

Comparison of Bidirectional Associative Memory,

Counterpropagation and Evolutionary Neural

Network for Java Characters Recognition

Gregorius Satia Budhi

Informatics Department

Petra Christian University

Surabaya, Indonesia

greg@petra.ac.id

Rudy Adipranata

Informatics Department

Petra Christian University

Surabaya, Indonesia

rudya@petra.ac.id

Abstract— Javanese language is the language used by the

people on the island of Java and it has its own form of letters

called Java characters. Recognition of Java characters is quite

difficult because it consist of basic characters, numbers,

complementary characters, and so on. In this research we

developed a system to recognize Java characters and compared

three methods of neural network namely bidirectional associative

memory, counterpropagation and evolutionary neural network.

Input for the system is a digital image containing several Java

characters. Digital image processing and segmentation are

performed on the input image to get each Java character. For

each Java character, feature extraction is done using ICZ-ZCZ

method. Output from feature extraction will become input for

neural network. From experimental result, evolutionary neural

network can perform better recognition accuracy than the other

two methods.

Keywords—Java characters recognition, bidirectional

associative memory, counterpropagation, evolutionary neural

network

I. INTRODUCTION

Javanese language is the language used by the people on
the island of Java. Javanese language has its own form of
letters referred to the character of Java. Java characters
recognition has its own difficulty level because of basis
characters, vowels, complementary, and so on. Because it is
difficult to recognize, then lately not many people can do the
writing or reading of Java characters. For many people, Java
characters eventually regarded as a decoration only and do not
mean anything. This will further erode gradually the existence
of Java characters and will ultimately also affect the Javanese
culture in general.

Some researchers have conducted research on this Java
character recognition. Nurmila [1] used backpropagation neural
network and the accuracy result was about 61%. Other
researcher, Priyatma used fuzzy logic for recognition [2] and
the recognition results are satisfactory.

In this research, we developed a system that can
automatically recognize Java characters in the form of digital
image, and turn them into a document written with the
hanacaraka font. The first process is digital image

segmentation and feature extraction. The features will be used
as input for neural network. In this research we compare three
methods of neural networks, namely bidirectional associative
memory, counterpropagation network, and evolutionary neural
network.

II. JAVA CHARACTERS

Java characters are differ from the commonly used Latin
characters. Java characters have different shape and structure
with the Latin characters. Carakan characters is the core of
Java characters consisting of 20 syllables called
Dentawyanjana, can be seen in Figure 1 [3].

Fig. 1. Basic (carakan) characters

For numbers in Java characters can be seen in Figure 2 [3].

Fig. 2. Symbol of numbers

Sandhangan character is commonly used as complementary
character, vowel or consonant that are commonly used in
everyday language. Sandhangan can be seen in Figure 3 [3].

Sandhangan
name

Java character Description

Wulu

Vowel i

Suku

Vowel u

Taling

Vowel é

Pepet

Vowel ê

Taling tarung

Vowel o

Fig. 3. Sandhangan characters

III. IMAGE SEGMENTATION

Segmentation is one of the important processes used to
transform the input image to the output image taken based on
the attributes of the image. Segmentation divides the image
into regions based on its intensity so can distinguish objects
and background. Segmentation should be discontinued if each
object has been isolated or clearly visible [4]. The
segmentation methods that used in this research are
thresholding and skeletonizing.

Thresholding is one way to separate the objects in the
image from the background by selecting a threshold value T
that can separate these two modes. With the election of the
value of T, all points (x, y) where f (x, y)> T, can be called an
object point and besides it is called a background point or vice
versa [4].

Skeletonizing or thinning is the process to get rid of the
extra pixels and produces images that are more modest. The
purpose of skeletonizing is made simpler image so that the
image can be analyzed further in the way of its shape and
suitability. Problem encountered in conducting thinning is how
to determine the pixels are redundant. If we cannot determine
it, the thinning process is more likely to an erosion process
where erosion can cause a region is deleted. Skeleton should
remain intact and have some basic properties such as [5]:

• Must consist of several thin regions, with a width of 1
pixel.

• Pixels that form the skeleton should be near the middle
are of the cross section of the region.

• Skeletal pixel must be connected to each other to form
several regions that are equal to the number of region in
original image.

IV. BIDIRECTIONAL ASSOCIATIVE MEMORY

Bidirectional associative memory (BAM) proposed by Bart
Kosko in 1998 [6]. This method associates the patterns of a set,
for example set A to set B, the group or other set of patterns,
and vice versa. BAM architecture can be seen in Figure 4.

Fig. 4. Architecture of BAM: (a) forward direction (X  Y); (b) backward

direction (Y  X)

V. COUNTERPROPAGATION NETWORK

Counterpropagation network (CPN) is defined by Robert
Hecht-Nielsen in 1987 [7]. This method is widely used because
it is simple and easy on the training process. Additionally CPN
has good stats in the representation of the input layer for a wide
range of environment. CPN combines unsupervised training
method on Kohonen Layer and supervised on Grossberg layer
[7]. Network topology of CPN can be seen in Figure 5.

Fig. 5. Counterpropagation network topology

VI. EVOLUTIONARY NEURAL NETWORK

Evolutionary neural network (ENN) is a combination of a
neural network with evolutionary algorithm. Although the
neural network can be used to solve various kinds of problems,
it still has some limitations. A common limitation is usually
associated with network training. Backpropagation learning
algorithms are often used as flexible and easy to implement had
serious drawbacks, which cannot guarantee that the optimal
solution is given. Another difficulty is related to selecting the
optimal network topology for the neural network. Network
architecture that is appropriate for certain cases more often
chosen from heuristic methods, and neural network topology
design is still an art than a technique. This shortcoming can be
addressed using evolutionary algorithm.

Evolutionary algorithm refers to a probabilistic adaptation
algorithm inspired from natural evolution. This method follows

the statistical search strategies in a population of individuals,
each representing a possible solution to the problem.
Evolutionary algorithm divides into three main forms, namely:
evolution strategies, genetic algorithms, and evolutionary
programming [8].

In this research, the evolutionary algorithm used is the
genetic algorithm. Genetic algorithm is an effective
optimization technique that could help both the optimization of
weight and selecting the network topology. In order to use
genetic algorithm, first a problem must be represented as a
chromosome. For example, when we want to look for a set of
optimal weight of a multilayer feed forward neural network,
the first step in solving this problem is the system should make
the process of encoding of the network into a chromosome as
in Figure 6 [6].

Fig. 6. Encoding a network into a chromosome

The second step is to define the fitness function to evaluate
the performance of the chromosome. This function must be
calculated given the performance of the neural network. We
can implement a simple function from squared errors. To
evaluate the fitness of the chromosomes, each chromosome
weight is given to each link in the network. Training of
examples collections are then presented to the network, and the
number of squared errors is calculated. Small squared errors
indicate that the chromosome is more fit than the other. In
other words, genetic algorithm seeks to find a set amount of
weight that has the smallest squared errors.

The third step is to choose the genetic operators, namely
crossover and mutation. Crossover operator requires two parent
chromosomes and creates a child with genetic material from
both of its parent. Each gene of the child chromosome is
represented by the corresponding genes of randomly selected
parent. Mutation operator randomly selects a gene and replaces
it with a random result between -1 to 1. By doing so, the
system is ready to apply genetic algorithms. However, users
still need to define the number of population, the number of
networks with different weights, the probability of crossover
and mutation as well as the number of generation [6].

VII. IMPLEMENTATION AND RESULT

System workflow starting from input of a Java characters
digital image. Then we do the grayscale processing and
filtering to remove noise that exists. After that the

segmentation process is carried out to get the parts of
hanacaraka character using thresholding and skeletonizing.
Later feature extraction process is done by using ICZ-ZCZ [9]
and the feature will be used as inputs to the neural network.

ICZ (Image Centroid and Zone) – ZCZ (Zone Centroid and
Zone) is zoning type feature extraction that utilizing centroid of
the image or centroid of the zone. Each digital image input
(each Java character image) is divided into 20 zones (4 * 5
zones), and for each zone, the ICZ and ZCZ methods will be
performed so there are 40 ICZ-ZCZ output values that become
neural network input node.

The overall system workflow can be seen in Figure 7.

start
Input digital

image
Grayscaling Filtering Segmentation

Feature Extraction
Neural network

processing

Output

hanacaraka

font

end

Fig. 7. System workflow

Application interface can be seen in Figure 8.

Fig. 8. Application interface

Experimental results of bidirectional associative memory
(BAM) can be seen in Table 1.

TABLE I. EXPERIMENTAL RESULT OF BAM

No Number of

sample

Input

node

Output

node

Accuracy (%)

1 2 6 4 100.00%

2 2 15 10 0.00%

3 3 4 5 100.00%

4 4 6 3 100.00%

5 6 6 3 66.67%

6 6 6 3 33.33%

7 6 6 4 100.00%

8 8 6 4 75.00%

9 8 6 5 62.50%

10 8 6 5 75.00%

11 8 8 5 37.50%

12 4 3 1 0.00%

13 3 30 10 33.33%

14 4 30 15 0.00%

15 4 30 30 0.00%

From the experimental results above it can be concluded
that the BAM is inaccurate to use for Java characters
recognition. For input node, we need at least 40 nodes, while
BAM only works well when the input nodes are the same or
less than 6 nodes only. And for the output nodes, we need at
least 20 nodes because Java characters consists of at least 20
basic characters, not included numbers and sandhangan, while
BAM works well for 3 or 4 nodes only.

Another experiments use counterpropagation network
(CPN) and evolutionary neural network (ENN) 1 layer and 2
layers, and from experimental result, the average of recognition
accuracy of CPN is only about 70% for training data and 4%
for testing data, while the average of recognition accuracy of
ENN is about 94% for training data and about 62% for testing
data. Parameters used for ENN are: the number of neuron for
each layer: 60, crossover probability: 100%, mutation
probability: 50%, maximum population: 50, maximum epoch:
10 million and error limit: 0.1. The experimental result of CPN
and ENN can be seen in table II.

TABLE II. EXPERIMENTAL RESULT OF CPN AND ENN

Character type
Data

type

Accuracy (%)

CPN
ENN (1

layer)

ENN (2

layers)

All characters

(basic / carakan,

number &

sandhangan)

Training 70.22 94.90 93.53

Testing 4.76 58.23 62.38

Basic / carakan
Training 60.28 97.67 96.33

Testing 3.17 58.12 59.31

Numbers

Training 73.14 99.33 98.67

Testing 5.02 60.84 64.85

Sandhangan
Training 77.20 93.33 88.89

Testing 6.26 66.92 68.12

CONCLUSION

From the experimental that has been done, it can be

concluded that bidirectional associative memory and

counterpropagation neural network could not be used for

recognition of Java characters because the average of accuracy

is very low, while evolutionary neural network still could be

used for Java characters recognition because from the

experimental result, it show that the average of accuracy is

quite high. For future research, the accuracy may be improved

by using another method for feature extraction that can

distinguish similar Java character.

ACKNOWLEDGMENT

We thank the Research Center, Petra Christian University,

Surabaya, Indonesia, which has funded this research through

the Internal Research Grant (05/Pen-LPPM/UKP/2012), fiscal

year 2012. We also thank Edwin Prasetio Nandra, Danny

Setiawan Putra, Eric Yogi Tjandra, Evan Sanjaya, Jeffry

Hartanto, Ricky Fajar Adi Edna P., and Christopher H.

Imantaka for their help in doing the system coding

REFERENCES

[1] Nurmila, N., Sugiharto, A., dan Sarwoko, E. A., “Back Propagation
Neural Network Algorithm For Java Character Pattern Recognition,”
Jurnal Masyarakat Informatika vol 1, no 1, pp 1-10, 2010.

[2] Priyatma, J. E. dan Wahyuningrum, S. E., “Java Character Recognition
Using Fuzzy Logic,” SIGMA vol 8, No 1, pp 75-84, 2005.

[3] Java Characters, Aksara Jawa,

http://id.wikipedia.org/wiki/Aksara_Jawa, last access January 2013.

[4] Gonzalez, R.C., and Woods, R.E., “Digital Image Processing 3rd
Edition,” New Jersey: Prentice-Hall, Inc., 2008.

[5] Parker, J.R., “Algorithm for Image Processing and Computer Vision,”
New York: John Wiley and Sons, Inc., 2010.

[6] Negnevitsky, M, “Artificial Intelligence: A Guide to Intelligence
Systems (2nd ed.),” New York: Addison Wesley, 2005.

[7] Boyu, W., Feng W., and Lianjie S., “A Modified Counter-Propagation
Network for Process Mean Shift Identification,” IEEE International
Conference on Systems, Man and Cybernetics. pp. 3618 – 3623, 2008.

[8] Dewri, R., “Evolutionary Neural Networks: Design Methodologies,“
http://ai-depot.com/articles/evolutionary-neural-networks-design-
methodologies/, last access January 2013.

[9] Rajashekararadhya, S.V., Ranjan, Vanaja, “Efficient zone based feature
extraction algorithm for handwritten numeral recognition of four popular
South Indian scripts,” Journal of Theoritical and Applied Information
Technology 4(12), pp. 1171-1181, 2005.

