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ABSTRACT 

An enhancement of the finite element method using Kriging interpolation (K-FEM) has been recently 

developed.  The key advantage of this innovative method is that the polynomial refinement can be 

performed without adding nodes or changing the element connectivity.  This paper presents the 

development of the K-FEM for analyses of shear deformable beams and plates.  The discretized equations 

are formulated using the standard displacement-based finite element procedure on the variational 

equations of Timoshenko beam and Reissner-Mindlin plate.  The transverse displacement and the 

rotations of the beam and the plates are independently approximated using Kriging interpolation.  For 

each element, the interpolation function is constructed from a set of nodes within a prescribed domain of 

influence comprising the element and its several layers of neighbouring elements.  The cubic or quartic 

polynomial basis functions are utilized to alleviate the shear locking.  A series of numerical tests are 

performed to examine the developed Kriging-based beam and plate elements.  The results demonstrate 

that for the case in which shear locking is not an issue, the elements perform very well.   
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INTRODUCTION 

A new variant of the finite element method what so-called Kriging-based finite element method (K-FEM) 

was introduced by Plengkhom & Kanok-Nukulchai (2005).  In this method, Kriging interpolation (KI) is 

employed as the trial function in place of the conventional polynomial function.  The KI is constructed for 

each element using a set of nodes in a domain of influencing nodes (DOI) composed of several layers of 

elements (the DOI is in the form of polygon for 2D problems).  Combining the KI of all elements, the 

global field variable is thus approximated by piecewise KI (Wong & Kanok-Nukulchai, 2009a; Wong & 

Syamsoeyadi, 2011) 

 

The advantages of the K-FEM are:  (1). highly-accurate and smooth field variables and their gradients can 

be obtained even using the simplest form of elements (triangles in the 2D domain and tetrahedrons in the 

3D domain).  (2). The polynomial refinement can be achieved without any change to the element or mesh 

structure.  (3). The formulation and coding of the K-FEM are very similar to the conventional FEM so 

that any existing general-purpose FE program can be easily extended to incorporate the enhanced method.  

Thus, the K-FEM has a high chance to be accepted in real engineering practices.   

 

In the pioneering work of Plengkhom & Kanok-Nukulchai (2005), the K-FEM was developed for static 

analyses of 1D bar and 2D plane-stress/plane-strain solids.  Subsequently, it was developed for analyses 

of Reissner-Mindlin plates (Wong & Kanok-Nukulchai, 2006) and improved through the use of adaptive 

correlation parameters and by introducing the quartic spline correlation function.  A drawback of the K-

FEM is that the interpolation function is discontinuous at the inter-element boundaries (except in 1D 

problems).  In spite of this discontinuity, using appropriate choice of shape function parameters, the K-

FEM passes weak patch tests and therefore the convergence is guaranteed (Wong & Kanok-Nukulchai, 

2009b).  The basic concepts and advances of the K-FEM have been presented in several papers (Kanok-

Nukulchai & Wong, 2008; Wong & Kanok-Nukulchai, 2009a; Wong, 2011).  The current development is 

the extension and application of the K-FEM to different problems in engineering, such as general plate 

and shell structures (Wong, 2009) and multi-scale mechanics (Sommanawat & Kanok-Nukulchai, 2009).   
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This paper reviews the K-FEM for analyses of shear deformable beams and plates, i.e. Timoshenko beam 

and (K-Beam) and Reissnes-Mindlin plate (K-Plate) elements.  The KI, formulation of the elements, and 

numerical testing results are presented.   

 

KRIGING INTERPOLATION IN THE K-FEM 

Consider a continuous field variable u(x) defined in a domain Ω.  The domain is represented by a set of 

properly scattered nodes xi, i=1, 2, …, N, where N is the total number of nodes in the whole domain.  

Given N field values u(x1), …, u(xN), the problem of interest is to obtain an estimated value of u at a point

0 x .   

 

The Kriging estimated value u
h
(x0) is a linear combination of u(x1), …, u(xn), i.e. 

 h

0 1
( ) ( )

n

i ii
u u


x x  (1) 

where λi‟s are the unknown Kriging weights and n is the number of nodes surrounding point x0, inside and 

on the boundary of a DOI 
0 x

.  Considering each function values u(x1), …, u(xn) as the realizations 

of random variables U(x1), …, U(xn), Eq. (1) can be written as 
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i ii
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The Kriging weights are determined by requiring the estimator U
h
(x0) unbiased, i.e. 

 h

0 0E ( ) ( ) 0U U   x x  (3) 

where  E   is the expected value operator, and by minimizing the variance of estimation error, 

h

0 0var ( ) ( )U U  x x .  Using the method of Lagrange for the constraint optimization problem, the 

requirements of minimum variance and unbiased estimator lead to the following Kriging equation system 

(see Wong (2009) for the complete derivation): 
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R is an n n  matrix of covariance of U(x) at nodes x1, …, xn; P is an n m  matrix of polynomial values 

at the nodes; λ is an 1n  vector of Kriging weights; μ is an 1m  vector of Lagrange multipliers; r(x0) is 

an 1n  vector of covariance between the nodes and the node of interest, x0; and p(x0) is an 1m  vector 

of polynomial basis at x0.  While ( ) cov ( ), ( )ij i jC U U   h x x  is the covariance between U(x) at node xi 

and U(x) at node xj.  The unknown Kriging weights λ and Lagrange multipliers μ are obtained by solving 

the Kriging equations, Eqs. (4).   

 

Since the point of interest x0 can be any point in the DOI, the symbol x0 in Eq. (1) can be replaced by 

symbol x.  Thus, using the usual finite element symbol, Eq. (1) can be expressed as 

       ∑                
     (5) 
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where N(x)=[ N1(x) ... Nn(x) ]=[ λ1(x) ... λn(x) ] is the     shape function matrix and 

 
T

1( ) ... ( )nu ud x x  is an 1n  vector of nodal values.   

In order to construct Kriging shape functions in Eq. (5), a polynomial basis function and a correlation 

function should be chosen.  Basis functions ranging from polynomial of the degree one up to four have 

been utilized in the past works on the K-FEM.  In the problems of shear deformable beam, plate and shell, 

it is necessary to use cubic or quartic polynomial basis in order to alleviate the shear or membrane locking 

(Wong & Syamsoeyadi, 2011; Wong, 2009).   

 

Covariance between a pair of random variables U(x) and U(x+h) can be expressed in terms of correlation 

coefficient function or shortly, correlation function, i.e. 2( ) ( ) /C h h , where  2 var ( )U  x  and h 

is a vector separating two points x and x+h.  In the K-FEM, factor σ
2
 has no effect on the final results and 

it was taken equal to 1 in this study.  The correlation functions that have been utilized in the previous 

works are Gaussian, viz. 

 2( ) ( ) exp( ( / ) )h h d    h  (6) 

 and Quartic Spline, viz.  
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h d
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     
  


h  (7) 

In these equations, θ>0 is the correlation parameter, h  h , i.e. the Euclidean distance between points x 

and x+h, and d is a scale factor to normalize the distance.  In this study, the correlation parameter was 

chosen based on the results of the search for the lower and upper bound values of θ (Wong & Kanok-

Nukulchai, 2009b; Wong & Syamsoeyadi, 2011) satisfying the rule of thumb given by Plengkhom & 

Kanok-Nukulchai (2005).  Factor d was taken to be the largest distance between any pair of nodes in the 

DOI.   

 

FORMULATION OF KRIGING-BASED TIMOSHENKO BEAM ELEMENT 

The variational governing equation for static deflection of Timoshenko beam (Friedman & Kosmatka, 

1993) is 

 ∫     
 

 
        ∫          

 

 
             ∫   

 

 
    ∫   

 

 
     (8) 

The primary variables in this equation are the transverse displacement (deflection) of the neutral axis of 

the beam, w, and the rotation of the cross-section, ψ, which are functions of independent variables 

coordinate x.  The external forces acting on the beam are the distributed force along the length of the 

beam, q, and distributed moment, m.  The geometrical parameters are the length of the beam, L, the cross-

sectional area, A, and the moment of inertia, I.  The material properties are Young‟s modulus, E, and the 

shear modulus, G.  The other parameter is k, i.e a shear correction factor, which is dependent upon the 

cross-section geometry.   The symbol δ is the variational operator, so that δw and δψ are the admissible 

variations of w and ψ, respectively (also called virtual displacements).  The comma denotes the first 

partial derivative with respect to the variable that follows (i.e. x).   

 

Suppose a beam is divided into a number of finite elements.  For each element, KI is constructed based 

upon a set of nodes in a DOI including the element itself and a predetermined number of neighbouring 

elements (see Wong & Kanok-Nukulchai (2009a) and Wong (2011) for detailed explanations).  Consider 

now an element with its DOI including n nodes.  The displacement components over the element are 

approximated by KI as follows:   

 w = Nw d ;   ψ = Nψ d  (9) 

where  000 21 nNNN wN ,   1 20 0 0 nN N N N ,  and 

 1 1 2 2

T

n nw w w  d .  Here the shape functions (N1, N2, …., Nn) are Kriging shape 

functions, which are obtained by solving Kriging equations, Eqs. (4).   
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Substituting the approximated displacement functions Eqs. (9) into the variational equation, Eq. (8), leads 

to the discrete equation     , in which 

    
TT

0 0
, ,   , ,

L L

x x w x w xEI dx kGA dx       k N N N N N N  (10) 

is the element stiffness matrix, and  

 
0 0

L L

q dx m dx  wf N N  (11) 

is the element equivalent nodal force vector.  The size of the matrices k, d, and f depends on the number 

of nodes in the DOI, n.  The integrations in Eqs. (10) and (11) are evaluated using Gauss quadrature.  The 

selective-reduced integration technique (SRI) (Hughes, Taylor, & Kanoknukulchai, 1977) can be 

employed to overcome the shear locking phenomenon. 

 

FORMULATION OF KRIGING-BASED REISSNER-MINDLIN PLATE 
ELEMENT 

Consider a plate of uniform thickness, h, homogeneous, referred to a three-dimensional Cartesian co-

ordinate system with the x-y plane lying on the middle surface of the plate (Fig. 1).  The primary variables 

in the RM plate problem are the deflection of a point initially lying on the neutral plane, w, and the 

components of rotation of a normal line, namely ψx and ψy.  The positive sign convention for these 

rotation components and displacement components is showed in Fig. 1.   

 

The variational governing equation for static deflection of RM plate under transversal load q(x, y) (Wong, 

2009) is  

 T T T

b s s s

S S S

dS dS dS     κ D κ ε D ε u p  (12) 

In this equation,  

   {

    
    

         

} ;      {
   
   

}  (13) 

are the vector of curvatures and the vector of tranverse shear strains, respectively,    

 

    {     }  (14) 

is the vector of the primary variables, i.e. the deflection and rotation components, and  

  
T

0 0qp  (15) 

is the vector of external loads.   

 

 
 

Fig. 1:  Plate, coordinate system, and positive directions for displacement and rotation 

components 
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For a linear-elastic and isotropic material with the elastic modulus E and Poisson‟s ratio ν:  

 
3

b b2

1 1
2 2

1 0 1 0

1 0 1 0
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s s
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0 1 0 1
Gkh D

   
    
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D  (17) 

Factors Db in Eq. (16) and Ds in Eq (17) are the bending (or flexural) rigidity and the shear rigidity of the 

plate, respectively.  Factor G is the shear modulus and k is shear correction factor, which is equal to 5/6 

for a homogeneous plate.   

 

Suppose the domain S is subdivided into a mesh of Nel triangular elements and N nodes.  To obtain an 

approximate solution using the concept of KI with layered-element DOI, for each element e=1, 2, …, Nel 

the plate field variables are approximated by the KI as follows: 

   ∑          
 
  ;        ∑           

 
  ;        ∑           

 
  (18) 

Here Ni(x,y) is Kriging shape functions associated with node i for approximating defection, rotation in the 

-y-direction, and rotation in the x-direction, respectively;  wi, ψxi and ψyi are nodal deflection, nodal 

rotation in the –y-direction, and nodal rotation in the x-direction, respectively;  n is the number of nodes 

in the DOI of an element, which generally varies from element to element.   

 

Substituting the approximated displacement functions Eqs. (18) into the variational equation, Eq. (12), 

leads to the discrete equation kd=f, in which  

 T T

b s b b b s s s

S S

dS dS    k k k B D B B D B   (19) 

is the element stiffness matrix,   
T

1 1 1 2 2 2x y x y n xn ynw w w     d  is the element 

nodal displacement vector, and  

 T

S

dS f N p   (20) 

is the element nodal force vector.  In Eq. (19), kb and ks are the bending and the transverse shear stiffness 

matrices, respectively,  

    [

      
      
         

    

 
 
 

    

      
      
          

]  (21) 

is the curvature-displacement matrix, and  

    [
        
        

   
 
    

        
        

 ]  (22) 

is the shear strain-displacement matrix.  In Eq. (20),  

   [
    
    
    

    

 
 
 

    

    
    
    

]  (23) 

is the shape function matrix.   

 

NUMERICAL RESULTS 

Beam Element 
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To test the performance of the developed K-Beam, a cantilever beam subjected to triangular-distributed 

load as shown in Fig. 2 was analyzed using the K-Beam with cubic polinomial basis, three-layer DOI, and 

Gaussian correlation function (P3-3-G).  The geometrical and material parameters of the beam are 

E=1000 kN/m
2
, I=0.020833 m

4
, A=1 m

2
, G=384.61 kN/m

2
, k=0.84967, v=0.3, L=4 m, L/h=8.  The beam 

was divided into 4, 8, and 16 elements.  The shape function parameter θ was taken to be equal to 1.  The 

number of the integration sampling points for evaluating the stiffness matrices (Eq. 10) was taken to be 

equal to 3 while for evaluating the force vector (Eq. 11) was taken to be equal to 2.  In the case where the 

SRI technique was employed, the number of sampling points for the bending term was 3 while that for the 

shearing term was 1.   

 

 

Fig. 2:  Cantilever beam subjected to unit triangular distributed load 

 

The deflections at the free end, the bending moments and the shearing forces at the clamped end were 

observed.  The results were normalized with respect to their respective exact solutions and presented in 

Tables 1-3 together with the results of the superconvergent beam element of Friedman & Kosmatka ( 

1993) (F&K).  The tables show that both P3-3-G and P3-3-G (SRI) can produce very accurate 

displacements and reasonably accurate moments.  The element with P3-3-G gives slightly better results 

than the element with SRI.  The shearing forces directly calculated from the shearing strains, however, 

cannot produce accurate results.  The use of SRI worsen the shearing forces.  It is interesting to notice that 

the results using full integration for the displacement and moment, converge from below, while those 

using SRI converge from above.  This is because the use of SRI makes the stiffness matrix becomes „less 

stiff‟ than the actual.   

 

Tab. 1:  Normalized deflections at the free end 

Number of elements P3-3-G P3-3-G (SRI) F&K 

4 0.9998 1.0042 1 

8 0.9999 1.0005 1 

16 0.9999 1.0000 1 

 

Tab. 2:  Normalized bending moments at the clamped end 

Number of elements P3-3-G P3-3-G (SRI) F&K 

4 0.9350 1.0778 0.96 

8 0.9924 1.0441 1 

16 0.9993 1.0217 1 

 

Tab. 3:  Normalized shear forces at the clamped end 

Number of elements P3-3-G P3-3-G (SRI) F&K 

4 1.6338 4.1432 0.8 

8 1.1146 1.8706 0.9 

16 1.0175 1.4110 1 

 

L 

q0=1 
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Plate Element 

A SS-U rhombic plate with the side length L=100, length-to-thickness ratio L/h=100, and the sharp vertex 

angle α=30
o 
was analysed using the K-Plate with cubic basis, three-layer DOI, quartic spline correlation 

function (P3-3-QS) and with quartic basis, four-layer DOI, quartic spline correlation function (P4-4-QS).  

The correlation parameter was adjusted to the number of nodes in the DOI of each element as presented 

in the paper of Wong & Kanok-Nukulchai (2006a).  The mesh comprises 4 4  up to 32 32  triangular 

elements.  Typical mesh of the plate is shown in the Fig. 3.  For comparison of the K-Plate with the 

classical FEM, the plate was also analysed using three-node triangular element (TRI3) of Mitaim (1994).  

This element is a simple and efficient triangular element, developed using assumed shear strain method.   

 

 

Fig. 3:  Rhombic plate with mesh 4-by-4 

 

The deflections at the center C are presented in Table 4.  It shows that the results of the K-Plate are not 

accurate for the coarse meshes (M=4 and 8) due to shear locking.  The locking, however, relieves as the 

mesh is finer.  The results converge to the 3D solution rather than to the thin plate theory solution.  This is 

expected since according to (Babuška & Scapolla, 1989), “the Kirchhoff model has a large error 

(measured in the energy norm) in comparison with the three dimensional solution with a soft simple 

support; also for very thin plates” and “the error of displacements of the Kirchhoff model is not negligible 

for α=30
o
”.  As a comparison, the results of TRI3 also have similar characteristic with those of the K-

Plate.  In this problem, the performance of the K-Plate is not better than TRI3.   

 

Tab. 4:  Center deflection of the SS-U rhombic plate with L/h=100 (x 10
-3

 qL
4
/D) 

M Element Size P3-3-QS P4-4-QS TRI3 

4 25 0.156 0.238 0.366 

8 12.5 0.355 0.355 0.388 

16 6.25 0.406 0.406 0.410 

32 3.125 0.419 0.419 0.419 

3D solution* 0.423 0.423 0.423 

Thin plate theory 0.408 0.408 0.408 

M: number of divisions on each side 

* Three-dimensional solution by Babuška & Scapolla (1989) 

 

CONCLUSIONS 

The K-FEM for analyses of the Timoshenko beam and Reissner-Mindlin plate has been presented.  The 

formulation and implementation of the method are similar with the conventional FEM.  The well-known 

shear locking problem in the FEM remains present in the present method.  While the selective-reduced 

integration technique is applicable to K-Beam for eliminating the locking, it is not applicable to K-Plate.  

The numerical tests show that for thick and not very thin beams and plates, the elements can produce 

accurate results very accurate results in a relatively-coarse mesh.  For thin plates, however, the 

performance of the elements is not satisfactory because of shear-locking problem.  Future research on the 

K-Plate should be directed on developing a method to eliminate shear locking completely.   
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