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Abstract— Javanese language is the language used by the 

people on the island of Java and it has its own form of letters 

called Java characters. Recognition of Java characters is quite 

difficult because it consist of basic characters, numbers, 

complementary characters, and so on. In this research we 

developed a system to recognize Java characters and compared 

three methods of neural network namely bidirectional associative 

memory, counterpropagation and evolutionary neural network. 

Input for the system is a digital image containing several Java 

characters. Digital image processing and segmentation are 

performed on the input image to get each Java character. For 

each Java character, feature extraction is done using ICZ-ZCZ 

method. Output from feature extraction will become input for 

neural network. From experimental result, evolutionary neural 

network can perform better recognition accuracy than the other 

two methods. 

Keywords—Java characters recognition, bidirectional 

associative memory, counterpropagation, evolutionary neural 

network 

I.  INTRODUCTION 

Javanese language is the language used by the people on 
the island of Java. Javanese language has its own form of 
letters referred to the character of Java. Java characters 
recognition has its own difficulty level because of basis 
characters, vowels, complementary, and so on. Because it is 
difficult to recognize, then lately not many people can do the 
writing or reading of Java characters. For many people, Java 
characters eventually regarded as a decoration only and do not 
mean anything. This will further erode gradually the existence 
of Java characters and will ultimately also affect the Javanese 
culture in general. 

Some researchers have conducted research on this Java 
character recognition. Nurmila [1] used backpropagation neural 
network and the accuracy result was about 61%. Other 
researcher, Priyatma used fuzzy logic for recognition [2] and 
the recognition results are satisfactory. 

In this research, we developed a system that can 
automatically recognize Java characters in the form of digital 
image, and turn them into a document written with the 
hanacaraka font. The first process is digital image 

segmentation and feature extraction. The features will be used 
as input for neural network. In this research we compare three 
methods of neural networks, namely bidirectional associative 
memory, counterpropagation network, and evolutionary neural 
network. 

II. JAVA CHARACTERS 

Java characters are differ from the commonly used Latin 
characters. Java characters have different shape and structure 
with the Latin characters. Carakan characters is the core of 
Java characters consisting of 20 syllables called 
Dentawyanjana, can be seen in Figure 1 [3]. 

 

Fig. 1. Basic (carakan) characters 

For numbers in Java characters can be seen in Figure 2 [3]. 

 

Fig. 2. Symbol of numbers 

Sandhangan character is commonly used as complementary 
character, vowel or consonant that are commonly used in 
everyday language. Sandhangan can be seen in Figure 3 [3]. 

Sandhangan 
name 

Java character Description 

Wulu 
 

Vowel i 



Suku 

 

Vowel u 

Taling 

 

Vowel é 

Pepet 

 

Vowel ê 

Taling tarung 

 

Vowel o 

Fig. 3. Sandhangan characters 

III. IMAGE SEGMENTATION 

Segmentation is one of the important processes used to 
transform the input image to the output image taken based on 
the attributes of the image. Segmentation divides the image 
into regions based on its intensity so can distinguish objects 
and background. Segmentation should be discontinued if each 
object has been isolated or clearly visible [4]. The 
segmentation methods that used in this research are 
thresholding and skeletonizing. 

Thresholding is one way to separate the objects in the 
image from the background by selecting a threshold value T 
that can separate these two modes. With the election of the 
value of T, all points (x, y) where f (x, y)> T, can be called an 
object point and besides it is called a background point or vice 
versa [4]. 

Skeletonizing or thinning is the process to get rid of the 
extra pixels and produces images that are more modest. The 
purpose of skeletonizing is made simpler image so that the 
image can be analyzed further in the way of its shape and 
suitability. Problem encountered in conducting thinning is how 
to determine the pixels are redundant. If we cannot determine 
it, the thinning process is more likely to an erosion process 
where erosion can cause a region is deleted. Skeleton should 
remain intact and have some basic properties such as [5]:  

• Must consist of several thin regions, with a width of 1 
pixel.  

• Pixels that form the skeleton should be near the middle 
are of the cross section of the region.  

• Skeletal pixel must be connected to each other to form 
several regions that are equal to the number of region in 
original image. 

IV. BIDIRECTIONAL ASSOCIATIVE MEMORY 

Bidirectional associative memory (BAM) proposed by Bart 
Kosko in 1998 [6]. This method associates the patterns of a set, 
for example set A to set B, the group or other set of patterns, 
and vice versa. BAM architecture can be seen in Figure 4. 

 

Fig. 4. Architecture of BAM: (a) forward direction (X  Y); (b) backward 

direction (Y  X) 

V. COUNTERPROPAGATION NETWORK 

Counterpropagation network (CPN) is defined by Robert 
Hecht-Nielsen in 1987 [7]. This method is widely used because 
it is simple and easy on the training process. Additionally CPN 
has good stats in the representation of the input layer for a wide 
range of environment. CPN combines unsupervised training 
method on Kohonen Layer and supervised on Grossberg layer 
[7]. Network topology of CPN can be seen in Figure 5. 

 

Fig. 5. Counterpropagation network topology 

VI. EVOLUTIONARY NEURAL NETWORK 

Evolutionary neural network (ENN) is a combination of a 
neural network with evolutionary algorithm. Although the 
neural network can be used to solve various kinds of problems, 
it still has some limitations. A common limitation is usually 
associated with network training. Backpropagation learning 
algorithms are often used as flexible and easy to implement had 
serious drawbacks, which cannot guarantee that the optimal 
solution is given. Another difficulty is related to selecting the 
optimal network topology for the neural network. Network 
architecture that is appropriate for certain cases more often 
chosen from heuristic methods, and neural network topology 
design is still an art than a technique. This shortcoming can be 
addressed using evolutionary algorithm. 

Evolutionary algorithm refers to a probabilistic adaptation 
algorithm inspired from natural evolution. This method follows 



the statistical search strategies in a population of individuals, 
each representing a possible solution to the problem. 
Evolutionary algorithm divides into three main forms, namely: 
evolution strategies, genetic algorithms, and evolutionary 
programming [8]. 

In this research, the evolutionary algorithm used is the 
genetic algorithm. Genetic algorithm is an effective 
optimization technique that could help both the optimization of 
weight and selecting the network topology. In order to use 
genetic algorithm, first a problem must be represented as a 
chromosome. For example, when we want to look for a set of 
optimal weight of a multilayer feed forward neural network, 
the first step in solving this problem is the system should make 
the process of encoding of the network into a chromosome as 
in Figure 6  [6]. 

 

Fig. 6. Encoding a network into a chromosome 

The second step is to define the fitness function to evaluate 
the performance of the chromosome. This function must be 
calculated given the performance of the neural network. We 
can implement a simple function from squared errors. To 
evaluate the fitness of the chromosomes, each chromosome 
weight is given to each link in the network. Training of 
examples collections are then presented to the network, and the 
number of squared errors is calculated. Small squared errors 
indicate that the chromosome is more fit than the other. In 
other words, genetic algorithm seeks to find a set amount of 
weight that has the smallest squared errors. 

The third step is to choose the genetic operators, namely 
crossover and mutation. Crossover operator requires two parent 
chromosomes and creates a child with genetic material from 
both of its parent. Each gene of the child chromosome is 
represented by the corresponding genes of randomly selected 
parent. Mutation operator randomly selects a gene and replaces 
it with a random result between -1 to 1. By doing so, the 
system is ready to apply genetic algorithms. However, users 
still need to define the number of population, the number of 
networks with different weights, the probability of crossover 
and mutation as well as the number of generation [6]. 

VII. IMPLEMENTATION AND RESULT 

System workflow starting from input of a Java characters 
digital image. Then we do the grayscale processing and 
filtering to remove noise that exists. After that the 

segmentation process is carried out to get the parts of 
hanacaraka character using thresholding and skeletonizing. 
Later feature extraction process is done by using ICZ-ZCZ [9] 
and the feature will be used as inputs to the neural network.  

ICZ (Image Centroid and Zone) – ZCZ (Zone Centroid and 
Zone) is zoning type feature extraction that utilizing centroid of 
the image or centroid of the zone. Each digital image input 
(each Java character image) is divided into 20 zones (4 * 5 
zones), and for each zone, the ICZ and ZCZ methods will be 
performed so there are 40 ICZ-ZCZ output values that become 
neural network input node. 

The overall system workflow can be seen in Figure 7. 
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Fig. 7. System workflow 

Application interface can be seen in Figure 8. 

 

Fig. 8. Application interface 

Experimental results of bidirectional associative memory 
(BAM) can be seen in Table 1.  

TABLE I.  EXPERIMENTAL RESULT OF BAM 

No Number of 

sample 

Input 

node 

Output 

node 

Accuracy (%) 

1 2 6 4 100.00% 

2 2 15 10 0.00% 

3 3 4 5 100.00% 

4 4 6 3 100.00% 

5 6 6 3 66.67% 

6 6 6 3 33.33% 

7 6 6 4 100.00% 

8 8 6 4 75.00% 

9 8 6 5 62.50% 

10 8 6 5 75.00% 



11 8 8 5 37.50% 

12 4 3 1 0.00% 

13 3 30 10 33.33% 

14 4 30 15 0.00% 

15 4 30 30 0.00% 

 

From the experimental results above it can be concluded 
that the BAM is inaccurate to use for Java characters 
recognition. For input node, we need at least 40 nodes, while 
BAM only works well when the input nodes are the same or 
less than 6 nodes only. And for the output nodes, we need at 
least 20 nodes because Java characters consists of at least 20 
basic characters, not included numbers and sandhangan, while 
BAM works well for 3 or 4 nodes only. 

Another experiments use counterpropagation network 
(CPN) and evolutionary neural network (ENN) 1 layer and 2 
layers, and from experimental result, the average of recognition 
accuracy of CPN is only about 70% for training data and 4% 
for testing data, while the average of recognition accuracy of 
ENN is about 94% for training data and about 62% for testing 
data. Parameters used for ENN are: the number of neuron for 
each layer: 60, crossover probability: 100%, mutation 
probability: 50%, maximum population: 50, maximum epoch: 
10 million and error limit: 0.1. The experimental result of CPN  
and ENN can be seen in table II. 

TABLE II.  EXPERIMENTAL RESULT OF CPN AND ENN 

Character type 
Data 

type 

Accuracy (%) 

CPN 
ENN (1 

layer) 

ENN (2 

layers) 

All characters 

(basic / carakan, 

number & 

sandhangan) 

Training  70.22                94.90 93.53 

Testing  4.76                58.23 62.38 

Basic / carakan  
Training 60.28 97.67 96.33 

Testing 3.17 58.12 59.31 

Numbers 

 

Training 73.14                99.33 98.67 

Testing 5.02                60.84 64.85 

Sandhangan 
Training 77.20                93.33 88.89 

Testing 6.26                66.92 68.12 

CONCLUSION 

From the experimental that has been done, it can be 

concluded that bidirectional associative memory and 

counterpropagation neural network could not be used for 

recognition of Java characters because the average of accuracy 

is very low, while evolutionary neural network still could be 

used for Java characters recognition because from the 

experimental result, it show that the average of accuracy is 

quite high. For future research, the accuracy may be improved 

by using another method for feature extraction that can 

distinguish similar Java character. 
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