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ABSTRACT: Meshless methods are alternative solutions in response to Finite Element Method’s 
drawbacks such as locking problem, element distorsion, and effort of remeshing. Redescritization in 
meshless methods can be done by simply adding nodes in regions where the accuracy of the solutions 
need to be improved. In this study, one of the meshless methods called the Meshless Local Petrov-
Galerkin (MLPG) is introduced. The accuracy of the method which is using the Moving Least-Squares 
(MLS) approximation is demonstrated. A standard cantilever beam with end tip point load problem is 
analysed by MLPG as well as finite element method (SAP2000) for comparison. Numerical results 
show that analysis using the MLPG is satisfactory.  
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1. INTRODUCTION 
 
Finite Element Method (FEM) is one of well established numerical solutions for engineering 
problems. Some drawbacks of FEM are locking problems, element distortions, and remeshing for 
large displacement problems [1-2]. In recent years, meshless methods have been developed as 
alternative numerical approaches in efforts to eliminate known drawbacks of the FEM. The main 
objective to these methods is to reduce the difficulty of meshing and remeshing of complex structural 
problem domains. Descritization procedure of the problem domain is done only by simply adding or 
deleting nodes where desired. Nodal connectivity to form an element as in FEM is not needed, only 
nodal coordinates and their Domain of Influence (DOI) are necessary to descretize the problem 
domain.  
 
There are several meshless methods under current development, including the Element-Free Galerkin 
(EFG) method proposed by Belytschko et al. [3], the Reproducing Kernel Particle Method (RKPM) 
proposed by Liu et al. [4], Smooth Particle Hydrodynamics (SPH) method proposed by Gingold and 
Monaghan [5], Meshless Local Petrov-Galerkin (MLPG) method proposed by Atluri et al. [1], and 
some other methods. The newly developed MLPG method use shape functions which are derived from 
moving least-square (MLS) approximation. The main purpose of this paper is to compare the accuray 
of MLPG compared to exact solution and FEM method (SAP2000) in a standard cantilever beam 
problem [6]. 

 
2. MOVING LEAST-SQUARES (MLS) APPROXIMATION 

 
Given a set of nodes xI and a set of nodal values uI the original function f:f(xi)= ui is to be 
approximated using no connectivity information. Consider the approximation as a product of 
polynomial basis function and a set of coefficients as follows: 
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where p, the polynomial basis function, is a vector with the size mx1 (m is the number of polynomial 
coefficients), and a is a set of coefficients. Examples of polynomial bases and coefficients a are 
presented in Table 1. 

Table 1. Polynomial bases 

1D pT = [1,x,x2,…,xn] 

2D pT = [1,x,y,…xn,yn] 

3D pT=[1,x,y,z,…,xn,yn,zn] 

 aT = [a1,a2,…,am] 

 
It should be noted here that the coefficients used in the approximation (a) depend on the location 
where the original function is approximated, this is different from the approximation coefficients used 
in FEM which are constant. Determination of a is achieved by minimizing a weighted square of 
discrete error of the function u expressed in following term : 
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where )( II xxw −  is the degree of influence (weight function) of node I to a point x in the problem 
domain and )()(),( xaxpxx I

T
Iappu = . Weight function of a point I has a unit value at that point and 

smoothly decrease as we move further from that point and finally reach zero value at a certain distance 
(radius) dmax. In matrix form, Equation 2 can be rewritten as: 

)()( uPaWuPa −−= TJ                               (3) 
where 
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The coefficients a can be determined by minimizing Equation 3 with the respect to coefficients a 
which lead to following expression : 

 uxBxAxa )()()( 1−=                       (4) 

where 
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Then the approximation of the original function in Equation 1 can be obtained. Substituting Equation 4 
into Equation 1 and rearrange the equation according to nodal value uI, Equation 1 can be rewritten in 
this form: 
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where )()()()( 1 xBxAxpx I
T

I
−=Φ  is known as the MLS shape function of node I. BI( x )  is the Ith 

column of matrix B( x ). These following equations are formulation to determine the shape functions 
derivatives: 
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3. MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD  
 
For a two-dimensional linear, elastic boundary value problem in a global domain Ω , bounded 
by Γ (Figure 1), the force equilibrium equation can be written as: 

 Ω=+ inbijij 0,σ    (7)  

where σij is the stress tensor, bi are the body forces, and σij,j indicates the partial derivative of σij with 
respect to coordinate direction xj. Additionally, the boundary conditions may be written, respectively, 
as: 

 uii atuu Γ=              (8) 

 tijij attn Γ=σ              (9) 
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where iu  is ith component of displacement, iu  and it  are prescribed displacements and tractions that 
are applied on boundary segments uΓ  and tΓ , respectively, and jn  is the unit vector that is locally 
outward normal to the boundary. A generalized local weak form of the governing differential equation 
and the boundary conditions, over a local sub-domain Ω∈Ω I

te , as shown in Figure 1, can be written 
as [1]: 

 ( ) ( )∫ ∫
Ω Γ

=Γ−−Ω+
I
te

I
su

dvuudvb iiiiijij 0, ασ              (10) 

where I
suΓ  is the intersection of uΓ  and the boundary I

teΩ∂  of  I
teΩ , iv  is a test function that can be 

chosen with some degree of flexibility, and α is a penalty parameter that sets the degree of influence 
of the second term in (10) with respect to the first term. The definitions of the various regions and 
boundaries relevant to the formulation of the MLPG method are clearly illustrated in Figure 2.  
 

Figure 1. A schematic representation of the sub-domain I
teΩ , with node I as its center.  

Figure. 2. Definitions if the domain of the test function I
teΩ  intersects the global boundary Γ .  

 
Further, if integration by parts and the divergence theorem are applied to the first term of Equation 10, 
the equation can be expressed as follows: 
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Noting that test function vi = 0 on I
teΩ∂ except if I

teΩ∂  intersects a global boundary Γ,  Equation 11 
can be rewritten as: 

 ∫∫∫∫∫
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I
su

I
te

I
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I
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I
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Finally, Equation 12 can be re-written in the following form (known as the local symmetric weak 
form): 
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where I
stΓ  is the intersection of tΓ  and the boundary I

teΩ∂ , and jiji nt σ= . Equation 13 leads to the 
Ith row of the global stiffness matrix. The Jth columns of the stiffness matrix correspond to all nodes 
whose domains of influence J

trΩ  intersect with the Ith test function’s sub-domain I
teΩ , as shown in 

Figure 3. 

Further, it can be shown if the radius of J
trΩ  and I

teΩ  for each I and J are equal, and if ui and vi 
centered at the Ith and Jth nodes, respectively, are the same for each I and J, then the stiffness matrix 
will be symmetric. In this study, the test function vi is equal to zero at I

teΩ∂  except if I
teΩ∂  intersects 

the global boundary Γ, and the test function vi is any function that is sufficiently well-behaved and 
integrable [7]. This means that the test function can take any shapes such as circular, ellipse, 
rectangular, polygonal, etc., as long as the above criterions are met. 

 
Figure 3. Intersections of test function and trial functions which lead to non-zero components in the Ith 

row of stiffness matrix.  

To obtain the discrete equations from the MLPG formulation (13), the trial function ui and test 
function vi are defined as follows: 

 ∑
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Trial function of 
nodes J1, J2, 

J3, J4 

Test function of node I 
and trial function of 

node J5 (=I) 

International Civil Engineering Conference "Towards Sustainable Civil Engineering Practice"

77



 ∑
=

=
N

I

I
i

I
i vxxv

1

ˆ)()( ψ  (14b) 

where φJ(x) and ψI(x) are the nodal shape functions for the trial and test functions, respectively, and 
are centered at nodes J and I, respectively. The φJ(x) are constructed from Moving Least-Square (MLS) 
approximation functions and the ψI(x) are chosen as the weight functions used in MLS approximation 
at node I. Thus each nodal sub-domain is circular in shape. In typical meshless interpolations, J

iû  are 
referred to fictitious nodal values since they have no real physical meaning. Due to the nature of MLS 
approximation functions, which are not necessarily equal to unity at its corresponding node and equal 
to zero at their neighboring nodes, the nodal degrees of freedom in MLS based methods do not 
correspond to actual displacements at the nodes. 
 
Substituting Equation 14 into Equation 13 and factoring I

iv̂  out of the equation, the discrete form of 
the MLPG formulation can be expressed as follows: 
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where in two-dimensional space, 
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Further, Equation 15 can be written in a more compact form which we may already be familiar with, 
namely: 
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In the MLPG method, each local weak form (examining only one test function and the trial functions 
whose domains intersect with its domain) results in two rows (for two dimensional problems) of non-
zero components of the global stiffness matrix. Theoretically, as long as the union of all local sub-
domains I

teΩ  covers the global domain, the equilibrium equation and the boundary conditions will be 
satisfied in the entire global domain Ω  and along its boundary Γ  [1]. Solving Equation 16, the 
fictitious nodal displacement values Jû  at every node J can be obtained. Approximate solution can be 
obtained from Equation 14a, and by taking the derivative of this approximate solution and applying an 
appropriate stress-strain relationship (the Hooke’s Law), the strain and the stress can be obtained. 
 
4. CANTILEVER BEAM PROBLEM  
 
A standard cantilever beam test (loaded at its free end) as can be seen in Figure 4, will be analyzed. 

 
 
 

                                   
 
 
  
 
                                         
 

   
Figure 4. Cantilever beam test 

The exact displacement solutions are given in Equations 19, and 20 [6] as follows : 
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where   1u  = horizontal displacement  
              2u  = vertical displacement 
              IM = Second moment of Inertia 
   υ  = poisson’s ratio 
The cantilever beam is analyzed with 7x11 nodal configuration using MLPG (linear, bilinear, 
quadratic, cubic polynomials) and FEM (SAP2000, 4 noded bilinear element). Displacement results 
are observed in midspan section of the beam, as can be seen in these following figures. 
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Figure 5. Displacement and displacement error in X direction at midspan [8]. 
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Figure 6. Displacement and displacement error in Y direction at midspan [8]. 

 
5. CONCLUSIONS 
 
From the cantilever beam test, some points can be concluded. 

1. In MLPG, value of error displacement is lower if higher polynomial function is used. 
2. With the same number of nodes and the same polynomial function (bilinear), MLPG results 

show better error displacement than FEM results (SAP2000). 
3. MLPG approaches the exact solution from risky side (underestimates the displacement), 

while FEM (SAP2000) approaches the exact solution from conservative side (overestimates 
the displacement). 
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