RTESS: Real Time Expert
System Shell

by Leo Santoso

Submission date: 15-Oct-2019 12:39PM (UTC+0700)
Submission ID: 1193136058

File name: Paper.pdf (165.27K)

Word count: 5414

Character count: 25343

RTESS: Real Time Expert System Shell

Leo Willyanto Santoso
Petra Christian University
Siwalankerto 121-131
Surabaya, 60236, Indonesia
+62 31 298 3455

leow@petra.ac.id

ABSTRACT

The improving performance of inference engine in expert system
has become an important research in recent years. As it is not
realistic to search through all production rule during each cycle
using an exhaustive search. Expert systems with a large set of
rules can be slow, and can not be suitable for real-time
application. In this paper, new algorithm for forward chaining and
backward chaining in inference engine was proposed. This
algorithm accommodates balanced binary searched tree and binary
tree sort that have good performance in large database. Moreover,
this new inference engine is supported by certainty factor as well.
Displaying image and other supporting materials as the answer 1s
facilitated.

Categories and Subject Descriptors
1.2.1 |Application and Expert Systems|: Inference Engine; 1.2.5
[Programming Language and Software]: Health Expert System.

General Terms
Algorithms, Performance, Design.

Keywords
Forward chaining, backward chaining, certainty factor, binary
search tree, binary tree sort.

1. INTRODUCTION

During the past decades, expert system has been explore
extensively. Expert system is a computer program that works in
specific domain knowledge, exhibits a degree of expertise to solve
the problem [5].

Inference engine is the brain of the expert system. Today, several
inference engine programs that tries to derive answer from the
knowledge base only accommodate one method to create decision,
namely forward chaining or backward chaining. Inference engine
of VP-Expert, one of the expert system shell, works only using
backward chaining method to solve the problem [4, 5]. The
development of new expert system cell which accommodate two
methods, forward chaining and backward chaining is really
needed.

The advantages of combining two methods are to reduce time
consuming and to improve the confidence of the result. This
illustration between general practitioner and medical patient will
explain the situation. When a medical patient tells the condition of
the body, in this task, forward chaining is used. Then, general
practitioner predicts the disease from explained symptoms of

medical patient. To make sure the diagnosis, general practitioner
ask several questions to medical patient. In this task, backward
chaining is implemented.

Sometimes an expert deal with uncertainty information, because
of disguise or incomplete of information. There are two sources of
uncertainty that must be encountered in an expert system, there
are:

- Uncertainty with regard to the validity of knowledge base
rule.

- Uncertainty with regard to the validity of user response.

Let’s consider the example of the following question for medical
patient: do you have coughing? Where the expected answer is
either ‘yes’ or ‘no’. A strictly ‘yes’ or ‘no’ response to the
question may be unsatisfactory. The confidence factor or certainty
factor (CF) is needed. A scale of 0 to 10 where a () represents a
judgement that there is no coughing while a 10 indicates that the
patient is experiencing the most intense pain imaginable. The
question could be formed like do you have coughing (0/10). If the
user responds with say a value of 9, then this is an indication that
coughing at a very intense level.

An alternative question could be built in that situation that could
be more appropriate or possibly even better that the use of scale or
explicit confidence factor. The question is: Indicate the level of
intensity of coughing? Extreme, very intense, moderate, minimal
or none. In this example, the user only select the response that
seems most appropriate rather than deal with a numeric value.

Furthermore, the other problem in expert system is ineffective
search strategy [5, 10]. By implementing balanced binary search
tree and binary tree sort, it can reduce time consuming in
searching process |2, 8].

This paper presents a new expert system shell which has high-
quality performance and fast to reach the solution. Previous real
time expert system only deals with specific problem. For example
real time expert system for fault diagnosis [1], real time expert
system for computer network monitor and control [3], real time
expert system for monitoring cardiag operated patients [12], and
real time expert system for control of electrophysical complex
[11]. By developing real time expert system shell, it can be used
for broad problem. This new expert system shell has several
method in inference engine, explanation capability, and certainty
factor calculation. Next, this expert system shell will be a
framework of real time expert system.

The remaining part of this paper is organized as follows. Section 2
presents an overview of current proposals for dealing with expert

systems. Section 3 depicts the approach that we have delineated to
solve proposed problems. Section 4 discusses the performance of
proposed method. Finally, section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

In this section, the previous work of backward chaining, forward
chaining, binary tree sort and balanced binary search tree are
presented.

2.1 Backward Chaining

Backward chaining is an inference method used in artificial
intelligence. It is one of two methods of reasoning that uses
inference rules — the other is forward chaining, also known as
modus ponens,

Backward chaining starts with a list of goals (or a hypothesis) and
works backwards from the consequent to the antecedent to see if
there is data available that will support any of these consequents
[4, 5, 10]. An inference engine using backward chaining would
search the inference rules until it finds one which has a
consequent (Then clause) that matches a desired goal. If the
antecedent (If clause) of that rule is not known to be true, then it
is added to the list of goals (in order for your goal to be confirmed
you must also provide data that confirms this new rule). Figure |
shows backward chaining diagram.

Raclwinl

= Sals Ceal

Inference System (18]

Figure 1. Backward chaining diagram

For example, suppose that the goal is to conclude the color of my
pet Fritz, given that he croaks and eats flies, and that the rule base
contains the following four rules:

If X croaks and eats flies — Then X is a frog
If X chirps and sings — Then X is a canary
If Xis a frog — Then X is green

If Xis a canary — Then X is yellow

This rule base would be searched and the third and fourth rules
would be selected, because their consequents (Then Fritz is green,
Then Fritz is yellow) matches the goal (to determine Fritz's color).
It is not yet known that Fritz is a frog, so both the antecedents (If
Fritz is a frog, If Fritz is a canary) are added to the goal list. The
rule base is again searched and this time the first two rules are
selected, because their consequents (Then X is a frog, Then X isa
canary) match the new goals that were just added to the list. The
antecedent (If Fritz croaks and eats flies) is known to be true and
therefore it can be concluded that Fritz is a frog, and not a canary.
The goal of determining Fritz's color is now achieved (Fritz is
green if he is a frog, and yellow if he is a canary. but since he
croaks and eats flies, he is a frog, and, therefore, he is green).

Because the list of goals determines which rules are selected and
used, this method is called goal-driven, in contrast to data-driven
forward-chaining inference. The backward chaining approach is
often employed by expert systems.

2.2 Forward Chaining

Forward chaining is one of the two main methods of reasoning
when using inference rules (in artificial intelligence). The
opposite of forward chaining is backward chaining.

Forward chaining starts with the available data and uses inference
rules to extract more data (from an end user for example) until a
goal is reached [4, 5, 10]. An inference engine using forward
chaining searches the inference rules until it finds one where the
antecedent (If clause) is known to be true. When found it can
conclude, or infer, the consequent (Then clause), resulting in the
addition of new information to its data. Inference engines will
iterate through this process until a goal is reached. Figure 2 shows
forward chaining diagram.

Forward i

eee] —

Inference Svstem (I8) —

vang aan ditang

Figure 2. Forward chaining diagram

For example, suppose that the goal is to conclude the color of a
pet named Fritz, given that he croaks and eats flies, and that the
rule base contains the following four rules:

If X croaks and eats flies - Then X is a frog

If X chirps and sings - Then X is a canary

If X is a frog - Then X is green

If X is a canary - Then X is yellow

This rule base would be searched and the first rule would be
selected, because its antecedent (If Fritz croaks and eats flies)
matches our data. Now the consequents (Then X is a frog) is
added to the data. The rule base is again searched and this time
the third rule is selected, because its antecedent (If Fritz is a frog)
matches our data that was just confirmed. Now the new
consequent (Then Fritz is green) is added to our data. Nothing
more can be inferred from this information, but we have now
accomplished our goal of determining the color of Fritz.

Because the data determines which rules are selected and used,
this method is called data-driven, in contrast to goal-driven
backward chaining inference. The forward chaining approach is
often employed by expert systems, such as CLIPS.

2.3 %ertainty Factor (CF)

Certainty factor theory is a popular alternative to Bayesian
reasoning. The basic principles of this theory were introduced by
MYCIN, a diagnostic medical expert system [4, 10]. Certainty
factors theory provides a judgmental approach to uncertainty
management in expert system. An expert is required to provide a
certainty factor, cf, to represent the level of belief in hypc.csis H
given that evidence E has been observed, The maximum value of
the certainty factor was +1.0 (definitely true) and the minimum -
1.0 (definitely false). Table | shows condition and the value of cf.
The certainty factors method uses rules of the following form

IF E is true
THEN His true {cf}
Certainty factors are used if the probabilities are not known or
cannot be easily obtained. Certainty theory can manage
incrementally acquired evidence. the conjunction and disjunction
of hypotheses, as well as evidences with different degrees of
belief. Table | shows some basic uncertain terms.

Table 1. Uncertain terms and their interpretation

Uncertain Term CF
finitely not -1.0
Imost certainly not -0.8
Probably not -0.6
Maybe not -0.4
Unknown -0.2t00.2
Maybe 0.4
Probably 0.6
Almost certainly 0.8
Definitely 1.0

24 Binary Tree Sort

Binary tree sort is a sort algorithm that builds a binary search tree
from the keys to be sorted. and then traverses the tree (in-order) so
that the keys come out in sorted order [6].

Adding items to a binary search tree is on average an O(log(n))
process, so adding n items is an O(n log(n)) process, making Tree
Sort a so-called, 'fast sort. But adding item to an unbalanced
binary tree needs O(n) time in the worst-case, when the tree
resembles a linked list (degenerate tree), causing a worst case of
O(n2) for this sorting algorithm. The worst-case behavior can be
improved upon by using a Self-balancing binary search tree.
Using a such a tree, the algorithm has an O(n log(n)) worst-case
performance, thus being theoretically optimal. The algorithm of
binary tree sort is as follows.

/#establish the first element as root #/
tree = maketree(x[10]);
/# repeat for each successive element */
for(i=1;1<n;i++) |
y=x[il:
q = tree;
P=q:
/# travel down the tree until a leaf is reached */
while (p !=null) {

q=p;
if (v < info(p))

p = left(p):
else

p =right(p):
} #* end while */
if (y < info(q))
setleft(q,y):
else
setright(q.y):
} /# end for #/
/% the tree is built, traverse it in inorder */
intrav (tree);

2.5 Binary Search Tree

The most efficient method of searching is the balanced binary
searched tree [2, 8, 9]. Binary search tree itself is a binary tree
data structure which has the following properties:

Each node (item in the tree) has a distinct value.

Both the left and right subtrees must also be binary search trees.

The left subtree of a node contains only values less than the node’s
value.

The right subtree of a node contains only values greater than the
node’s value.

The major advantage of binary search trees over other data
structures is that the related sorting algorithms and search
algorithms such as in-order traversal can be very efficient.
Operations on a binary tree require comparisons between nodes.
Searching a binary tree for a specific value can be a recursive or
iterative process. In this research, a recursive method was chosen.
The code of binary search tree is as follows.

binary_search_tree(node, key):
if node is None:
return None # key not found
if key < node key:
return binary_search_tree (node.left, key)
elif key > node.key:
return binary_search_tree (node.right, key)
else: # key is equal to node key
return node.value

Balanced binary search tree is a binary search tree (BST) that
attempts to keep its height, or the number of levels of nodes
beneath the root, as small as possible at all times, automatically
[8. 9]. It is one of the most efficient ways of implementing
ordered lists and can be used for other data structures such as
associative arrays and sets.

Most operations on a binary search tree take time directly
proportional to the height of the tree, so it is desirable to keep the
height small. Ordinary binary search trees have the primary
disadvantage that they can attain very large heights in rather
ordinary situations, such as when the keys are inserted in sorted
order.

Balanced binary trees solve this problem by performing
transformations on the tree (such as tree rotations) at key times, in
order to reduce the height.

3. REAL TIME EXPERT SYSTEM SHELL

The combination of powerful searching and sorting algorithm in
database, integrating two algorithms of knowledge acquisition in
inference engine and supported by certainty factor calculation
become a real time expert system shell (RTESS). The algorithm of
RTESS can be seen in Figure 3.

Algorithm RTESS
Input: Rules

] Error checking;
2 While (error=0)

3 if (option method=forward)

4, forward_chaining;

5 if (option method=backward)

6. backward_chaining;

7 if (option method=forward & backward)
8. forwardd&backward_chaining;

End

Figure 3. Algorithm of RTESS

In error checking procedure, this system checks the syntax of rule
with ¢f and rule without cf. Syntax checking without cf is

checking process that gets key string of rule which entered into
system. There are 13 key string. namely: ACTIONS, FIND,
RULE, IF, =", ASK, CHOICES, IMAGE, *;', *:", THEN, OR and
AND. The combination of key strings in rule will be checked
whether there is a syntax error or not. If there is a syntax error,
then an informative error message will be displayed. Figure 4 and
Figure 5 show the diagram of error checking without cf. The
description of the state is described in Table 2. It describes the
state, the condition and the error message which will be displayed
when the input is invalid.

o ek S e o St i
1 S8 ox Fiate o3t o Blate: e

B
%
A
aE
i! RUAE Snstewn s
o gty ey
i
g |
iR
g e o
8 — e 18
l ACTEHEE
L et {a o 111 3
‘ i’ o Ed
: L]
A
4 5]
;} ﬁg.)]
(o et |7 fa
"-I.‘n'
S e 70 e
o O stte > 1T 00
L v = 1
F_ Sl
:Ill e ———
£ necvd
U. Saw s 0cEIW AT TN
s o St o 0O St an
300 stee =7

[

Figure 4. Diagram of error checking without cf

If the user chooses using cf or the rule using cf, then additional
key strings for advanced checking are needed, there are: CF, *(%,
and *)’. Figure 6 and Figure 7 show the diagram of error checking
with cf. The description of the state is described in Table 2

The correct syntax will determine the position when the
knowledge acquisition process could be performed or not. If the
position of syntax already at ASK position or more and there is no
error syntax, then inference engine will be started. There is 9
order positions at inference engine, there are: ACTIONS position,
FIND paosition, RULE position, IF THEN position, ANSWER
RULE position, ASK position, CHOICES position, IMAGE
position, and PATH IMAGE position.

Streg in rot smply yol

String bs smply
H rees st <o 8
o THER Siie s B 7
iF_ 18 —
- i A0 T Sl
= F3
EL 4
é Serng 4 e
- |0 e 05 Stae 8 ,.--[\
1t . 17]
o ASK Stala < B
2
2
£ ASK S0
N
I -
&
5 [_1'
3
/7N GHOICES Bubes 0 /7
" 18 —’ 18 ‘—‘
o y
J HOHCES State <3 0
2
2
&
A
v 1
£ IMAGE Bl 0o
) B
WA S IMAGE St <)
i
" l_
3 Bade ¢ 11 o ;"\-,

Sann <> 11 o0 Statn
mn 14

Mo iy Siving Stabesie oo Siatennt o Satr b
== Btuewndt o Slatwe

BULE Sralscsf

P S
1)
L <
8
1 H
i § i i
LN 2 Ex. Hogk
s \ r 5
[— £
. id
[ran}
4 Saute e 3 O wante
1 f b4
wale < 13
—
IF, St = 0 TS
()
Sl il
Gtma e 0
|' ot v B Or St o T 1}
— =, Stetw < O Or State < 6 Or
Stake < ¥ O Shake <= 18
T
= ftwie = 18 ‘“".

Figure 6. Diagram of error checking with cf

Btreg met amgsy et

THEN. Site

=g

s w g

AN 0 O,
[

State o

Srngaemiy

Jwowon siwess
b 171
A% st <2 0
ABK _ iale = i l

i P
1 e 191t

I

SHOICES, St v 0

HOICES, il <0

s

1

- o, MAGE Smas0 o
w » @
b { IUAGE, Siaby <= 0
* z
B H
12
W Ty St (an
i I State <= 11 o Saatn <+ 14
i
i T - I—
P MLt Josatenty
— 2 | {22 {24y i
Iz e
o s

BoCF

Figure 7. Diagram of error checking with cf (continue)

Table 2. State of error checking

State Condition Error
Message |

0 State = 0 -

1 Find key string

10 State = 1

11 Find ‘FIND’

111 State =2

12 Find *7’

121 State = 20

13 Find ‘RULE’

131 State =4

14 Find ‘IF’

141 State =35

15 Find ="

151 State =9

152 State =6

16 Find ‘THEN’

161 State = 8

17 Find ‘AND’ or ‘OR’

171 State =7

18 Find ‘ASK’

181 State =11

19 Find ‘CHOICES’

191 State = 14

20 Find 'IMAGE’

201 State =21

21 Find *:"

211 State = 12

212 State = 15

22 Find *(*

221 State = 17

23 Find ‘CF’

231 State = 18

24 Find *)*

241 State =20

80 Correct Syntax

90 Wrong Syntax Unknown
Error

In RTESS, forward chaining is a method that take given set of
rule then answer of given rule will be put into working memory.
After that, each given rule will be checked, if rule premise
produce true value then the result of the rule will be put into
working memory. Then, the rule status becomes true so it does not
need to be checked again. The rule checking process will be
started from the beginning. This process repeats until the goal
value has been reached or set of rule already answered and there is
no finding goal. The algorithm in Figure 8 show the algorithm of
forward chaining.

Algorithm: Forward Chaining

1. Initialization.
Establish 3 empty tables, the Working Memory table, the
Attribute-Queue table, and the Rule/Premise Status table.

2. Start inference.
Assign a value to a specific premise attribute, where this
attribute must not appear in any conclusion clause.

3. Rule scan and check for convergence.

Examine the Rule/Premise Status table. If no rules are

active, STOP. Otherwise, scan the active rule-set premise

clauses for all occurrences of attribute on the top of the

Attribute-Queue table, and record any changes in status of

the premise clauses of active rule set.

a. If the premise of any rule is false then mark the
associated rule as being discarded. Repeat this for all
rules having a false premise. When complete, proceed
to step 3b.

b. If the premise of any rule is true then mark the
associated rule as being triggered and place its
conclusion attribute and rule number at the bottom of
the Attribute-Queue table. Repeat this for all rules
having a true premise. When complete, proceed to
step 3c.

¢. If no rules are presently in the triggered state, go to
step 5. Otherwise, go to step 4.

4. Rule firing.

Cross out the topmost attribute on the Attribute-Queue
table. Change the status of the rule associated with the new
topmost attribute from triggered to fired. Place the
conclusion associated with the fired rule at the bottom of the
Working Memory table. Return to step 3.

5. Queue status.

Cross out the topmost attribute on the Attribute-Queue table
and proceed to step 6.

6. Convergence check and rule marking.

Scan the active rule set for any unmarked, active rule. If no
such rules can be found, STOP. Otherwise, mark the first
such rule found and go to step 7.

7. Query
For the most recently marked rule, query the user for the
value of an attribute in any of the rule’s free premise
clauses. If the user has a response then goes to step 8.
Otherwise, continue this step for all remaining free premise
clauses of the marked rule. If all such clauses have been
examined without a user response, return to step 6.

8. Rule unmarking
Place the associated attribute and rule number on the top of
the Attribute-Quene table. Unmark the most recently
marked rule and return to step 3.

End

Figure 8. Forward Chaining Algorithm

Backward chaining is a method that finds goal position firstly.
Figure 9 shows the algorithm of backward chaining. The
procedure of backward chaining is as follows:

The goal firstly will be searched in working memory, if it is not
found, do step b.

The goal will be searched in the rule which its variable related to
goal. If rule has founded, go to step e, else search the goal into set
of given data. If the goal is not found, then the value of goal is
false. If found, put the answer into working memory.

Premise will be searched from rule which has variable related to
premise variable. If it is not found, then go to step d. if it 1s found.
premise will be changed as goal. The next process is step e.
Premise will be searched from set of given data. If it is not found,
then the value of premise is false. Else, the answer will be put into
working memory.

Rule will be checked its premise, if the premise is not found in
working memory, then go to step c. If the value of all premises is
true, the answer of the rule will be put into working memaory.

For the goal attribute on top of the Goal table, find the

associated query if one exists. If there is no query associated

with this goal attribute, then STOP. Otherwise, query the
user, record his or her response, remove the top goal
attribute from the Goal table and place it in the Working

Memory table. Go to step 5.

5. Rule/premise status update.

Using the contents of the Working Memory table, update

the Rule/Premise Status table. Specifically, if the premise of

any rule is false, discard that rule, and if the premise is true,

trigger that rule. Return to step 3.

6. Rule evaluation.

a. If this rule is triggered, then remove the current
topmost goal attribute from the Goal table and place it
in the Working Memory table. Change the status of
this rule from triggered to fired. Go to step 5.
Otherwise proceed to step 6.

b. If this rule is not triggered, then select the first
unknown premise attribute of the rule and place it at
the top of the Goal table. Return to step 3.

End

Figure 9. Forward Chaining Algorithm

Mixed chaining method is a combination of forward chaining
method backward chaining method. In this method, user will be
oiven set of data that need to be answered. These will be done in
forward chaining, Then, user can select the implementation of
backward chaining if the data that need to be answered satisfies
user needs and goal is still searching. Figure 10 shows the steps of
mixed chaining method.

Algorithm: Backward Chaining

1. Initialization.
Establish 3 empty tables, the Working Memory table, the
Goal table, and the Rule/Premise Status table.

2. Start inference.

Specify a final goal. Place the associated goal attribute at

the top of the Goal table.

3. Rule scan and check for convergence.

Scan the conclusion clause of the active rule to find any

concurrence of the goal attribute presently on the top of the

Goal table.

a. Ifthe Goal table is empty, STOP.

b, If only one such rule may be found, go to step 6. If
several such rules may be found, and any of these are
triggered, select any one of the triggered rules and
proceed to step 6. Otherwise, arbitrarily select one
rule among the rules found that contains the subject
goal attribute in its conclusion clause set. and go to
step 0.

¢. If no active rules are found that contain the subject
goal attribute in their conclusion clause set, then go to
step 4.

4. Query.

Step Rule (rule type) | Facts (goals) Chaining
(firing)

I {1 AC(K)

2 R1(B) AC(FH) B

3 R3 (B) AC(FEB) B

4 R8 (F) ACG(FEB) Fifired)

5 R4 (F) ACGB(FE) Fifired)

6 R7 (F) ACGBD(FE) Fifired)

7 R5 (F) ACGBDH(FE) Fifired)

8 R6 (F) ACGBDHE(F) Fifired)

9 R2 (B) ACGBDHEK(F) Fifired)

Figure 10. Mixed Chaining Algorithm

The summarized of mixed-mode chaining algorithm is as follows.
First, we are given A and C, and our goal is to determine K. This
is summarized in step 1, the first line of table. Next, we proceed to
the backward chaining rules and seek one having our desired goal
(K} in the conclusion. The first such rule we come to is rule 1.
From rule 1, we note that K is determined whenever F and H are
true. Thus, in the third column of step 2 we replaced K with F and
H. In the fourth column we simply denote the fact that we
employed backward chaining for rule 1 and that it was not fired at
this step.

Still using backward chaining, we now seck a rule that has either
F or H in its conclusion. The only such rule is rule 3. Thus, we
move to rule 3. Here, we see that H is determined by E and B and
thus we replace the goal H by E and B. In the fourth column we
note that backward chaining was used and that the rule was not
fired. We move to the set of forward chaining rules and find that

rule 8 is triggered. We may then fire rule 8 which gives us the new
fact, G, and G is added to our set of known facts in the third
column of the table. In the fourth column we note that forward
chaining was used and that rule was fired. Knowing A, C, and G,
we may now fire rule 4, to derive B. And this action is listed in
step 5. Knowing A, C, G and B, we may fire rule 7 to derive D.
Knowing the facts indicated in step 6, we may fire rule 5 to derive
H. Knowing the facts listed in step 7, we may next fire rule 8 to
derive E, and knowing E, we may remove E from our list of
desired goals.

At this point, we have fired all of our forward chaining rules and
we still seek goal F. Returning to our set of backward chaining
goals, we note that F does not appear as the conclusion of any
rule. Consequently, our only move is to use forward chaining on
the remaining rule set, and this may be done for rule 2.
Specifically, and as summarized in step 9, we may fire rule 2 to
derive K. And since K is the goal that was originally desired, we
may terminate the process.

4. EXPERIMENTS

In this section, we present experimental result comparing the
performance of new RTESS using several thousand of rules. This
system was built in Microsoft Visual C++ on a PC with 2.4 GHz
Pentium ® 4 CPU and 1 GB of RAM under MS Windows XP
Pro. Figure 11 is a screenshot for a simulation using tourism rule
data.

Ideamation
Fedd e ettty Facks
fdsaty x| [vg_rany_church |3

Figure 11. Interface of RTESS

It shows a result of the process where the answer and its certainty
factor is displayed. This system shows the result not only in text
format, but in image as well.

Performance of RTESS

18

16 1
14 / i
12 |

Seconds

S M bES e

1 2 3 4 5 6 7
Number of rule (in thousands)

Figure 12. The Performance of RTESS

Figure 12 shows the performance of RTESS. This figure reports
the execution times obtained by RTESS over rules with increasing
number of rule. The curve shows an almost linear scalability. As
can be seen from the graph, running times grow when the number
of rule is increased.

The Comparison Between RTESS and VP Expert

[a3
L=Rn i

ha
wh

Time (Second)
o m;m 5 {_-ﬂ‘ 8

| —RTESS
VP-Expert |

of Rule (in th ds)

Figure 13. The Comparison Performance between RTESS and
VP Expert

Figure 13 shows the performance comparison between RTESS
and VP Expert. It can be seen that RTESS outperforms the VP
Expert.

5. CONCLUSION

This paper deals with the implementation of balanced binary
search tree and binary tree sort to support methods in inference
engine — forward chaining, backward chaining and mixed
chaining. The focus of this paper is to reduce running time and to
display certainty factor of the result.

The emphasis of this paper was on feasibility — identification of
possible approaches and development of methods to put them into
practices.

We are currently working on the evaluation of the performance
and the reliability of the methods proposed in this paper. Firstly,
benchmarking for performance evaluation indicate which method
is the most efficient and effective from response time point of
view. Next, concerns is the quality of the result.

6. REFERENCES

[1] Angeli, C. 2000 Application of a real-time expert system for
fault diagnosis. IEAJAIE 2000, LNAI 1821, pp 184-191.
Springer-Verlag Berlin Heidelberg.

[2] Barnes, G. M., Noga, J., Smith, P. D. and Wiegley, J. 2005
Experiments with balanced-sample binary trees, ACM
SIGCSE Bulletin, 37(1): 166-170.

[3] Dunning, B.B. and Switlik, J. 1988 A real-time expert system

for computer network monitor and control. Database
Summer pp 35-38.

[4] Giarratano, J.C. and Riley, G. 1994 Expert Systems:
Principles and Programming, PWS Publishing Co., Boston,
MA.

(51

(6]

(71

[8]

[91

Ignizio, J.LP. 1991 Introduction to Expert Systems: The
Development and Implementation of Rule-Based Expert
Systems. Singapore:McGraw-Hill Book Co.

Langsam, Y., Augenstein, M. J., and Tenenbaum, A. M.
1996 Data structure using C and C++, Prentice-Hall, New
Jersey.

Lee, K. C., Cho, H. R., and Kim, J. S. 2008 An expert system
using an extended AND-OR graph. Knowledge-Based
Systems, 21(1):38-51.

Li, C. C. 2006 An immediate approach to balancing nodes in
binary search trees, Journal of Computing Sciences in
Colleges, 21(4): 238-245.

Manthey, B. and Reischuk, R. 2007 Smoothed analysis of

binary search trees, Theoretical Computer Science,
378(3):292-315.

[10] Negnevitsky, M. 2005 Artificial intelligence: a guide to

intelligent systems, 2™ Ed., Addison Wesley, England.

[11] Rybin, V.M., Rybina, G.V., Ochinsky, V.V., and Stepankov,

V.U. 1999 Real-time expert system for control of
electrophysical complex. n Proc. of International
conference on accelerator and large experimental physics
control systems pp. 124-126.

[12] Sukuvaara, T., Koski, E.M., Makivirta, A., and Kari, A.,

1993 A knowledge-based alarm system for monitoring
cardiac operated patients — technical contruction and
evaluation. Int J. Clin. Monit Comput., 10(2): 117-126.

RTESS: Real Time Expert System Shell

ORIGINALITY REPORT

0-. 3 3, 2,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

1%

* | eila Ooshaksaraie, Noor Ezlin Ahmad Basri,
Azuraliza Abu Bakar, Khairul Nizam Abdul Maulud.
"RP3CA: An expert system applied in stormwater
management plan for construction sites in Malaysia",
Expert Systems with Applications, 2012

Publication

Exclude quotes On Exclude matches < 5 words

Exclude bibliography On

	RTESS: Real Time Expert System Shell
	by Leo Santoso

	RTESS: Real Time Expert System Shell
	ORIGINALITY REPORT
	MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

