien Respons Gempa C_s

Berdasarkan ASCE persamaan 4.37, nilai C_s adalah sebagai berikut:

$$C_s = S_{DS}/(R/I_e)$$

 $C_s = 0,607q/(8/1) = 0,076q$

Nilai C_s tersebut tidak boleh lebih dari nilai C_s di persamaan 4.38, yaitu:

 $C_{smax} = S_{D1}/T(R/I_e) = 0.5g/1.5225(8/1) = 0.041g$

Nilai $C_s = 0,076g$ lebih besar daripada C_{smax} , maka gunakan $C_{smax} = 0,041g$

Struktur termasuk struktur beraturan Jumlah tingkat, N = 10 tingkat \ge 5 tingkat T = 1,5225 detik \ge 0,5 detik

Persyaratan S_s boleh diambil sebesar 1,5 tidak boleh digunakan

b. Berat Total Gedung, W

Berat total gedung, W didapat dari hasil perhitungan ETABS dan nilainya ditunjukkan pada Tabel 7.

Ps. 5.7

Ps. 5.3

Ps. 5.5.1

Ps. 6.1.2.1

Tingkat	Berat Lantai Tingkat(kg)
Atap	267.601,04
9	326.283,30
8	326.283,30
7	326.283,30
6	326.283,30
5	326.283,30
4	326.283,30
3	326.283,30
2	326.283,30
1	326.283,30
Total	3.204.150,71

Tabel 7 Berat Total Gedung, W

Jadi, berat total gedungnya, W sebesar 3.204.150,71 kg.

c. Gaya Gempa Dasar untuk Simpangan Antar Tingkat (V) Ps.6.1.2

Nilai V dihitung dengan ASCE pers. 12.8-1 sebagai berikut:

 $V = C_s W$

= (0,041g)(3.204.150,71)(9,81)

= 1.290.341,48 N = 1290,34 kN

1.20. Distribusi Vertikal Gaya Gempa

Ps. 6.1.3.1

Gaya lateral akibat gempa yang timbul pada lantai tingkat ke-x, F_x , harus ditentukan dengan ASCE pers. 12.8-11:

 $F_x = C_{vx}V$

dan ASCE pers. 12.8-12:

$$C_{vx} = \frac{W_x h_x^k}{\sum_{i=1}^n W_i h_i^k}$$

Nilai *k* diperoleh dengan meninjau waktu getar alami fundamental struktur, *T*. Oleh karena nilai $T_x = T_y = 1,5225$ detik dan berada di antara periode 0,5 detik dan 2,5 detik, maka *k* diperoleh dengan melakukan interpolasi linear antara 1 dan 2, yaitu 1,51.

Karena T_x sama dengan T_{y_i} maka F_{xx} sama dengan F_{xy} , F_{xx} adalah gaya gempa pada suatu lantai tingkat x akibat gaya gempa arah X. Sedangkan F_{xy} adalah gaya gempa pada suatu lantai tingkat x akibat gaya gempa arah Y. Hasil perhitungan F_{xx} dan F_{xy} dapat dilihat pada Tabel 8 berikut ini:

Lt. Tingkat ke-i	w _i (kg)	<i>h</i> _i (m)	k	$w_i \ge h_i^k$	C _{vx}	$F_{xx} = F_{xy}$
Atap	267.601,04	40	1,51	70.566.885,69	0,19	245,31
9	326.283,30	36	1,51	73.376.500,62	0,20	255,07
8	326.283,30	32	1,51	61.411.930,04	0,17	213,48
7	326.283,30	28	1,51	50.189.447,70	0,14	174,47
6	326.283,30	24	1,51	39.759.332,15	0,11	138,21
5	326.283,30	20	1,51	30.183.974,32	0,08	104,93
4	326.283,30	16	1,51	21.543.743,29	0,06	74,89
3	326.283,30	12	1,51	13.947.857,44	0,04	48,49
2	326.283,30	8	1,51	7.557.698,88	0,02	26,27
1	326.283,30	4	1,51	2.651.294,70	0,01	9,22
			Total	371.188.664,84	$V_x = V_y =$	1290,34

Tabel 8 Gaya Gempa Arah X dan Y di Setiap Lantai Tingkat

1.21. Application of Lateral Seismic Forces on Structure

Lateral Seismic forces yang telah dihitung sebelumnya, kemudian diaplikasikan pada setiap lantai struktur. Karena diafragmanya kaku, maka aplikasi beban gempa tersebut juga harus mempertimbangkan adanya pengaruh *inherent torsion* dan *accidental torsion* yang mungkin terjadi pada struktur. Secara sederhana, Load Case untuk Seismic Load dapat ditentukan sebagai berikut:

Gempa Arah X :(Gambar 8)

- EQXA \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak e_y terhadap pusat massa suatu lantai.
- EQXB \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak ($e_y + e_{yacc}$) terhadap pusat massa suatu lantai.
- EQXC \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak (e_y - e_{yacc}) terhadap pusat massa suatu lantai.

Gempa Arah Y :(Gambar 9)

- EQYA \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak e_x terhadap pusat massa suatu lantai.
- EQYB \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak (e_x+e_{xacc}) terhadap pusat massa suatu lantai
- EQYC \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak (e_x - e_{xacc})

keterangan:

- eksentrisitas antara pusat massa dan pusat kekakuan dalam arah sumbu x untuk memperhitungkan *inherent torsion*.
- eksentrisitas antara pusat massa dan pusat kekakuan dalam arah sumbu y untuk memperhitungkan inherent torsion.
- e_{xacc} : eksentrisitas tambahan untuk memperhitungkan *accidental torsion* sebesar 5% dari ukuran terbesar denah struktur arah X (B_x)
- e_{yacc} : eksentrisitas tambahan untuk memperhitungkan *accidental torsion* sebesar 5% dari ukuran terbesar denah struktur arah Y (B_{y})

catatan:

 e_{acc} tidak perlu diberikan secara simultan di kedua arah, namun harus diberikan pada arah yang memberikan efek torsional terburuk pada struktur. Dalam hal perhitungan elemen struktur yang memperhitungkan efek interaksi orthogonal arah gaya gempa (contoh : 100% EQX dan 30% EQY) maka hanya diperbolehkan salah satu dari EQX atau EQY yang mengandung e_{acc} , sehingga Load Case EQX dan EQY yang hanya memperhitungkan e_x atau e_y saja tetap diperlukan.

Dalam contoh ini, tidak terdapat eksentrisitas antara pusat massa (*Center of Mass-CM*) dan pusat kekakuan (*Center of Rigidity-CR*), yaitu $e_x = 0$ atau $e_y = 0$. Gambar ilustrasi dapat dilihat pada Gambar 8 dan Gambar 9.

1.22. Pemeriksaan Stability Coefficient, θ

Sistem struktur yang ditinjau merupakan Sistem Rangka Pemikul Momen Khusus maka memiliki parameter $I_e = 1,0$ dan $C_d = 5,5$ berdasarkan ASCE Tabel 12.2-1. Penentuan nilai *stability coefficient*, ϑ ditentukan menurut persamaan-persamaan sebagai berikut:

• Stability coefficient menurut ASCE pers. 12.8-16:

$$\theta = \frac{\mathsf{P}_{\mathsf{x}} \Delta \mathsf{I}_{\mathsf{e}}}{\mathsf{V}_{\mathsf{x}} \,\mathsf{h}_{\mathsf{sx}} \,\mathsf{C}_{\mathsf{d}}}$$

Nilai Stability coefficient setelah dibagi $(1 + \vartheta)$ tidak boleh melebihi nilai Stability coefficient maximum menurut ASCE pers. 12.8-17:

$$\theta_{max} = \frac{0.5}{\beta C_{d}} \le 0.25$$

Koefisien β adalah rasio geser perlu dibanding kapasitas geser pada lantai tingkat x dan x-1. Nilai rasio ini diijinkan untuk diambil sebesar 1,0.

Hasil perhitungan *stability coefficient* ditunjukkan pada Tabel 9.

					Simpangan	Simpangan antar	
			h _{sx}	Perpindahan	Antar Tingkat	tingkat rencana,	P _x
Tingkat	C _d	Ie	(mm)	(mm)	(mm)	Δ (mm)	(kN)
Atap	5,5	1	4000	43,72	1,72	9,46	2913,04
9	5,5	1	4000	42,00	2,72	14,96	6463,64
8	5,5	1	4000	39,28	3,67	20,18	10.014,24
7	5,5	1	4000	35,61	4,46	24,53	13.564,84
6	5,5	1	4000	31,15	5,08	27,94	17.115,44
5	5,5	1	4000	26,07	5,55	30,52	20.666,08
4	5,5	1	4000	20,52	5,83	32,06	24.216,64
3	5,5	1	4000	14,69	5,93	32,62	27.767,24
2	5,5	1	4000	8,76	5,52	30,36	31.317,88
1	5,5	1	4000	3,24	3,24	17,82	34.868,44

 Tabel 9 Hasil Perhitungan Stability Coefficient

Tabel 9 Hasil Perhitungan Stability Coefficient (lanjutan)

Tingkat	V_x (kN)	θ	<i>მтах</i>	<i>მmax pakai</i>	Kesimpulan
Atap	245,31	0,0051	0,0909	0,0909	ОК
9	500,38	0,0088	0,0909	0,0909	ОК
8	713,86	0,0129	0,0909	0,0909	ОК
7	888,34	0,0170	0,0909	0,0909	ОК
6	1026,55	0,0212	0,0909	0,0909	ОК
5	1131,48	0,0253	0,0909	0,0909	ОК
4	1206,37	0,0292	0,0909	0,0909	ОК
3	1254,85	0,0328	0,0909	0,0909	ОК
2	1281,12	0,0337	0,0909	0,0909	ОК
1	1290,34	0,0219	0,0909	0,0909	ОК

keterangan:

- P_x = jumlah beban desain vertikal pada lantai x dan di atas lantai x (kN), perhitungan nilai P_x tidak menggunakan faktor beban diatas 1,0. Nilai ini didapatkan dari perhitungan ETABS
- V_x = gaya geser gempa diantara lantai x dan x-1 (kN)

Berdasarkan ASCE pers. 12.8-16 dan 12.8-17, nilai ϑ dan ϑ_{max} adalah sebagai berikut:

$$\theta = \frac{P_{x} \Delta I_{e}}{V_{x} h_{sx} C_{d}}$$
$$\theta_{max} = \frac{0.5}{\beta C_{d}}$$

di mana $\beta = 1, C_d = 5,5$

 $\theta_{\text{max pakai}} = \text{nilai minimum antara } \frac{0.5}{\beta C_{d}} \text{ dengan } 0.25.$

1.23. Pemeriksaan Pengaruh Torsi

Ps. 5.4.6

Jenis diafragma pada struktur ini tergolong diafragma kaku, oleh karena itu pengaruh torsi pada struktur harus diperhitungkan yang dimana dibagi dalam pengaruh torsi dan pengaruh torsi ekstrim dimana masing-masing memiliki ketentuan sebagai berikut:

- Pengaruh torsi terjadi jika $(\Delta_{max} / \Delta_{average}) \ge 1,2$
- Pengaruh torsi ekstrim terjadi jika $(\Delta_{max} / \Delta_{average}) \ge 1,4$

Hasil pemeriksaan pengaruh torsi ditunjukkan pada Tabel 10.

Lantai	<i>∆</i> ∠ (mm)	<i>∆</i> _R (mm)	⊿ _{max} (mm)	∆ _{average} (mm)	∆ _{max} / ∆ _{average}	Pengaruh Torsi ($\Delta_{max} / \Delta_{average}$) ≥ 1,2	Pengaruh Torsi Ekstrim (Δ _{max} / Δ _{average}) ≥ 1,4	Kesimpulan
Atap	43,72	40,29	43,72	42,01	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
9	42,00	38,67	42,00	40,34	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
8	39,28	36,15	39,28	37,72	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
7	35,61	32,75	35,61	34,18	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
6	31,15	28,63	31,15	29,89	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
5	26,07	23,93	26,07	25,00	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
4	20,52	18,81	20,52	19,67	1,04	TIDAK	TIDAK	Tidak Diperhitungkan
3	14,69	13,42	14,69	14,06	1,05	TIDAK	TIDAK	Tidak Diperhitungkan
2	8,76	7,97	8,76	8,37	1,05	TIDAK	TIDAK	Tidak Diperhitungkan
1	3,24	2,90	3,24	3,07	1,06	TIDAK	TIDAK	Tidak Diperhitungkan

Tabel 10 Pemeriksaan Pengaruh Torsi

keterangan:

Untuk memahami yang dimaksud dengan Δ_L dan Δ_R maka dapat dilihat pada Gambar 10.

Gambar 10 Pengaruh Torsi

Hasil pemeriksaan pengaruh torsi yang ditunjukkan pada Tabel 10 menunjukkan bahwa pengaruh torsi pada struktur ini tidak perlu diperhitungkan.

1.24. V_{drift} – Analisis Statik Ekuivalen

Nilai V_{drift} pada analisis statik ekuivalen sama dengan V, dimana V didapat dari gaya gempa rencana statik ekuivalen.

Ps.6.1

1.25. Approximate Fundamental Period (T_a) Ps. 5.6

Nilai dari Approximate Fundamental Period dapat ditentukan melalui ASCE pers. 12.8-7:

 $T_a = C_t h_n^x$

Dari ASCE Tabel 12.8-2 diperoleh nilai C_t dan x untuk Concrete Moment-Resisting Frame: C_t : 0,0466 (equivalent in metric units) x : 0,9

sehingga nilai $T_a = 0,0466 (40)^{0.9} = 1,29$ detik.

1.26. Upper Limit of Fundamental Period (T_{up}) Ps. 5.6

Nilai *upper limit fundamental period*, T_{up} , diperoleh dengan mengalikan faktor C_u dengan nilai T_a yang telah diperoleh sebelumnya. Nilai C_u dapat diperoleh dari ASCE Tabel 11.6-2 dengan meninjau nilai $S_{D1} = 0,500g$, diperoleh nilai $C_u = 1,4$

$$T_{up} = C_u T_a = (1,4)(1,29) = 1,81 \text{ detik} > T(OK)$$

1.27. V_{design} – Analisis Statik Ekuivalen

Pada bagian ini akan dihitung nilai gaya geser dasar akibat gempa yang akan digunakan untuk mendesain elemen struktur, V_{design} . Dalam perhitungan V_{design} , perlu mempertimbangkan batasan T_{up} dan batasan C_s . Jika T melebihi nilai T_{up} maka dalam perhitungan V_{design} menggunakan nilai T_{up} .

a. Koefisien Respons Gempa Cs

Ps. 6.1.2.1

Ps. 6.1

Berdasarkan ASCE pers. 12.8-2 nilai C_s adalah sebagai berikut:

 $C_s = S_{DS} / (R/I_e)$

 $C_{\rm s} = 0,607g/(8/1) = 0,076g$

Nilai C_s tersebut tidak boleh lebih dari nilai C_s maksimum di ASCE pers. 12.8-3, yaitu:

 $C_{smax} = S_{D1}/T(R/I_e) = 0,500g/1,51(8/1) = 0,041g$

dan tidak boleh kurang dari nilai C_s minimum ASCE pers. 12.8-5, yaitu:

 $C_{smin} = 0,044S_{DS}I_e$

 $= 0,044 \times 0,607g \times 1 = 0,027g \ge 0,01g$

Oleh karena itu diambil $C_{smin} = 0,027g$.

Nilai $C_s = 0,076g$ lebih besar daripada C_{smax} , maka gunakan $C_{smax} = 0,041g$

b. Berat Total Gedung, W

Berat total gedung, W didapat dari hasil perhitungan ETABS dan nilainya ditunjukkan pada Tabel 11.

Tingkat	Berat Lantai Tingkat (kg)
Atap	267.601,04
9	326.283,30
8	326.283,30
7	326.283,30
6	326.283,30
5	326.283,30
4	326.283,30
3	326.283,30
2	326.283,30
1	326.283,30
Total	3.204.150,71

Tabel 11 Berat Total Gedung, W

Jadi, berat total gedungnya, W sebesar 3.204.150,71 kg.

c. Gaya Gempa Dasar Rencana (V_{design})

Nilai V_{desian} dihitung dengan ASCE pers. 12.8-1sebagai sebagai berikut:

 $V_{designx} = V_{designy} = C_s W$ = (0,041g)(3.204.150,71)(9,81) = 1.290.341,48 N = 1290,34 kN

1.28. Batasan Simpangan Antar-Tingkat

KDG Struktur yang ditinjau termasuk KDG D oleh karena itu simpangan antar-tingkat yang terjadi tidak boleh melebihi Δ_a/ρ . Nilai Δ_a didapatkan dari ASCE Tabel 12.12-1 yang ditentukan berdasarkan jenis sistem struktur dan kategori resiko. Pemeriksaan simpangan antar-tingkat yang terjadi terhadap simpangan antar-tingkat maksimum ditunjukkan sebagai berikut:

Sistem struktur merupakan Sistem Rangka Pemikul Momen Khusus, oleh karena itu pada ASCE Tabel 12.12-1 termasuk pada kategori Struktur yang tidak diatur pada ketiga hal di atas.

Kategori Resiko I

 $h_{sx} = 4 \text{ m}$

Oleh karena itu, Δ_a = 0,02 h_{sx} = 0,02 x 4 = 0,08 m

Simpangan antar-tingkat maksimum yang diijinkan sebesar Δ_a/ρ .

 $\Delta_a/\rho = 0.08/1.3 = 0.062 \text{ m} = 62 \text{ mm}$

Hasil pemeriksaan simpangan antar tingkat yang terjadi terhadap Simpangan antartingkat maksimum yang diijinkan ditunjukkan pada Tabel 12.

Tingkat	Cd	le	h _{sx}	Perpindahan (mm)	Simpangan Antar Tingkat (mm)	Simpangan antar tingkat rencana, Δ (mm)	Δa/ρ (mm)	$\Delta \leq \Delta_a/\rho$
Atap	5,5	1	4000	43,72	1,72	9,46	62	YES
9	5,5	1	4000	42,00	2,72	14,96	62	YES
8	5,5	1	4000	39,28	3,67	20,18	62	YES
7	5,5	1	4000	35,61	4,46	24,53	62	YES
6	5,5	1	4000	31,15	5,08	27,94	62	YES
5	5,5	1	4000	26,07	5,55	30,52	62	YES
4	5,5	1	4000	20,52	5,83	32,06	62	YES
3	5,5	1	4000	14,69	5,93	32,62	62	YES
2	5,5	1	4000	8,76	5,52	30,36	62	YES

Tabel 12 Pemeriksaan Simpangan Antar Tingkat yang Terjadi Terhadap SimpanganAntar-Tingkat Maksimum yang Diijinkan

Ps. 6.1.2

Ps. 8.2

1 5,5 1 4000 3,24	3,24	17,82	62	YES
-------------------	------	-------	----	-----

Hasil perhitungan yang ditunjukkan pada Tabel 12 menunjukkan simpangan antartingkat terjadi tidak melebihi nilai simpangan antar-tingkat maksimum.

1.29. Sela Dilatasi

Ps. 8.4

Pada contoh perhitungan ini tidak meninjau hubungannya dengan struktur di sebelahnya, oleh karena itu lebar sela dilatasi tidak perlu dihitung.

CONTOH 2:

APLIKASI KETENTUAN SNI 1726-02 YANG DISESUAIKAN DENGAN ASCE 7-10 PADA SISTEM GANDA DINDING GESER BETON BERTULANG DAN SISTEM RANGKA PEMIKUL MOMEN KHUSUS BETON BERTULANG

Struktur yang ditinjau memiliki konfigurasi denah dan elevasi struktur seperti yang ditunjukkan pada Gambar 11 – 13.

Gambar 13 Elevasi Struktur

Data untuk keperluan analisis struktur dan desain adalah sebagai berikut:

• Jenis struktur : Sistem

: Sistem Ganda Dinding Geser Beton Bertulang Khusus dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) Beton Bertulang

- Tinggi Struktur (h_n) : 40 m
 - Jumlah Tingkat : 10 tingkat
 - Dimensi Elemen : Dimensi elemen-elemen struktur dapat dilihat pada Tabel 13.

Tabel 13	Dimensi	Elemen	Struktur
Tabel 13	Dimensi	Elemen	Struktur

-	
Elemen	Ukuran (mm)
Balok	400 x 700
Kolom (lt 1-10)	600 x 600
Pelat	120
Dinding Geser	400 x 3000

• Mutu Beton dan Tulangan

Mutu material yang digunakan dapat dilihat pada Tabel 14 berikut ini:

Material	Mutu (MPa)			
Beton	30			
Tulangan Lentur	400			
Tulangan sengkang	240			

Tabel 14 Mutu Material

• Pembebanan

Beban-beban yang digunakan berdasarkan Peraturan Pembebanan Indonesia Untuk Gedung 1983 (PPIUG'83) adalah sebagai berikut :

1. Beban Mati

a.	Berat sendiri elemen s	struktur (berat	ienis beton	2400 kg/m^3
u.	Derat senain elements	Struktur (Derut	Jenna beton	2400 16/11 /

b. Spesi penutup tebal 5 cm = 105 kg/m^2

				.
c.	Penutup lantai	=	24	kg/m² (lantai
d.	Plafond dan penggantung	=	18	kg/m²
~	Ducting	_	60	$k \sigma / m^2$

- e. Ducting = $\frac{60 \text{ kg/m}^2 + 207 \text{ kg/m}^2}{207 \text{ kg/m}^2}$
- f. Dinding ½ bata di balok tepi setinggi 4 m (lantai 1-9) dan setinggi 0,8 m (lantai atap) dengan berat per m² sebesar 250 kg/m². Beban dinding balok tepi lt 1-9 = $250 \text{ kg/m}^2 \times 4 \text{ m}$ = 1000 kg/m^2

Beban dinding balok tepi it 1-9	= 250 kg/m x 4 m	= 1000 kg/m
Beban dinding balok tepi atap	= 250 kg/m ² x 0.8 m	= 200 kg/m ²

2. Beban Hidup

• Beban hidup lantai atap = 400 kg/m^2

2.1. Kategori Resiko

Struktur ini dimaksudkan untuk bangunan perkantoran sehingga menurut ASCE Tabel 1.5-1, struktur tersebut termasuk ke dalam Kategori Resiko I.

2.2. Faktor Keutamaan (*I*_e)

Parameter S_s dan S₁

2.3.

Faktor keutamaan menurut ASCE Tabel 1.5-2 sebesar 1,0.

Peta Zonasi Gempa Indonesia 2010

1-9)

Berdasarkan lokasi bangunan yang terletak di kota Surabaya dan meninjau Peta Zonasi Gempa Indonesia 2010 dengan periode ulang 2500 tahun, diperoleh parameter $S_s = 0,6g$ - 0,7g, diambil 0,7g. Sedangkan parameter $S_1 = 0,20g$ - 0,25g, diambil 0,25g.

Ps. 4.1.2

Ps. 4.1.2

2.4. Site Class

Ps. 4.7.3

Berdasarkan data tanah lokasi tempat berdirinya bangunan yang berupa tanah lunak maka menurut ASCE Tabel 20.3-1, *Site Class* struktur ini termasuk *Site Class E*.

2.5. Site Coefficient (F_a dan F_v)

Nilai F_a ditentukan berdasarkan *Site Class* dan S_s menurut ASCE Tabel 11.4-1 sebagai berikut:

Site Class E $S_s = 0,70g$ $F_a = 1,30$ (interpolasi)

Nilai F_v ditentukan berdasarkan Site Class dan S₁ menurut Tabel 4.8 sebagai berikut:

Site Class E $S_1 = 0,25g$ $F_v = 3,00 \text{ (interpolasi)}$

2.6. Parameter Percepatan Spektral Respons pada Periode Pendek (S_{MS}) dan Periode 1 Detik (S_{M1}) berdasarkan MCE_R Ps. 4.7.3

Menurut ASCE pers. 11.4-1, nilai S_{MS} adalah sebagai berikut:

$$S_{MS} = F_a S_s = (1,30)(0,70g) = 0,910g$$

Sedangkan menurut ASCE pers. 11.4-2, nilai S_{M1} adalah sebagai berikut:

 $S_{M1} = F_v S_1 = (3,00)(0,25g) = 0,750g$

2.7. Parameter Percepatan Spektral Respons Rencana pada Periode Pendek (S_{DS}) dan Periode 1 Detik (S_{D1}) Ps. 4.7.4

Menurut ASCE pers. 11.4-3, nilai S_{DS} adalah sebagai berikut: $S_{DS} = 2/3 S_{MS} = 2/3 (0,910g) = 0,607g$

Sedangkan menurut ASCE pers. 11.4-4, nilai S_{D1} adalah sebagai berikut: $S_{D1} = 2/3 S_{M1} = 2/3 (0,750g) = 0,500g$

2.8. Kategori Desain Gempa (KDG)

KDG ditentukan oleh nilai parameter S_{DS} dan S_{D1} beserta Kategori Resiko. Penentuan KDG adalah sebagai berikut:

- 1. Struktur termasuk Kategori Resiko / dan parameter $S_1 = 0.15g < 0.75g$, jadi penentuan KDG tergantung pada Tabel 4.9 dan Tabel 4.10, diambil KDG yang memberikan pengaruh terburuk pada struktur.
- 2. Berdasarkan Tabel 4.9 yang berdasarkan pada S_{DS} dan Kategori Resiko, diperoleh KDG D.
- Berdasarkan Tabel 4.10 yang berdasarkan pada S_{D1} dan Kategori Resiko, diperoleh KDG D.

Maka KDG struktur adalah KDG D.

Ps. 4.7.7

29

2.9. Pemilihan Sistem Struktur

Telah disebutkan pada bagian informasi perencanaan bahwa jenis struktur yang digunakan adalah Sistem Ganda Dinding Geser Beton Bertulang Khusus dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) Beton Bertulang. Penggunaan jenis sistem struktur ini harus diperiksa terhadap batasan ketinggian struktur untuk setiap KDG dengan ASCE Tabel 12.2-1 sebagai berikut :

KDG D

h_n max = tinggi maksimum tidak dibatasi

*h*_n= 40 m

Dengan demikian, jenis sistem struktur yang dipilih dapat digunakan.

2.10. Faktor Redundansi

KDG struktur adalah KDG D, oleh karena itu diambil nilai faktor redundansi, ρ = 1,3.

2.11. Struktur Beraturan dan Tidak Beraturan

Pemeriksaan iregularitas dilakukan berdasarkan ASCE 7-10 Tabel 12.3-1, 12.3-2, dan SNI Pasal 4.2.1 dan hasilnya ditunjukkan pada Tabel 15.

No.	Syarat	Kondisi yang Ada	Keterangan
1	Denah struktur gedung tidak menunjukkan coakan sudut dan kalaupun mempunyai coakan sudut, panjang sisi coakan tersebut tidak lebih dari 15% dari ukuran terbesar denah struktur gedung dalam arah sisi	Struktur tanpa coakan	ОК
2	COAKAN tersebut. Sistem struktur gedung tidak menunjukkan loncatan bidang muka dan kalaupun mempunyai loncatan bidang muka, dimensi horisontal dari sistem penahan gaya gempa di setiap tingkat tidak lebih dari 130% dari tingkat berikutnya. Dalam hal ini, struktur rumah atap yang tingginya tidak lebih dari 2 tingkat tidak perlu dianggap menyebabkan adanya loncatan bidang muka.	Tidak ada loncatan bidang muka	ОК
3	Sistem struktur gedung terbentuk oleh subsistem-subsistem penahan beban lateral yang arahnya saling tegak lurus dan sejajar dengan sumbu-sumbu utama ortogonal denah struktur gedung secara keseluruhan.	Portal struktur saling tegak lurus	ОК
4	Sistem struktur gedung memiliki kekakuan lateral yang beraturan, tanpa adanya tingkat lunak. Yang dimaksud dengan	Lihat perhitungan pada no. 2.12.	ОК

Tabel 15 Pemeriksaan Struktur Beraturan dan Tidak Beraturan

Ps. 4.2.4.2

Ps. 4.2

No.	Syarat	Kondisi yang	Keterangan
		Ada	
	tingkat lunak adalah suatu tingkat, di mana		
	kekakuan lateralnya adalah kurang dari 70%		
	kekakuan lateral tingkat di atasnya atau		
	kurang dari 80% kekakuan lateral rata-rata 3		
	tingkat di atasnya. Dalam hal ini, yang		
	dimaksud dengan kekakuan lateral suatu		
	tingkat adalah gaya geser yang bila bekerja		
	di tingkat itu menyebabkan satu satuan		
	simpangan antar-tingkat.		
5	Sistem struktur gedung memiliki berat lantai	Lihat	ОК
	tingkat yang beraturan, artinya setiap lantai	perhitungan	
	tingkat memiliki berat yang tidak lebih dari	pada no. 2.13	
	150% dari berat lantai tingkat di atasnya		
	atau di bawahnya. Berat atap atau rumah		
	atap tidak perlu memenuhi ketentuan ini.		
6	Sistem struktur gedung memiliki unsur-	Kolom menerus	ОК
	unsur vertikal dari sistem penahan beban	dan tidak ada	
	lateral yang menerus, tanpa perpindahan	eksentrisitas	
	titik beratnya, kecuali bila perpindahan	titik berat.	
	tersebut tidak lebih dari setengah ukuran		
	unsur dalam arah perpindahan tersebut.		
7	Sistem struktur gedung memiliki lantai	Lihat	ОК
	tingkat yang menerus, tanpa lubang atau	perhitungan	
	bukaan yang luasnya lebih dari 50% luas	pada no. 2.14	
	seluruh lantai tingkat serta tidak terjadi		
	perubahan kekakuan efektif diafragma		
	lebih dari 50% antara suatu tingkat dengan		
	tingkat berikutnya		

2.12. Kekakuan Lantai Tingkat Beraturan

Sistem struktur gedung memiliki kekakuan lateral tidak beraturan jika terdapat tingkat lunak. Yang dimaksud dengan tingkat lunak adalah suatu tingkat, di mana kekakuan lateralnya adalah kurang dari 70% kekakuan lateral tingkat di atasnya atau kurang dari 80% kekakuan lateral rata-rata 3 tingkat di atasnya. Hasil pemeriksaan kekakuan lateral tingkat ditunjukkan pada Tabel 16.

		Kolom				Dinding (Geser
Tingkat	L(m)	n	I_{Gx} (m ⁴)	I_{Gy} (m ⁴)	n	I_{Gx} (m ⁴)	I_{Gy} (m ⁴)
1	4	21	0,0108	0,0108	4	0,0160	0,9000
2	4	21	0,0108	0,0108	4	0,0160	0,9000
3	4	21	0,0108	0,0108	4	0,0160	0,9000
4	4	21	0,0108	0,0108	4	0,0160	0,9000
5	4	21	0,0108	0,0108	4	0,0160	0,9000
6	4	21	0,0108	0,0108	4	0,0160	0,9000
7	4	21	0,0108	0,0108	4	0,0160	0,9000
8	4	21	0,0108	0,0108	4	0,0160	0,9000
9	4	21	0,0108	0,0108	4	0,0160	0,9000
10	4	21	0,0108	0,0108	4	0,0160	0,9000

Tabel 16 Pemeriksaan Kekakuan Lateral Tingkat

Tabel 16 Pemeriksaan Kekakuan Lateral Tingkat (lanjutan)

		Arah Gempa X dan Y									
		K _i dinding									
	K _i kolom =	geser =			0,8* <i>K-rata2</i> 3	Tingkat					
Tingkat	n*12EI/L ³	n*12EI/L ³	K _{total}	0,7K _{i+1}	lt	Lunak?					
1	0,042525	0,3435	0,386	0,2702	0,30882	NO					
2	0,042525	0,3435	0,386	0,2702	0,30882	NO					
3	0,042525	0,3435	0,386	0,2702	0,30882	NO					
4	0,042525	0,3435	0,386	0,2702	0,30882	NO					
5	0,042525	0,3435	0,386	0,2702	0,30882	NO					
6	0,042525	0,3435	0,386	0,2702	0,30882	NO					
7	0,042525	0,3435	0,386	0,2702	0,30882	NO					
8	0,042525	0,3435	0,386	0,2702	0,30882	NO					
9	0,042525	0,3435	0,386	0,2702	0,30882	NO					
10	0,042525	0,3435	0,386	-	-	NO					

Hasil perhitungan yang ditunjukkan pada Tabel 16 menunjukkan struktur yang ditinjau memiliki kekakuan lateral tingkat yang beraturan tanpa adanya tingkat lunak.

2.13. Berat Lantai Tingkat Beraturan

Berat lantai tingkat yang tidak beraturan terjadi jika ada tingkat yang memiliki berat yang lebih dari 150% berat lantai di atasnya atau di bawahnya. Berat atap atau rumah atap tidak perlu memenuhi ketentuan ini. Hasil pemeriksaan berat lantai tingkat ditunjukkan pada Tabel 17.

Tingkat	W _i (kN)	150%W _{i+1}	150%W _{i-1}	W _i < 150%W _{i-1} atau W _i < 150%W _{i+1}
Atap	447.650,46	-	735.347,10	ОК
9	490.231,40	671.475,69	735.347,10	ОК
8	490.231,40	735.347,10	735.347,10	ОК
7	490.231,40	735.347,10	735.347,10	ОК
6	490.231,40	735.347,10	735.347,10	ОК
5	490.231,40	735.347,10	735.347,10	ОК
4	490.231,40	735.347,10	735.347,10	ОК
3	490.231,40	735.347,10	735.347,10	ОК
2	490.231,40	735.347,10	735.347,10	ОК
1	490.231,40	735.347,10	-	ОК

Tabel 17 Pemeriksaan Berat Lantai Tingkat

Hasil perhitungan yang ditunjukkan pada Tabel 17 menunjukkan struktur yang ditinjau memiliki berat lantai tingkat yang beraturan.

2.14. Diskontinuitas Diafragma

Sistem struktur gedung memiliki lantai tingkat yang menerus, tanpa lubang atau bukaan yang luasnya lebih dari 50% luas seluruh lantai tingkat serta tidak terjadi perubahan kekakuan efektif diafragma lebih dari 50% antara suatu tingkat dengan tingkat berikutnya. Pemeriksaan luas bukaan dan perubahan kekakuan efektif diafragma sebagai berikut:

Rasio Luas Bukaan terhadap Luas Kotor Diafragma

$$A_{opening} = 10 \text{ m x } 10 \text{ m} = 100 \text{ m}^{2}$$

$$A_{gross} = 20 \text{ m x } 20 \text{ m} = 400 \text{ m}^{2}$$

$$Rasio = \frac{A_{opening}}{A_{gross}} x \ 100\% = \frac{100}{400} x \ 100\% = 25 \% < 50 \%$$

Jadi, rasio bukaan < 50 %.

Rasio Kekakuan Diafragma antar Lantai Tingkat

Pemeriksaan kekakuan diafragma antar lantai tingkat ini dapat dilakukan melalui *software* analisis struktur yang dilakukan dengan cara pendekatan sebagai berikut:

a. Pada struktur yang telah dimodelkan secara 3D di dalam ETABS, diberikan restraint dalam arah translasi searah defleksi yang akan ditinjau pada joint yang berada pada ujung-ujung bagian eksterior struktur pada suatu diafragma lantai tingkat. Dimensi diafragma yang ditinjau didefinisikan sebagai S, yaitu bentang terpanjang dan De, yaitu bentang terpendek dari suatu diafragma seperti yang dapat dilihat pada Gambar 14.

Gambar 14 Tampak Atas Idealisasi Diafragma yang Ditinjau

Sedangkan pada diafragma lantai tingkat lainnya, restraint diberikan pada semua *joint* seperti pada Gambar 15.

Gambar 15 Tampak Atas Idealisasi Diafragma Lainnya

b. Pada joint struktur di sisi yang tidak diberi restraint, diaplikasikan gaya terpusat 10 kN (beban sembarang) seperti terlihat pada Gambar 16. Gaya terpusat tersebut hanya diaplikasikan pada diafragma lantai tingkat yang hendak dicatat defleksi maksimumnya. Pada saat gaya tersebut bekerja, pengaruh beban vertikal yang bekerja pada lantai diabaikan.

Gambar 16 Pembebanan pada Diafragma yang Ditinjau

c. Nilai defleksi maksimum di tengah bentang diafragma, d_{imax} dapat ditentukan seperti pada Gambar 17. Bentuk terdefleksi ini hanya dapat diperoleh apabila jenis diafragma lantai tingkat yang dimodelkan pada ETABS berupa *semi-rigid diaphragm*.

Gambar 17 Bentuk Terdefleksi dari Diafragma yang Ditinjau

d. Langkah a-c di atas dilakukan untuk lantai tingkat yang lain.

Hasil dari pengamatan defleksi maksimum, d_i max pada setiap diafragma lantai tingkat dan perbandingannya dengan lantai tingkat yang berurutan disajikan pada Tabel 18 berikut ini:

Dalam contoh ini, pelat lantai terbuat dari beton bertulang dan tidak mengalami iregularitas horisontal diskontinuitas diafragma. Oleh karena itu diafragmanya dapat diasumsi kaku.

Untuk mengikutsertakan pengaruh penampang retak, momen inersia lentur penampang utuh kolom dan balok rangka beton bertulang terbuka pada bangunan dikalikan dengan

geser beton bertulang pada bangunan dikalikan dengan 60%.

pada program ETABS v.9.07

Oleh karena Rasio Defleksi pada suatu diafragma juga menggambarkan rasio kekakuan diafragma tersebut, maka dari Tabel 18 dapat dilihat tidak ada rasio perubahan kekakuan diafragma yang lebih dari 50%. Dari kedua pemeriksaan di atas, dapat disimpulkan bahwa persyaratan mengenai luas bukaan dan perubahan kekakuan efektif diafragma terpenuhi.

Lantai

Tingkat

10

9

8

7

6

5 4

3

2

1

d_{imax}

(mm)

0,021694

0,026402

0,027083

0,027046

0,027044

0,027044

0,027044

0,027042

0,026993

0,025452

Rasio 1

0,82

0,97

1,00

1,00

1,00

1,00

1,00

1,00

1,06

Rasio 2 = Rasio terhadap kekakuan lantai di atasnya

Kesimpulan menyatakan YES jika rasio perubahan kekakuan diafragma tidak melebihi

Rasio 1 = Rasio terhadap kekakuan lantai di bawahnya

keterangan:

50% lantai tingkat yang berurutan.

Oleh karena struktur tidak mengalami iregularitas apapun maka struktur yang ditinjau termasuk struktur beraturan.

2.15. Pengaruh P-Delta

2.17. Jenis Diafragma

Pengaruh P-Delta langung diperhitungkan dengan menggunakan pilihan yang terdapat

2.16. Pengaruh Penampang Retak

75%, dan momen inersia lentur dan aksial searah bidang gaya penampang utuh dinding

Ps. 5.3

Ps. 5.5.1

Tabel 18 Nilai *d_{imax}* dan Rasio Defleksi

Rasio 2

_

1,22

1,03

1,00

1,00

1,00

1,00

1,00

1,00

0,94

Rasio 1 < 1,5

or Rasio 1 >

0,5

YES

YES

YES

YES

YES

YES

YES

YES

YES

Rasio 2 < 1,5 or

Rasio 2 > 0,5

_

YES

YES

YES

YES

YES

YES

YES

YES

YES

Kesimpulan

YES

Ps. 5.7

2.18. Waktu Getar Alami Fundamental T

Waktu getar alami fundamental struktur diperoleh melalui analisis modal pada model 3D di dalam ETABS v9.07 sebesar:

Tx : 1,2145 detik Ty : 1,2145 detik

2.19. Gaya Gempa Rencana Analisis Statik Ekuivalen

a. Koefisien Respons Gempa, Cs

Berdasarkan persamaan 4.37 ASCE 7-10, nilai C_s adalah sebagai berikut:

$$C_s = S_{DS}/(R/I_e)$$

 $C_s = 0.607g/(7/1) = 0.087g$

Nilai Cs tersebut tidak boleh lebih dari nilai C_s di persamaan 4.38, yaitu:

$$C_{smax} = S_{D1}/T(R/I_e) = 0,500g/1,2145(7/1) = 0,059g$$

Nilai $C_s = 0,087g$ lebih besar daripada C_{smax} , maka gunakan $C_s = 0,059g$

b. Berat Total Gedung, W

Ref. ASCE 7-10 ps. 12.7.2

Berat total gedung, *W* didapat dari hasil perhitungan ETABS dan nilainya ditunjukkan pada Tabel 19.

Tingkat	Berat Lantai Tingkat (kg)
Atap	447.650,46
9	490.231,40
8	490.231,40
7	490.231,40
6	490.231,40
5	490.231,40
4	490.231,40
3	490.231,40
2	490.231,40
1	490.231,40
Total	4.859.733,04

Tabel 19	Berat Total Gedung.	W
TUDCI 15	berut rotur dedding,	

Jadi, berat total gedungnya, W sebesar 4.859.733,04 kg.

c. Gaya Geser Dasar untuk Simpangan Antar-Tingkat (V_{drift}) Ps. 6.1.2

Nilai V_{drift} dihitung dengan ASCE pers. 12.8-1 sebagai berikut:

$$V_{driftx} = V_{drifty} = C_s W$$

=(0,059g) (4.859.733,0

=(0,059g) (4.859.733,04) (9.81) = 2.803.857,03 N = 2803,86 kN Ps. 6.1

Ps. 6.1.2.1

2.20. Distribusi Vertikal Gaya Gempa

Gaya lateral akibat gempa yang timbul pada lantai tingkat ke-x, F_x , harus ditentukan dengan ASCE pers. 12.8-11, yaitu:

$$F_x = C_{vx}V$$

dan ASCE pers. 12.8-12:

$$C_{vx} = \frac{w_x h_x^k}{\sum_{i=1}^n w_i h_i^k}$$

Nilai *k* diperoleh dengan meninjau waktu getar alami fundamental struktur , *T*. Oleh karena nilai $T_x = T_y = 1,2145$ detik dan berada di antara periode 0,5 detik dan 2,5 detik, maka *k* diperoleh dengan melakukan interpolasi linear antara 1 dan 2, yaitu 1,36.

Karena T_x sama dengan T_{y} , maka F_{xx} sama dengan F_{xy} , F_{xx} adalah gaya gempa pada suatu lantai tingkat x akibat gaya gempa arah X. Sedangkan F_{xy} adalah gaya gempa pada suatu lantai tingkat x akibat gaya gempa arah Y. Hasil perhitungan F_{xx} dan F_{xy} dapat dilihat pada Tabel 20 berikut ini:

Lt. Tingkat ke-i	<i>h</i> _i (m)	k	w _i (kg)	w _i x h _i ^k	C _{vx}	F _{xx} =F _{xy} (kN)
Atap	40	1,36	447.650,46	66.885.958,79	0,20	548,83
9	36	1,36	490.231,40	63.488.152,98	0,19	520,95
8	32	1,36	490.231,40	54.108.554,44	0,16	443,99
7	28	1,36	490.231,40	45.139.460,22	0,13	370,39
6	24	1,36	490.231,40	36.617.849,15	0,11	300,47
5	20	1,36	490.231,40	28.590.653,69	0,08	234,60
4	16	1,36	490.231,40	21.119.954,09	0,06	173,30
3	12	1,36	490.231,40	14.292.884,02	0,04	117,28
2	8	1,36	490.231,40	8.243.658,80	0,02	67,64
1	4	1,36	490.231,40	3.217.711,09	0,01	26,40
		Total	4.859.733,04	341.704.837,28	$V_x = V_y =$	2803,86

Tabel 20 Gaya Gempa Arah X dan Y di Setiap Lantai Tingkat

2.21. Application of Lateral Seismic Forces on Structure

Lateral Seismic forces yang telah dihitung sebelumnya, kemudian diaplikasikan pada setiap lantai struktur. Karena diafragmanya kaku, maka aplikasi beban gempa tersebut juga harus mempertimbangkan adanya pengaruh *inherent torsion* dan *accidental torsion* yang mungkin terjadi pada struktur. Secara sederhana, Load Case untuk Seismic Load dapat ditentukan sebagai berikut:

Gempa Arah X :(Gambar 18)

- EQXA \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak e_y terhadap pusat massa suatu lantai.
- EQXB \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak ($e_y + e_{yacc}$) terhadap pusat massa suatu lantai.

EQXC \rightarrow Gaya gempa arah X yang diaplikasikan pada titik sejarak (e_y - e_{yacc}) terhadap pusat massa suatu lantai.

Gempa Arah Y:(Gambar 19)

- EQYA \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak e_x terhadap pusat massa suatu lantai.
- EQYB \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak ($e_x + e_{xacc}$) terhadap pusat massa suatu lantai

EQYC \rightarrow Gaya gempa arah Y yang diaplikasikan pada titik sejarak (e_x - e_{xacc})

keterangan:

- eksentrisitas antara pusat massa dan pusat kekakuan dalam arah sumbu x untuk memperhitungkan *inherent torsion*.
- eksentrisitas antara pusat massa dan pusat kekakuan dalam arah sumbu y untuk memperhitungkan *inherent torsion*.
- e_{xacc} : eksentrisitas tambahan untuk memperhitungkan *accidental torsion* sebesar 5% dari ukuran terbesar denah struktur arah X (B_x)
- e_{yacc} : eksentrisitas tambahan untuk memperhitungkan *accidental torsion* sebesar 5% dari ukuran terbesar denah struktur arah Y (B_y)

catatan:

 e_{acc} tidak perlu diberikan secara simultan di kedua arah, namun harus diberikan pada arah yang memberikan efek torsional terburuk pada struktur. Dalam hal perhitungan elemen struktur yang memperhitungkan efek interaksi orthogonal arah gaya gempa (contoh : 100% EQX dan 30% EQY) maka hanya diperbolehkan salah satu dari EQX atau EQY yang mengandung e_{acc} , sehingga *Load Case* EQX dan EQY yang hanya memperhitungkan e_x atau e_y saja tetap diperlukan.

Dalam contoh ini, tidak terdapat eksentrisitas antara pusat massa (*Center of Mass-CM*) dan pusat kekakuan (*Center of Rigidity-CR*), yaitu $e_x = 0$ atau $e_y = 0$. Gambar ilustrasi dapat dilihat pada Gambar 18 dan Gambar 19

Gambar 18 Load Case Gempa Arah X

2.22. Pemeriksaan Interaksi Dinding Geser dan SRPMK Ps.5.2.2

Setelah dilakukan analisis dengan program ETABS v9.07, maka didapatkan besar gaya geser dasar yang ditahan oleh SRPMK dan dinding geser beton bertulang yang dapat dilihat pada Gambar 20 dan rinciannya ditunjukkan pada Tabel 21

Point	Fx A (kN)	Fx B (kN)	Fx C (kN)
1	-32.61	-30.60	-34.62
2	-58.76	-55.14	-62.38
4	-58.76	-55.14	-62.38
5	-32.61	-30.60	-34.62
6	-32.46	-31.41	-33.51
8	-32.46	-33.51	-31.41
9	-32.61	-34.62	-30.60
10	-46.38	-44.90	-47.86
11	-34.47	-34.47	-34.47
12	-46.38	-47.86	-44.90
13	-58.76	-62.38	-55.14
14	-44.98	-43.69	-46.27
15	-44.98	-46.27	-43.69
16	-46.38	-44.90	-47.86
18	-34.47	-34.47	-34.47
19	-46.38	-47.86	-44.90
20	-58.76	-62.38	-55.14
21	-32.46	-31.41	-33.51
22	-32.46	-33.51	-31.41
24	-32.61	-34.62	-30.60
25	-32.61	-30.60	-34.62
Total Reaksi			
SRPMK	-839.74	-839.74	-839.74
3	-58.74	-56.44	-61.04
7	-19.29	-19.29	-19.29
17	-58.74	-61.04	-56.44
23	-19.29	-19.29	-19.29
121	-454.20	-427.39	-481.00
122	-454.20	-427.39	-481.00
123	-454.20	-481.00	-427.39
124	-454.20	-481.00	-427.39
125	-9.24	-9.18	-9.30
126	-9.24	-9.30	-9.18
127	-9.24	-9.18	-9.30
128	-9.24	-9.30	-9.18
Total Reaksi			
Dinding Geser	-2009.82	-2009.80	-2009.80
Geser Dasar	-2803.86	-2803.86	-2803.86

Tabel 21 Gaya Geser Dasar

Berdasarkan Tabel 21 dapat dihitung persentase gaya geser dasar yang ditahan oleh Sistem Rangka Pemikul Momen Khusus pada Sistem Ganda yang ditinjau. Karena besar gaya geser dasar yang ditahan oleh Sistem Rangka Pemikul Momen Khusus pada arah X dan Y sama besar, maka pada kedua arah ini Sistem Rangka Pemikul Momen Khusus menahan persentase besar gaya geser dasar yang sama.

Gaya Geser Dasar yang ditahan SRPMK arah X dan Y:

=
$$\frac{562,64}{1878,58}$$
 x 100 % = 29,95 % ≥ 25% (OK)

Gaya geser dasar yang ditahan SRPMK melebihi 25%, maka perhitungan dapat dilanjutkan.

2.23. Pemeriksaan Stability Coefficient, ϑ Ps. 5.7

Sistem struktur yang ditinjau merupakan Sistem Ganda Dinding Geser Beton Bertulang dengan Sistem Rangka Pemikul Momen Khusus Beton Bertulang, maka memiliki nilai parameter R = 7, $\Omega_0 = 2,5$ dan $C_d = 5,5$ berdasarkan ASCE Tabel 12.2-1. Penentuan nilai *stability coefficient*, θ ditentukan menurut persamaan-persamaan sebagai berikut:

• Stability coefficient menurut ASCE pers. 12.8-16:

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$

Nilai Stability coefficient setelah dibagi $(1 + \vartheta)$ tidak boleh melebihi nilai Stability coefficient maximum menurut ASCE pers. 12.8-17:

• Stability coefficient maximum menurut ASCE pers. 12.8-17:

$$\theta_{\max} = \frac{0.5}{\beta C_d} \le 0.25$$

Koefisien β adalah rasio geser perlu dibanding kapasitas geser pada lantai tingkat x dan x-1. Nilai rasio ini diijinkan untuk diambil sebesar 1,0.

Hasil perhitungan stability coefficient ditunjukkan pada Tabel 22.

Tingkat	C _d	d I _e	$I_e \begin{pmatrix} h_{sx} \\ (mm) \end{pmatrix}$	Perpindahan (mm)	Simpangan Antar Tingkat	Simpangan antar tingkat rencana, ⊿
			()	(11111)	(mm)	(mm)
Atap	5,5	1	4000	41,84	2,47	13,59
9	5,5	1	4000	39,37	3,13	17,22
8	5,5	1	4000	36,24	3,85	21,18
7	5,5	1	4000	32,39	4,53	24,92
6	5,5	1	4000	27,86	5,06	27,83
5	5,5	1	4000	22,80	5,41	29,76
4	5,5	1	4000	17,39	5,52	30,36
3	5,5	1	4000	11,87	5,26	28,93
2	5,5	1	4000	6,61	4,37	24,04
1	5,5	1	4000	2,24	2,24	12,32

Tabel 22 Hasil Perhitungan Stability Coefficient

Tabel 22 Hasil Perhitungan Stability Coefficient (lanjutan)

Tingkat	<i>P_x</i> Kolom (kN)	P _x Dinding Geser (kN)	Total P_x (kN)
Atap	-3832,88	-1020,45	-4853,33
9	-7281,60	-1472,34	-8753,94
8	-10.778,36	-2863,97	-13.642,33
7	-14.295,52	-3315,86	-17.611,38
6	-17.844,72	-4659,42	-22.504,14
5	-21.432,92	-5111,31	-26.544,23
4	-25.069,28	-6434,54	-31.503,82
3	-28.763,84	-6886,43	-35.650,27
2	-32.526,88	-8177,62	-40.704,50
1	-36.377,40	-8629,51	-45.006,91

Tabel 22 Hasil Perhitungan Stability Coefficient (lanjutan)

Tingkat	P _x (kN)	V _x (kN)	ϑ	$artheta_{max}$	ϑ _{max} pakai	Kesimpulan
Atap	4853,33	548,83	0,0055	0,0909	0,0909	ОК
9	8753,94	1069,78	0,0064	0,0909	0,0909	ОК
8	13.642,33	1513,77	0,0087	0,0909	0,0909	ОК
7	17.611,38	1884,16	0,0106	0,0909	0,0909	ОК
6	22.504,14	2184,63	0,0130	0,0909	0,0909	ОК
5	26.544,23	2419,23	0,0148	0,0909	0,0909	ОК
4	31.503,82	2592,53	0,0168	0,0909	0,0909	ОК
3	35.650,27	2709,81	0,0173	0,0909	0,0909	ОК
2	40.704,50	2777,45	0,0160	0,0909	0,0909	OK
1	45.006,91	2803,86	0,0090	0,0909	0,0909	OK

keterangan:

- P_x = jumlah beban desain vertikal pada lantai x dan di atas lantai x (kN), perhitungan nilai P_x tidak menggunakan faktor beban diatas 1,0. Nilai ini didapatkan dari perhitungan ETABS
- V_x = gaya geser gempa diantara lantai x dan x-1 (kN)

Berdasarkan ASCE pers. 12.8-16 dan 12.8-17, nilai ϑ dan ϑ_{max} adalah sebagai berikut:

$$\theta = \frac{P_x \Delta I_e}{V_x h_{sx} C_d}$$
$$\theta_{max} = \frac{0.5}{\beta C_d}$$

dimana β = 1,0, C_d = 5,5

$$\theta_{\max pakai} = nilai minimum antara \frac{0.5}{\beta C_d} dengan 0.25.$$

2.24. Pengaruh Torsi

Ps. 5.4.6

Jenis diafragma pada struktur ini tergolong diafragma kaku, oleh karena itu pengaruh torsi pada struktur harus diperhitungkan yang dimana dibagi dalam pengaruh torsi dan pengaruh torsi ekstrim dimana masing-masing memiliki ketentuan sebagai berikut:

- Pengaruh torsi terjadi jika $(\Delta_{max} / \Delta_{average}) \ge 1,2$
- Pengaruh torsi ekstrim terjadi jika $(\Delta_{max} / \Delta_{average}) \ge 1,4$

Hasil pemeriksaan pengaruh torsi ditunjukkan pada Tabel 23.

Lantai	Δ _L (mm)	Δ _R (mm)	∆ _{max} (mm)	∆ _{average} (mm)	Δ _{max} / Δ _{average}	Pengaruh Torsi $(\Delta_{max} / \Delta_{average}) \ge$ 1,2	Pengaruh Torsi Ekstrim (∆ _{max} / ∆ _{average}) ≥ 1,4	Kesimpulan
Atap	41,84	36,91	41,84	39,38	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
9	39,37	34,72	39,37	37,05	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
8	36,24	31,95	36,24	34,10	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
7	32,39	28,55	32,39	30,47	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
6	27,86	24,56	27,86	26,21	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
5	22,80	20,01	22,80	21,41	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
4	17,39	15,34	17,39	16,37	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
3	11,87	10,48	11,87	11,18	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
2	6,61	5,84	6,61	6,23	1,06	TIDAK	TIDAK	Tidak Diperhitungkan
1	2,24	1,99	2,24	2,12	1,06	TIDAK	TIDAK	Tidak Diperhitungkan

Tabel 23 Pemeriksaan Pengaruh Torsi

keterangan:

Untuk memahami yang dimaksud dengan Δ_l dan Δ_R maka dapat dilihat pada Gambar 21.

Gambar 21 Pengaruh Torsi

Hasil pemeriksaan pengaruh torsi yang ditunjukkan pada Tabel 23 menunjukkan bahwa pengaruh torsi pada struktur ini tidak perlu diperhitungkan.

2.25. V_{drift} – Analisis Statik Ekuivalen

Nilai V_{drift} pada analisis statik ekuivalen sama dengan V, dimana V didapat dari gaya gempa rencana statik ekuivalen.

2.26. Approximate Fundamental Period (T_a)

Nilai dari *Approximate Fundamental Period* dapat ditentukan melalui ASCE pers. 12.8-7 seperti di bawah ini:

 $T_a = C_t h_n^x$

Dari ASCE Tabel 12.8-2 diperoleh nilai C_t dan x untuk All Other Structural System :

 C_t : 0,0488 (equivalent in metric units) x : 0,75

sehingga nilai $T_a = 0,0488 (35)^{0.75} = 0,702$ detik

2.27. Upper Limit of Fundamental Period (T_{up})

Nilai *upper limit fundamental period*, T_{up} , diperoleh dengan mengalikan faktor C_u dengan nilai T_a yang telah diperoleh sebelumnya. Nilai C_u dapat diperoleh dari ASCE Tabel 11.6-2 dengan meninjau nilai $S_{D1} = 0.335g$, diperoleh nilai $C_u = 1.4$.

 $T_{up} = C_u T_a = (1,4)(0,702) = 0,983 \text{ detik} < T(\text{NOT OK})$

2.28. V_{design} – Analisis Statik Ekuivalen

Pada bagian ini akan dihitung nilai gaya geser dasar akibat gempa yang akan digunakan untuk mendesain elemen struktur, V_{design} . Dalam perhitungan V_{design} , perlu mempertimbangkan batasan T_{up} dan batasan C_s dari ASCE pers. 12.8-5.

a. Koefisien Respons Gempa C_s

Berdasarkan ASCE pers. 12.8-2, nilai C_s adalah sebagai berikut:

 $C_s = S_{DS}/(R/I_e)$ $C_s = 0.607g/(7/1) = 0.087g$

Nilai Cs tersebut tidak boleh lebih dari nilai C_s di ASCE pers. 12.8-3, yaitu:

 $C_{smax} = S_{D1}/T(R/I_e) = 0,500g/0,983(7/1) = 0,041g$

dan tidak boleh kurang dari nilai C_s di ASCE pers. 12.8-5, yaitu:

 $C_{smin} = 0,044S_{DS}I_e$ = 0,044 x 0,539g x 1 = 0,027g > 0,01g

Oleh karena itu diambil $C_{smin} = 0,027g$.

Nilai $C_s = 0,087g$ lebih besar daripada C_{smax} , maka gunakan $C_s = 0,041g$

b. Berat Total Gedung, W

Berat total gedung, W didapat dari hasil perhitungan ETABS dan nilainya ditunjukkan pada Tabel 24.

Ps. 5.6

Ps. 6.1

Ps. 6.1.2.1

Ps. 5.6

Tingkat	Berat Lantai Tingkat(kg)				
Atap	447.650,46				
9	490.231,40				
8	490.231,40				
7	490.231,40				
6	490.231,40				
5	490.231,40				
4	490.231,40				
3	490.231,40				
2	490.231,40				
1	490.231,40				
Total	4.859.733,04				

Tabel 24 Berat Total Gedung, W

Jadi, berat total gedungnya, W sebesar 4.859.733,04 kg.

c. Gaya Gempa Dasar Rencana (V_{design})

Nilai V_{design} dihitung dengan ASCE pers. 12.8-1sebagai berikut:

 $V_{designx} = V_{designy} = C_s W$ =(0,041g) (4.859.733,04) (9.81) = 2.803.857,03 N = 2803,86 kN

2.29. Batasan Simpangan Antar-Tingkat

KDG Struktur yang ditinjau termasuk KDG D oleh karena itu simpangan antar-tingkat yang terjadi tidak boleh melebihi Δ_a/ρ . Nilai Δ_a didapatkan dari ASCE Tabel 12.12-1 yang ditentukan berdasarkan jenis sistem struktur dan kategori resiko. Pemeriksaan simpangan antar-tingkat yang terjadi terhadap simpangan antar-tingkat maksimum ditunjukkan sebagai berikut:

Sistem struktur merupakan Sistem Ganda Dinding Geser Beton Bertulang Khusus dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) Beton Bertulang, oleh karena itu pada ASCE Tabel 12.12-1 termasuk pada kategori Struktur yang tidak diatur pada ketiga hal di atas.

Kategori Resiko I

 $h_{sx} = 4 \text{ m}$

Oleh karena itu, Δ_a = 0,02 h_{sx} = 0,02 x 4 = 0,08 m

Simpangan antar-tingkat maksimum yang diijinkan sebesar Δ_a/ρ .

 $\Delta_a/\rho = 0.08/1.3 = 0.062 \text{ m} = 62 \text{ mm}$

Hasil pemeriksaan simpangan antar tingkat yang terjadi terhadap simpangan antartingkat maksimum yang diijinkan ditunjukkan pada Tabel 25.

Ps. 8.2

Ps. 6.1.2

					Simpangan	Simpangan		
Tingkat	C.	,	h	Perpindahan	Tingkat	rencana, Δ	Δ_a/ρ	$\Delta \leq \Delta / \alpha$
Atan		1e	1000	41.84	2 47	13 59	(1111)	
Αιαμ	5,5	1	4000	41,04	2,47	13,35	02	TES
9	5,5	1	4000	39,37	3,13	17,22	62	YES
8	5,5	1	4000	36,24	3,85	21,18	62	YES
7	5,5	1	4000	32,39	4,53	24,92	62	YES
6	5,5	1	4000	27,86	5,06	27,83	62	YES
5	5,5	1	4000	22,80	5,41	29,76	62	YES
4	5,5	1	4000	17,39	5,52	30,36	62	YES
3	5,5	1	4000	11,87	5,26	28,93	62	YES
2	5,5	1	4000	6,61	4,37	24,04	62	YES
1	5,5	1	4000	2,24	2,24	12,32	62	YES

Tabel 25 Pemeriksaan Simpangan Antar-Tingkat yang Terjadi Terhadap SimpanganAntar-Tingkat Maksimum yang Diijinkan

Hasil perhitungan yang ditunjukkan pada Tabel 25 menunjukkan simpangan antartingkat terjadi tidak melebihi nilai simpangan antar-tingkat maksimum.

2.30. Sela Dilatasi

Ps. 8.4

Pada contoh perhitungan ini tidak meninjau hubungannya dengan struktur disebelahnya, oleh karena itu lebar sela dilatasi tidak perlu dihitung.