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Abstract: An enhancement of the finite element method using Kriging interpolation (K-FEM) 
has been recently proposed and applied to solve one- and two- dimensional linear elasticity 
problems. The key advantage of this innovative method is that the polynomial refinement can be 
performed without adding nodes or changing the element connectivity. This paper presents the 
development of the K-FEM for static and free vibration analyses of Timoshenko beams.  The 
transverse displacement and the rotation of the beam are independently approximated using 
Kriging interpolation. For each element, the interpolation function is constructed from a set of 
nodes within a prescribed domain of influence comprising the element and its several layers of 
neighbouring elements. In an attempt to eliminate the shear locking, the selective-reduced 
integration technique is utilized. The developed beam element is tested to several static and free 
vibration problems. The results demonstrate the excellent performance of the developed element. 
   
Keywords: Finite element, kriging, Timoshenko beam, shear locking, selective-reduced 
integration. 
  

 
 

Introduction   
 
In an attempt to improve the element-free Galerkin 
method with Kriging interpolation [1], Plengkhom 
and Kanok-Nukulchai [2] presented a new class of 
FEM by introducing Kriging shape functions in the 
conventional FEM. In this method, Kriging 
interpolation (KI) is constructed for each element 
using a set of nodes in a domain of influencing nodes 
(DOI) composed of several layers of elements (the 
DOI is in the form of polygon for 2D problems).  
Combining the KI of all elements, the global field 
variable is thus approximated by piecewise KI.  For 
evaluating the integration in the Galerkin weak 
form, the elements are employed as integration cells.  
The method subsequently referred to as Kriging-
based FEM (K-FEM) [3].   
 
The advantages of the K-FEM are: (1). Highly-
accurate field variables and their gradients can be 
obtained even using the simplest form of elements 
(triangles in the 2D domain and tetrahedrons in the 
3D domain). (2). The polynomial refinement can be 
achieved without any change to the element or mesh 
structure. (3). Unlike the moving Kriging element-
free Galerkin method [1], the formulation and coding of 
the K-FEM are very similar to the  conventional FEM 
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so that any existing general-purpose FE program 
can be easily extended to incorporate the enhanced 
method. Thus, the K-FEM has a high chance to be 
accepted in real engineering practices. 
 
In the pioneering work [2], the K-FEM was developed 
for static analyses of 1D bar and 2D plane-
stress/plane-strain solids. Subsequently, it was 
developed for analyses of Reissner-Mindlin plates [3, 
4] and improved through the use of adaptive 
correlation parameters and by introducing the 
quartic spline correlation function. A drawback of 
the K-FEM is that the interpolation function is 
discontinuous at the inter-element boundaries 
(except in 1D problems). In spite of this discontinuity, 
using appropriate choice of shape function parameters, 
the K-FEM passes weak patch tests and therefore 
the convergence is guaranteed [5]. The basic concepts 
and advances of the K-FEM have been presented in 
several papers [6-8].  The current development is the 
extension and application of the K-FEM to different 
problems in engineering, such as general plate and 
shell structures [9, 10] and multi-scale mechanics 
[11].   
 
Despite many attractive features of the K-FEM, in 
the application to shear-deformable plates and 
shells, the drawback of transverse shear locking and 
membrane locking presents in the K-FEM [3, 4, 9, 
10].  The use of high order basis (cubic and quartic) 
in KI can alleviate the shear and membrane 
lockings, but there is no guarantee to eliminate the 
lockings completely.  Until the writing of this paper, 
to the authors’ knowledge, an effective method to 
completely eliminate the lockings in the K-FEM is 
not yet invented.   



Wong, F.T.et al / Kriging-based Timoshenko Beam Element for Static and Free Vibration Analyses / CED, Vol. 13, No. 1, March 2011, pp. 42–49 

 43

In attempt to invent the method to eliminate the 
drawback of shear locking in shear-deformable plate 
and shell problems, it is instructive to study the K-
FEM in the simpler context of the Timoshenko beam 
since this problem can be considered as a 1D 
degeneration from the Reissner-Mindlin plate.  It is 
the aim of this paper to present the development and 
testing of the K-FEM for analyses of static and free 
vibration of Timoshenko beams. The developed 
element is tested to several beam problems and its 
performance is compared with high performance 
Timoshenko beam element developed by Friedman 
and Kosmatka [12].   
 
Kriging Interpolation in the K-FEM 
 
Named after Danie G. Krige, a South African mining 
engineer, Kriging is a well-known geostatistical 
technique for spatial data interpolation in geology 
and mining [13, 14]. Using this interpolation, every 
unknown value at a point can be interpolated from 
known values at scattered points in its specified 
neighborhood. Here the concepts of the KI in the 
context of K-FEM are briefly reviewed.   
 
Consider a continuous field variable u(x) defined in a 
domain Ω. The domain is represented by a set of 
properly scattered nodes xi, i=1, 2, …, N, where N is 
the total number of nodes in the whole domain.  
Given N field values u(x1), …, u(xN), the problem of 
interest is to obtain an estimated value of u at a 
point x0 ∈ Ω. 
 
The Kriging estimated value uh(x0) is a linear 
combination of u(x1), …, u(xn), i.e. 

h
0 1

( ) ( )n
i ii

u uλ
=

=∑x x  (1) 

where λi’s are the unknown Kriging weights and n is 
the number of nodes surrounding point x0, inside and 
on the boundary of a DOI Ωx0 ⊆ Ω.. Considering each 
function values u(x1), …, u(xn) as the realizations of 
random variables U(x1), …, U(xn), Eq. (1) can be 
written as 

h
0 1

( ) ( )n
i ii

U Uλ
=

=∑x x  (2) 

The Kriging weights are determined by requiring the 
estimator Uh(x0) unbiased, i.e.  

h
0 0E ( ) ( ) 0U U⎡ ⎤− =⎣ ⎦x x  (3) 

where E[•] is the expected value operator, and by 
minimizing the variance of estimation error, 
var[Uh(x0)–U(x0)]. Using the method of Lagrange [13, 
14] for the constraint optimization problem, the 
requirements of minimum variance and unbiased 
estimator lead to the following Kriging equation 
system (see Wong [10] for the complete derivation): 
Rλ + Pµ = r(x0) 

PTλ = p(x0) (4) 

in which  
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;  

λ = [λ1 … λn]T ; µ = [µ1 … µm]T 

R(x0) = [C(h10) C(h20) ... C(hn0)]T ; 
p(x0) = [p1(x0) ... pm(x0)]T 

 
R is an  n x n matrix of covariance of U(x) at nodes x1, 
…, xn; P is an n x m matrix of polynomial values at 
the nodes; λ is an  n x l vector of Kriging weights; µ is 
an  m x l vector of Lagrange multipliers; r(x0) is an n 
x l vector of covariance between the nodes and the 
node of interest, x0; and p(x0) is an m x l vector of 
polynomial basis at x0. While C(hij) = cov[U(xi), U(xj)] 
is the covariance between U(x) at node xi and U(x) at 
node xj. The unknown Kriging weights λ and 
Lagrange multipliers µ are obtained by solving the 
Kriging equations, Eqs. (4).   
 
The expression for the estimated value uh, Eq. (1), 
can be rewritten in matrix form 
uh (x0) = λTd (5) 
where d = [u(x1) … u(xn)]T is an n x l vector of nodal 
values. Since the point x0 is an arbitrary point in the 
DOI, the symbol x0 can be replaced by symbol x. 
Thus, using the usual finite element symbol, Eq. (5) 
can be expressed as 

h
1

( ) ( ) ( )n
i ii

u N u
=

= =∑x N x d x  (6) 

in which N(x)= λT(x) is the matrix of shape functions.   
 
In order to construct Kriging shape functions in Eq. 
(6), a polynomial basis function and a correlation 
function should be chosen.  Basis functions ranging 
from polynomial of the degree one up to four have 
been utilized in the past works on the K-FEM [2-11].  
In the problems of shear deformable plates and 
shells, it is necessary to use cubic or quartic 
polynomial basis in order to alleviate the shear and 
membrane lockings [4, 9, 10].   
 
The correlation function ρ (h) is defined as: 
ρ(h)  = C(h)/σ 2 (7) 
where h is a vector separating two points x and x+h 
and σ2 is the variance of the random function U(x).  
In the K-FEM, factor σ2  has no effect on the final 
results and it was taken equal to 1 in this study.  
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Following the previous works [3-10], Gaussian and 
Quartic Spline correlation function (QS) were 
chosen. Gaussian correlation function is defined as 
ρ (h) = ρ (h) = exp(-(θ h/d)2) (8) 
and QS is defined as 

2 3 41 6( / ) 8( / ) 3( / )      for 0 / 1  
( ) ( )

0                                                        for / 1
h d h d h d h d

h
h d

θ θ θ θ
ρ ρ

θ
⎧ − + − ≤ ≤

= =⎨
>⎩

h  (9) 

In these equations, θ>0 is the correlation parameter, 
h = ||h||, i.e. the Euclidean distance between points x 
and x+h, and d is a scale factor to normalize the 
distance.  Factor d was taken to be the largest 
distance between any pair of nodes in the DOI.   
 
For each aforementioned correlation function, 
appropriate values for the correlation parameter 
should be chosen so that the K-FEM will give 
reasonable results. Plengkhom dan Kanok-
Nukulchai [2] proposed a rule of thumb for choosing 
the parameter as follows: Correlation parameter, θ, 
should be selected so that it satisfies the lower bound 
condition,   

10
1

1 1 10n a
ii

N − +
=

− ≤ ×∑   (10a) 

and also satisfies the upper bound condition, 

det(R) < 1 x 10-b (10b) 

where a is the order of basis function and b is the 
dimension of problem (1, 2, or 3).   
 
Variational Form of Timoshenko Beam 
Governing Equations 
 
The basic assumption of Timoshenko beam theory is 
that a plane normal to the beam axis in the 
undeformed state remains plane in the deformed 
state but it does not necessarily in normal direction 
to the neutral axis [16]. The theory accounts for both 
the transverse shearing strain and the rotary inertia 
in a dynamic analysis. This section presents the 
variational formulation of Timoshenko beam following 
that given by Friedman and Kosmatka [12].   
 
Fig. 1 shows the coordinate system used in the 
following formulation. The displacement components 
in x and z directions can be respectively written as a 
function of coordinate x and time t as  
 

u = - zψ (x,t)  (11a) 
 

w = w(x,t) (11b) 
 
where u is the axial displacement of a material point 
at coordinate (x, z), w is the transverse displacement 
(deflection) of the neutral axis and ψ is the rotation 
of the cross-section. 
 

 
Figure 1. Coordinate system, deflection and rotation of the 
beam 
 
Using the small-strain and displacement equations 
for general solids, Eqs. (11a) and (11b) give the 
nonzero strain components:  
 

εxx = - zψ,x (12a) 
 

γxz = w,x - ψ  (12b) 
 
where εxx is the normal strain in x direction and γxz is 
the transverse shearing strain.  The commas denote 
the first partial derivatives with respect to the 
variable next to it (i.e. x).   
 
The variational equation of motion of the beam can 
be derived using Hamilton’s principle [12], viz. 

( )∫ =−−=∏
2

1

0
t

t
e dtWTU δδδδ   (13) 

where δU, δT,  and  δWe, are the variations of the 
strain energy, the kinetic energy, and the work of 
external forces, respectively. The strain energy is 
given as  

T

0

1  
2

L

A
U dAdx= ∫ ∫ σ ε  (14) 

in which L and A are the length and the cross-
sectional area of the beam respectively, and  

xx

xz

E
kG
ε
γ

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

σ  (15a) 

is the vector of normal and shearing stresses, and 

xx

xz

ε
γ
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

ε  (15b) 

is the vector of normal and shearing strains.  In Eq. 
(15a), E and G are Young’s and the shear moduli of 
the beam material respectively, and k is a shear 
correction factor that is dependent upon the cross-
section geometry. Substituting Eqs. (15a) and (15b) 
into Eq. (14), considering the strains, Eq. (12a) and 
Eq. (12b), and integrating over the cross-section, Eq. 
(14) yields  

( ) ( )2 2

0 0

1 1,  ,
2 2

L L

x xU EI dx kGA w dxψ ψ= + −∫ ∫  (16) 

where I is the moment of inertia of the cross-section.   
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The kinetic energy of the beam is given as  

( )2 2

0

1
2

L

A
T u w dA dxρ= +∫ ∫ & &   (17) 

where ρ is mass density (per unit volume) of the 
beam material. The dots signify the first partial 
derivatives with respect to the time variable t.  
Substituting Eqs. (11a) and (11b) and integrating 
over the cross-section, Eq. (17) can be expressed as 

2 2

0 0

1 1
2 2

L L
T Aw dx I dxρ ρ ψ= +∫ ∫ &&  (18) 

 
Finally, the work of external forces is given as.  

0 0

L L
W w q dx m dxψ= +∫ ∫   (19) 

in which q and m are the distributed forces and 
moments along the length of the beam.   
 
Substituting Eq. (16), Eq. (18) and Eq. (19) into Eq. 
(13), applying the variational operations, and applying 
Hamilton’s principles lead to the variational equation 
(or the weak form) for the Timoshenko beam as 
follows,  

( ) ( )
0 0

0 0

0 0

 

, ,   , ,

L L

L L

x x x x

L L

w Aw dx I dx

EI dx w kGA w dx

wq dx m dx

δ ρ δψ ρ ψ

δψ ψ δ δψ ψ

δ δψ

+ +

+ − −

= +

∫ ∫
∫ ∫
∫ ∫

&&&&

 (20) 

 
The double dots signify the second derivatives with 
respect to time t.   
 
The bending moment and shear force along the 
beam can be calculated from the deflection w and 
rotation ψ as follows: 

 ,xM EI ψ=   (21) 
( ) ,xQ kGA w ψ= −   (22) 

 
Formulation of Kriging-based Timoshenko 
Beam Element 
 
Suppose a beam is divided into a number of finite 
elements.  For each element, KI is constructed based 
upon a set of nodes in a DOI including the element 
itself and a predetermined number of neighboring 
elements (see Wong and Kanok-Nukulchai [8] for 
detailed explanations).  Consider now an element 
with its DOI including n nodes.  The displacement 
components over the element are approximated by 
KI as follows:   
w = Nw d (23a) 
 

ψ = Nψ d   (23b) 
where 
Nw = {N1  0  N2  0  ...  Nn  0}  (23c) 
 

Nψ  = {0   N1  0  N2  ...  0  Nn}  (23d) 
 

d = {w1  ψ1   w2  ψ2   ...  wn  ψn}T  (23e) 

and the shape functions (N1, N2, …., Nn) are Kriging 
shape functions, which are obtained by solving 
Kriging equations, Eqs. (4).   
 
Entering the approximated displacement functions 
Eqs. (23a) and (23b) into the variational equation, 
Eq. (20), leads to the discrete equation of motion for 
Timoshenko beam element, i.e. 

( ) ( ) ( )tftdktdm =+&&   (24a) 
where  

T T

0 0

L L
A dx I dxψ ψρ ρ= +∫ ∫w wm N N N N   (24b) 

is the element consistent mass matrix,d&&  is the 
element nodal acceleration vector,  

dx)NN(kGA

)NNdxEINNk

x,w

L

0

T
x,w

L

0 x,
T

x,

ψ

ψψψ

−

−+= ∫∫  (24c)  

is the element stiffness matrix, and  

0 0

L L
q dx m dxψ= +∫ ∫wf N N   (24d) 

is the element equivalent nodal force vector.  Note 
that the size of the matrices m and k, d, and f 
depends on the number of nodes in the DOI, n.  For 
static problems, Eq. (24a) simply reduces to 
 

kd = f (25) 
 
The integrations in Eqs. (24b), (24c), and (24d) are 
evaluated using Gauss quadrature. It is well known 
in the conventional FEM that if the stiffness matrix, 
Eq. (24c), is evaluated using full integration, then the 
element becomes too stiff for thin beams (shear 
locking phenomenon, see e.g. Hughes et al. [15] and 
Reddy [16]). One of the techniques to overcome the 
shear locking is the selective-reduced integration 
(SRI), in which the stiffness matrix is evaluated 
using full integration for the bending term (the first 
term in the right-hand side of Eq. (24c)) and using 
reduced integration for the shearing term (the 
second term in the right-hand side of Eq. (24c)).  The 
effectiveness of the SRI technique to eliminate the 
shear locking in the Kriging-based Timoshenko 
beam is investigated in this study through a series of 
numerical tests.   
 
Using the finite element assembly procedure, one 
can obtain the global discretized equation for the 
beam vibration as follows:   

( ) ( ) ( )tFtDKtDM =+&&   (26) 
where M and K are the global mass and stiffness 
matrices, respectively, D is the global nodal 
displacement vector, D&&  is the global nodal 
acceleration vector, and F is the global nodal force 
vector. The equations for static and undamped free-
vibration problems can be respectively written as 
K D = F  (27) 
MD&&  (t) + K D(t) = 0  (28) 
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The free vibration of a structure with the natural 
frequency ω  can be written as 
( ) ( )ϕ+= ωtsin0DtD   (29) 

where D0 is the amplitude of the vibration and φ is 
the phase angle.  Entering Eq. (29) into Eq. (28) 
leads to the eigen equation 
(K ― ω2M)D0 = 0  (30) 
where D0 is a vector of eigenvalues, which is the 
mode shape of vibration, corresponding to an 
eigenvector ω 2.   
 
Numerical Results  
 
The performance of the developed Kriging-based 
Timoshenko beam element was tested using a 
number of different static and free-vibration 
problems. In the following, for the sake of brevity, 
only the results for the beam element with the K-
FEM options of the cubic basis, three-layer DOI (Fig. 
2), and Gaussian correlation function (P3-3-G) are 
presented (see Syamsoeyadi [17] for the compre-
hensive results). The issues considered include the 
shear locking phenomenon, the accuracy and the 
convergence of the displacements, bending moments, 
shear forces, and natural frequencies.   
 
Firstly, the appropriate range for the correlation 
parameter θ and the efficient number of Gaussian 
sampling points for evaluating the integrations in 
Eqs. (24b), (24c) and (24d) were determined by 
conducting a series of numerical tests. The tests for 
finding the lower bound and the upper bound of θ 
satisfying Eqs. (10a) and (10b) revealed that for the 
beam element with Kriging option P3-3-G, the lower 
and upper bound values for θ are 10-4 and 1.9, 
respectively. In the subsequent analyses the 
parameter θ was taken to be equal to 1, which was 
nearly the mid-value between the lower and upper 
bounds.   
 
To obtain an accurate yet efficient number of the 
integration sampling points, a cantilever beam 
subjected to triangular-distributed load as shown in 
Fig. 3 was analyzed using different number of 
sampling points for evaluating the stiffness matrices, 
Nsamp. Subsequently, it was analyzed with different 
number of sampling points for evaluating the force 
vector, Nbody,. The free-end deflection of the beam 
was observed and compared to the exact solution 
[12], viz.  
 

 
Figure 2.  Three-layer DOI of a typical 1D element  

4
0

t
51

12
q Lw
EI

φ⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (31a) 

21 (12 11 )
5

h
L

φ ν ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

  (31b) 

Where qo, L, E, I, φ, v, and h are respectively the 
value of the triangular load at the clamped end, the 
length, the modulus of elasticity, the moment of 
inertia, the ratio of bending stiffness to shearing 
stiffness, Poisson’s ratio and the thickness of the 
beam.  
  
The results were presented in Tables 1 and 2. The 
tables show that at least two sampling points are 
needed to yield accurate integrations. In the 
subsequent analyses Nsamp was taken to be equal to 3 
while Nbody was taken to be equal to 2. In the case 
where the SRI technique was employed, the number 
of sampling points for the bending term was 3 while 
that for the shearing term was 1. 
 
Shear Locking 
 
Shear locking is a phenomenon where the beam 
element is excessively stiff for the range of very small 
thickness (or the length-to-thickness ratio, L/h, is 
very large). To observe this phenomenon, a clamped-
clamped beam with L = 10 m, E = 2000 kN/m2, k = 
0.84967, v = 0.3, subjected to uniformly-distributed 
load, q=1 kN/m, was analyzed using eight elements.  
The height of the beam was varied from thick, L/h=5, 
up to extremely thin, L/h=10000.  
 

 
 
Figure 3. Cantilever beam (E=2000 kN/m2, k=0.84967, 
v=0.3) subjected to unit triangular distributed load (kN/m), 
divided into eight equal finite elements  
 
Table 1. Relative displacement errors for different number 
of sampling points on stiffness matrix (in this case Nbody = 2) 

Nsamp Relative error (%) 
1 2.23034 
2 0.96674 
3 0.96674 
4 0.96674 

 
Table 2. Relative displacement errors for different number 
of sampling points on equivalent nodal force vector (in this 
case Nsamp = 2) 

Nbody Relative error (%) 
1 0.28165 
2 0.96674 
3 0.96674 
4 0.96674 
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Figure 4. Normalized deflection at the mid-span of the 
beam for different length-to-thickness ratios 
 
The deflection at the mid-span was observed and 
normalized to the Euler-Bernoulli beam solution, i.e.  

wEuler = 
384EI

qL4
  (32) 

 
Theoretically, as the beam becomes very thin, the 
solution of Timoshenko beam theory will converge to 
the solution of Euler-Bernoulli beam theory. The 
results of the analyses were presented in Fig. 4 for 
the cases of using full integration, P3-3-G, and 
selective-reduced integration, P3-3-G (SRI). The 
figure shows that the element with full integration 
suffers shear locking while the element with SRI 
indicates no locking. Thus, the SRI technique is 
effective to eliminate the shear locking. This finding 
confirms the conclusion in the previous study [18].  
Note that the SRI technique is also applicable for 
Kriging-based rectangular Reissner-Mindlin plate 
elements [18] but it is not applicable for triangular 
elements [10].   
 
Accuracy and Convergence 
 
To study the accuracy and convergence of the static 
solutions of the beam elements using P3-3-G and P3-
3-G SRI, the beam subjected to triangular-
distributed load (Fig. 3) was analyzed with the 
parameter E=1000 kN/m2, I=0.020833 m4, A=1 m2, 
G=384.61 kN/m2, k=0.84967, v=0.3, L=4 m, L/h=8.  
The beam was divided into 2, 4, 8, and 16 elements.  
The deflections at the free end, the bending moments 
and the shearing forces at the clamped end were 
observed. The results were normalized with respect 
to their respective exact solutions and presented in 
Tables 3-5 together with the results of the 
superconvergent beam element of Friedman and 
Kosmatka (F&K) [12]. The tables show that both P3-
3-G and P3-3-G (SRI) can produce very accurate 
displacements and reasonably accurate moments. 
The element with P3-3-G gives slightly better results 
than the element with SRI. The shearing forces 
directly calculated from the shearing strains (Eq. 22), 
however, cannot produce accurate results. The use of 
SRI worsen the shearing forces. It is worthy to note 

that this fact is also true for the traditional 
Timoshenko beam element [19]. It is interesting to 
notice that the results using full integration for the 
displacement and moment, converge from below, 
while those using SRI converge from above. This is 
because the use of SRI makes the stiffness matrix 
becomes ‘less stiff’ than the actual.   
 
Free Vibration  
 
To investigate the accuracy and convergence of the 
natural frequency solutions from the beam element 
with P3-3-G and P3-3-G (SRI), free vibrations of a 
thick and a very thin simply-supported beams were 
considered. The beam parameters are L=10 m, the 
width b=1 m, E= 2x109 N/m2, ν=0.3, ρ=10 kg/m3, 
L/h=5 for the thick beam and L/h=1000 for the very 
thin beam. The beams were divided into 4, 8, 16, and 
32 elements. The resulting natural frquencies were 
expressed in the form of non-dimensional frequency 
parameter, i.e. 

EI
mLiiλ

2ω=  (33) 

where λi is the non-dimensional frequency parameter, 
ω i  is the angular natural frequency of the vibration 
mode-i and m is the mass per unit length. For the 
thick beam, the convergent solutions of the 
pseudospectral method [20] were taken to be the 
reference solutions to assess the accuracy. Whilst for 
the very thin beam, the exact solutions of the Euler-
Bernoulli beam [18] were used as the reference 
solutions. The normalized results of the analyses 
using full integration and SRI were presented in 
Tables 6 and 7 together with the reference solutions. 
 
Table 3. Deflections at the free end normalized to the 
deflection of exact solution 

Number of 
elements P3-3-G P3-3-G (SRI) F&K 

4 0.9998 1.0042 1 
8 0.9999 1.0005 1 
16 0.9999 1.0000 1 

 
Table 4. Bending moments at the clamped end normalized 
to the bending moment of exact solution 

Number of 
elements P3-3-G P3-3-G (SRI) F&K 

4 0.9350 1.0778 0.96 
8 0.9924 1.0441 1 
16 0.9993 1.0217 1 

 
Table 5. Shearing forces at the clamped end normalized to 
the shearing force of exact solution 

Number of 
elements P3-3-G P3-3-G (SRI) F&K 

4 1.6338 4.1432 0.8 
8 1.1146 1.8706 0.9 
16 1.0175 1.4110 1 
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The tables demonstrate that for the case of thick 
beam the performance of the elements is excellent, 
both with full and reduced integrations. For very 
thin beams, a very fine mesh is needed to achieve 
good accuracy for high mode frequencies. The 
element with SRI outperforms the element with full 
integration for the case of thin beam.    
 
Conclusions 
 
Kriging-based Timoshenko beam elements have 
been developed and tested in the static and free 
vibration problems. The test results show that the 
shear locking can be eliminated using the SRI 
technique. The elements, both with full and reduced 
integrations, can produce accurate displacement, 
bending moment, and natural frequencies.  For thick 

and not very thin beams, the element with full 
integration gives better overall results while for very 
thin beams, the element with SRI is better. The 
shearing forces directly calculated from the shearing 
strains, however, are not accurate. While the SRI 
technique works well for eliminating the shear 
locking, the use of this technique worsen the 
shearing force results. Alternative methods to 
eliminate the shear locking needs to be studied in 
the future research.   
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