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TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Dominik Ślęzak
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Preface

This proceedings volume contains papers presented at the fourth International Con-
ference on Soft Computing, Intelligent System and Information Technology (the 4th
ICSIIT) held in Bali, Indonesia, during March 11–14, 2015. The main theme of this in-
ternational conference is “Intelligence in the Era of Big Data,” and it was organized and
hosted by Informatics Engineering Department, Petra Christian University, Surabaya,
Indonesia.

The Program Committee received 92 submissions for the conference from across
Indonesia and around the world. After peer-review process by at least two reviewers
per paper, 53 papers were accepted and included in the proceedings. The papers were
divided into 14 groups: fuzzy logic and control system, genetic algorithm and heuris-
tic approaches, artificial intelligence and machine learning, similarity-based models,
classification and clustering techniques, intelligent data processing, feature extraction,
image recognition, visualization technique, intelligent network, cloud and parallel com-
puting, strategic planning, intelligent applications, and intelligent systems for enterprise
government and society.

We would like to thank all Program Committee members for their effort in providing
high-quality reviews in a timely manner. We thank all the authors of submitted papers
and the authors of selected papers for their collaboration in preparation of the final copy.

Compared to the previous ICSIIT conferences, the number of participants at the 4th
ICSIIT 2015 is not only higher, but also the research papers presented at the conference
are improved both in quantity and quality. On behalf of the Organizing Committee, once
again, we would like to thank all the participants of this conference, who contributed
enormously to the success of the conference.

We hope all of you enjoy reading this volume and that you will find it inspiring and
stimulating for your research and future work.

February 2015 Rolly Intan
Chi-Hung Chi
Henry N. Palit

Leo W. Santoso
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Data Mining Model for Road Accident Prediction in
Developing Countries

Sanjay Misra

Covenant University, Canaanland, Ogun State, Ota, Nigeria
sanjay.misra@covenantuniversity.edu.ng

Abstract. Human loss due to road traffic accident (RTA) in developing coun-
tries is a big challenge. It becomes more serious in those developing countries
where road conditions are not good and due to several reasons government is not
able to maintain roads on regular basis. Additionally, increasing number of vehi-
cles, inefficient driving and environmental conditions are also some of the factors
which are responsible for RTA. In this work we present architecture of a data
mining model. The proposed model is applied on real data set of RTAs from a
developing country. The analysis of data gives several useful results, which can
be used for future planning to reduce RTAs in developing countries. This paper
also presents that how data mining model is better than other models.

Keywords: Data mining, road accident, vehicles, clusters, traffic road.



Behaviour Informatics: Capturing Value Creation
in the Era of Big Data

Chi-Hung Chi

Digital Productivity Flagship, CSIRO, Australia
chihungchi@gmail.com

Abstract. Under the era of Big Data, people have been exploring ways of real-
izing value from data that are at their fingertips. However, it is found that while
collecting data is not difficult, value creation is often a big challenge. This makes
the approach of “collecting data first before knowing what to do with them” ques-
tionable. In this presentation, we discuss the current challenges of big data ana-
lytics and suggest how behaviour analytics on trajectory data can help to realize
value creation from Big Data.

1 Background and Challenges

As we move to the fourth paradigm of computing – data intensive scientific discovery,
numerous research efforts have been spent in building huge big data repositories. To-
gether with data mining and machine learning research, it is hoped that better and more
intelligent decisions can be made in real time.

This movement is accelerated by the advance in at least three areas. The first one
is social network, where people share their views and opinions in public. The second
one is cloud computing, which is an on-demand infrastructure that facilitates sharing of
data, collaboration among multiple parties, and support for on-demand computational
and storage infrastructure services at low cost. The third one is the internet-of-things.
With the maturity of sensor technologies, trajectory movement of entities (including
human and things) can now be monitored in real time at low cost. However, gaining
access to big data is only the starting point. There are still open issues that need to be
addressed in the value creation process when dealing with big data.

One result of the big data mega trend is the building of huge data repositories
around the world. In Australia, the government has been pushing for sharing bureau
data through spatial information platforms. It is true that data are collected and can be
made available to users, but how to make sense out of these data practically and eco-
nomically is still a mystery to be explored. Without value creation, the high maintenance
cost of these repositories cannot be justified, and the motivation for data providers to
update their data inside will also disappear.

In the past few years, sensors and sensing techniques have been advancing rapidly
for real time data collection with good enough accuracy. Cost of deploying these tech-
nologies is also becoming low enough to make real-time data tracking of human,
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animals, and even insects (e.g. honey bees) possible. However, without efficient and
effective ways to integrate and transform these trajectory data and their context infor-
mation into manageable knowledge, these data are actually burdens instead of potentials
to their owners.

It is true that there have been numerous research efforts in data mining and ma-
chine learning. However, most of them are focused on theoretical algorithmic study,
and much less emphasis is put in the incorporation of semantic domain knowledge (in
particular, the semantic definition of interdependence among various data sources) into
the data mining and pattern discovery processes, and in the use of the behaviour inte-
rior dimensions such as loyalty and purchase power of customers to support self service
analytics.

Related to the analytics platform, internet-of-things, service and cloud computing
techniques are quite mature, and lots of machine learning algorithms are also widely
available in both commercial (e.g. MatLib) and open source (“Project R”) packages.
However, how to put them together in a single service platform and how to compose
them together automatically (this is called the vertical service composition) to provide
“intelligence-as-a-service” for a given domain are still open for exploration.

2 Real Time Trajectory Data and Its Challenges in Value Creation

In the era of big data, one new important data source for analytics and value creation is
the real-time behaviour trajectory data streams of entities (e.g. human) as well as their
context dynamics (e.g. environmental such as air quality) that are captured through
internet-of-things and sensors (in particular body sensors such as those from Android
wears and location position sensors). Its value creation process is both complex and
challenging because these data are in general heterogeneous and inter-dependent on
each other. Furthermore, the potential number of data sources, each describing one mea-
surement view of the behaviour dynamics of an entity/event, is in theory, infinite.

Traditional data mining and machine learning approaches from computer science
often try to explore co-occurrence patterns and inter-relationship among trajectory data.
However, this is usually done without making full use of the interdependence defined
by their implicit semantic meaning and domain knowledge. Heterogeneity of data adds
another level of complication because quantification measures such as distance are not
uniformly and consistently defined across different data types. On the other hand, al-
though domain experts have full knowledge on the semantics of data, they are often not
as knowledgeable as computer scientists when dealing with the real time computation
on trajectory data streams. This result in the first challenge, how to use data mining /
machine learning techniques and domain knowledge together to effectively define and
discover the inter-relationships among different trajectory data sources and to perform
effective behaviour analysis.

As trajectory-driven behaviour analytics is gaining its recognition in different busi-
ness and industry sectors, the expectation of decision makers also goes beyond what
traditional analytics that mainly focus on statistical summaries and association/patterns
discovery of transactional/measurable behaviour exterior dimensions often provide. Ul-
timately, what decision makers want is the deep insight about the behaviour interior
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knowledge dimensions of entities, by incorporating domain knowledge into the knowl-
edge discovery processes. As an example, the owner of an online shop wants to know
not only the “bestselling products of the week”, but also the “loyalty”, “purchase power”,
“experience”, and “satisfaction” of customers. This results in the second challenge,
how to quantify behaviour interior dimensions from exterior transactional (or phys-
ically measured) trajectory data and to discover their inter-relationships and relative
importance for effective and efficient behaviour analysis.

3 Research Topics in Behaviour Analytics

To achieve this goal, the following is a list of sample research topics for behaviour
analytics:

• Effective and efficient deployment of high resolution location tracking network (us-
ing Blue-Tooth LE, WiFi-RFIDs, UWB, and Electromagnetic Field) for entities in
both indoor and outdoor environment. This forms the basis for behaviour trajectory
data tracking and capturing.

• Semantic enrichment of behaviour trajectory data of entities through aggregation
of raw trajectory data with their contextual data dynamics, followed by domain
knowledge-driven transformation to form behaviour interior dimensions knowl-
edge. This is the data aggregation, integration, and transformation aspects of be-
haviour analytics; it incorporates domain knowledge into the behaviour trajectory
data to create behaviour interior dimensions knowledge as well as to define the
interdependence relationship among them.

• Discovery of interdependence relationship among trajectory-driven behaviour data
(exterior) and knowledge streams (interior) using data mining techniques. This ad-
dresses the interdependence relationships of trajectory data and knowledge streams
from the run-time dynamics aspect.

• Coupling interdependence relationships of behaviour trajectory data and knowl-
edge streams into data mining and pattern discovery processes for deep behaviour
understanding and prediction. This gives a much better understanding on why things
occur; it also gives potentials for future behaviour prediction.

• Design and implementation of a behaviour analytics service system that serves as a
publishing, management and operation platform for: (i) software services, (ii) raw
trajectory data services, (iii) semantically annotated behaviour trajectory data ser-
vices (both individuals and collective), (iv) behaviour knowledge services (both in-
dividuals and collective), and (v) infrastructure services. Tools to facilitate compo-
sition and orchestration of all these services with QoS assurance using public cloud
infrastructure such as Amazon EC2 should be developed. Also, automatic matching
of behaviour trajectory data/knowledge services with machine learning/data mining
algorithms based on their features should also be supported on this platform.



On the Relation of Probability, Fuzziness,
Rough and Evidence Theory

Rolly Intan

Petra Christian University
Department of Informatics Engineering

Surabaya, Indonesia
rintan@petra.ac.id

Abstract. Since the appearance of the first paper on fuzzy sets proposed by
Zadeh in 1965, the relationship between probability and fuzziness in the rep-
resentation of uncertainty has been discussed among many people. The question
is whether probability theory itself is sufficient to deal with uncertainty. In this
paper the relationship between probability and fuzziness is analyzed by the pro-
cess of perception to simply understand the relationship between them. It is clear
that probability and fuzziness work in different areas of uncertainty. Here, fuzzy
event in the presence of probability theory provides probability of fuzzy event in
which fuzzy event could be regarded as a generalization of crisp event. More-
over, in rough set theory, a rough event is proposed representing two approximate
events, namely lower approximate event and upper approximate event. Similarly,
in the presence of probability theory, rough event can be extended to be probabil-
ity of rough event. Finally, the paper shows and discusses relation among lower-
upper approximate probability (probability of rough events), belief-plausibility
measures (evidence theory), classical probability measures, probability of gener-
alized fuzzy-rough events and probability of fuzzy events.

Keywords: Probability, Rough Sets, Fuzzy Sets, Evidence Theory.
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Abstract. Academic records of student candidates and students of Petra Chris-
tian University (PCU) which have been stored so far have not been used to  
generate information. PCU’s top-level management needs a way to generate in-
formation from the records. The generated information is expected to support 
the decision-making process of top-level management. 

Before starting the application development, analysis and design of the student 
academic records and the needs of top-level management are done. The design 
stage produces a number of modeling that will be used to create the application. 

The final result of the development is an application that can generate  
information using multidimensional fuzzy association rules. 

Keywords: Application, Data Mining, Decision Support System, Multidimen-
sional Fuzzy Association Rules. 

1 Introduction 

During this time, PCU has stored academic records of student candidates who enroll 
in PCU, such as math and english grades at their schools. In addition, after entering 
the university, PCU will save GPA of all students. 

Academic records of student candidates and students that have been kept, have not 
been used to produce valuable information. PCU’s top-level management needs a way 
to generate information from the records. The generated information is expected to 
support the decision-making process of top-level management. 

With academic records of student candidates and students, information can be gen-
erated in the form of relationship between students’ data using multidimensional 
fuzzy association rules. The students’ data that can be used are schools, math, and 
english grade in their schools, specialization (science, social, literature, etc.), GPA, 
faculty, majors, gender, religion, and batch. Therefore, PCU need a software that can 
generate information needed by top-level management related to academic records of 
student candidates and students. 

2 Data Mining 

Data mining is one of the most important steps of the knowledge discovery in databas-
es process. It is considered as significant subfield in knowledge management. Research 
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in data mining continues growing in business and in learning organization over coming 
decades[8]. Data mining is a process of extraction of useful information and patterns 
from huge data. It is also known as knowledge discovery process, knowledge mining 
from data, knowledge extraction or data /pattern analysis[9].  

The development of Information Technology has generated great amount of data-
bases and huge data in various areas. The research in databases and information tech-
nology has resulted in approach to store and manipulate this precious data for further 
decision making. The important reason that attracted many attentions in information 
technology and the discovery of meaningful information from large collections of 
data industry towards field of “Data mining” is due to the perception of “we are data 
rich but information poor”. There is huge volume of data but we hardly able to gener-
ate them in to meaningful information and knowledge for decision making process in 
business[10].  

Data mining derives its name from the similarities between finding valuable  
business information in a large database for example, finding linked products in 
gigabytes of store scanner data and mining a mountain for valuable ore. Both 
processes require either sifting through a great amount of material, and intelligently 
probing it to find exactly where the value resides. Given databases of sufficient size 
and quality, data mining technology can generate new business advantages and  
opportunities[10]. 

3 Multidimensional Association Rules 

Association rule finds interesting association or correlation relationship among a large 
data set of items [1,2]. The discovery of interesting association rules can support deci-
sion making process.   

Multidimensional association rules are association rules that involve two or more 
dimensions or predicates. Conceptually, a multidimensional association rule, BA  
consists of A and B as two datasets, called premise and conclusion, respectively. 

Formally, A is a dataset consisting of several distinct data, where each data value 
in A is taken from a distinct domain attribute in D as given by 

 
}N  somefor   ,|{ njjj jDaaA ∈∈=

, 

where, DDA ⊆  is a set of domain attributes in which all data values of A come 

from. 
Similarly,  

 }N  somefor   ,|{ njjj jDbbB ∈∈= , 

where, DDB ⊆  is a set of domain attributes in which all data values of B come 

from. 
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For example, database of medical track record patients is analyzed for finding 
association (correlation) among diseases taken from the data of complicated several 
diseases suffered by patients in a certain time. Additional related information 
regarding the identity of patients, such as age, occupation, sex, address, blood type, 
etc., may have a correlation to the illness of patients. Considering each data attribute 
as a predicate, it can therefore be interesting to mine association rules containing 
multiple predicates, such as: 

Rule-1: 
),Cancer" Lung" ,(  )yes"" ,(   )"60" ,( XDisXSmkXAge ∧  

where there are three predicates, namely Age, Smk (smoking) and Dis (disease). 
Association rules that involve two or more dimensions or predicates can be referred to 
as multidimensional association rules. 

From Rule-1, it can be found that A={60, yes}, B={Lung Cancer}, DA={age, 
smoking} and DB={disease}. 

Considering BA  is an interdimension association rule, it can be proved that
|||| ADA = , |||| BDB =  and ∅=∩ BA DD . 

Support of A is then defined by: 

 r

Aaadt
A jjiji |},|{|

)supp(
∈∀=

=
 (1) 

where r is the number of records or tuples (see Table 1, r=12).  
Alternatively, r in (1) may be changed to |Q(DA)| by assuming that records or 

tuples, involved in the process of mining association rules are records in which data 
values of a certain set of domain attributes, DA, are not null data. Hence, (1) can be 
also defined by: 

 
|)(|

|},|{|
)supp(

A

jjiji

DQ

Aaadt
A

∈∀=
=  (2) 

 
where Q(DA), simply called qualified data of DA,  is defined as a set of record 
numbers (ti) in which all data values of domain attributes in DA are not null data. 
Formally, Q(DA) is defined as follows. 

 },|{)( AjijiA DDnulldtDQ ∈∀≠=  (3) 

Similarly,  

 
|)(|

|},|{|
)supp(

B

jjiji

DQ

Bbbdt
B

∈∀=
=  (4) 

Similarly, )(support BA  is given by 
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|)(|

|},|{|
                   

)supp()supp(

BA

jjiji

DDQ

BAccdt

BABA

∪
∪∈∀=

=

∪=
 (5) 

where },|{)( BAjijiBA DDDnulldtDDQ ∪∈∀≠=∪ )(conf BA as a 

measure of certainty to assess the validity of BA is calculated by 

 
|},|{|

|},|{|
 )(conf

Aaadt

BAccdt
BA

jjiji

jjiji

∈∀=
∪∈∀=

=  (6) 

A and B in the previous discussion are datasets in which each element of A and B 
is an atomic crisp value. To provide a generalized multidimensional association rules, 
instead of an atomic crisp value, we may consider each element of the datasets to be a 
dataset of a certain domain attribute. Hence, A and B are sets of set of data values or 
sets of datasets. For example, the rule may be represented by 
Rule-2: 

     
),cancer" lung ,bronchitis" ,(

  )yes"" ,(   )"20...60" ,(

Xdisease

XsmokingXage ∧
 

where A={{20…60}, {yes}} and B={{bronchitis, lung cancer}}. 
Simply, let A be a generalized dataset. Formally, A is given by 

             }N  somefor   ,|{ njjj jDAAA ∈⊆= . 

Corresponding to (2), support of A is then defined by: 

 
|)(|

|},|{|
)supp(

A

jjiji

DQ

AAAdt
A

∈∀⊆
=  (7) 

Similar to (5),  
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BA
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=

∪=
 (8) 

 
Finally, )(conf BA  is defined by 

 
|},|{|

|},|{|
 )(conf

AAAdt

BACCdt
BA

jjiji

jjiji

∈∀⊆
∪∈∀⊆

=  (9) 

To provide a more meaningful association rule, it is necessary to utilize fuzzy sets 
over a given database attribute called fuzzy association rule as discussed in [4,5].  
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Formally, given a crisp domain D, any arbitrary fuzzy set (say, fuzzy set A) is defined 
by a membership function of the form [2,3]:  

 A : D → [0,1]. (10) 

To provide a more generalized multidimensional association rules, we may 
consider A and B as sets of fuzzy labels[6]. Simply, A and B are called fuzzy datasets. 
Rule-2 is an example of such rules, where A={young, yes} and B={bronchitis}. Here 
young, yes and bronchitis are considered as fuzzy lables. A fuzzy dataset is a set of 
fuzzy lables/ data consisting of several distinct fuzzy labels, where each fuzzy label is 
represented by a fuzzy set on a certain domain attribute. Let A be a fuzzy dataset. 
Formally, A is given by    

          }N  somefor   ),F(|{ njjj jDAAA ∈∈= , 

where )F( jD is a fuzzy power set of Dj, or in other words, Aj is a fuzzy set on Dj.  

Corresponding to (7), support of A is then defined by: 
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Similar to (5),  
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The correlation betwen two fuzzy datasets can be defined by the following 
definition. 
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4 Research Methodology 

4.1 Problems Analysis  

There are several problems faced by PCU, such as: 

1. PCU’s top-level management takes decisions for the promotion or cooperation 
purpose based solely on estimates and habits, has not taken advantage of the 
existing academic records. 

2. PCU’s Faculties/Majors Promotion Team has not equipped with information or 
facts about the academic condition of PCU’s students while promoting 
faculties/majors to high schools. 

3. There is no feature in the current academic information system that can show the 
relationship between students’ data. 

4.2 Requirements Analysis 

From the problems listed above, it can be concluded that the PCU’s top-level 
management requires a computer-based system to assist in generating PCU’s students 
academic records, that is a data mining-based information systems that can produce 
association rules of students’ attributes. This system obtains data from the ETL 
process and has a multidimensional concept that shows the relationships between 
students’ attributes. The dimensions used are schools, math and english grade in their 
schools, specialization (science, social, literature, etc.), GPA, faculty, majors, gender, 
religion, and batch. 

4.3 Extract, Transform, and Load 

Extract, Transform, and Load (ETL) is a function that integrates data and involves 
extracting data from sources, transforming it to be more valid, and loading it into a 
data warehouse[7]. This process begins by importing the data from the database. The 
imported data is religions, majors, schools, specializations, student candidates, stu-
dents, and student admissions. Next, the imported data is transformed into more valid 
data and loaded into data warehouse. 

4.4 Determination of Fuzzy Values 

Determination of fuzzy values is done by establishing a group fuzzy set. First, user 
must input the name and choose the attribute, such as religions, majors, schools, GPA, 
math grade, etc. Next, user can make as many fuzzy sets as he/she wants inside the 
group fuzzy set made. User need to fill the name and the description of the fuzzy set. 
There are two types of fuzzy set based on the attribute of the group fuzzy set, numeri-
cal and non-numerical. For numerical, user can input as many points as he/she wants 
to form fuzzy membership function. A point includes crisp value and the membership 
degree of the crisp value to the fuzzy set. For non-numerical, user must input mem-
bership degree for every members of the attribute. Flowchart for determination of 
fuzzy values can be seen on Figure 1. 
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Fig. 1. Flowchart for Determination of Fuzzy Values 

4.5 Customization of Fuzzy Association Rules 

Customization of fuzzy association rules is done to generate fuzzy association rules 
report to support the decision-making process of top-level management. First, user 
must input the name and choose the attributes that will be used to generate the rules. 
After choosing the attributes, user must choose the group fuzzy set(s) of the attributes. 
Next, the application will generate the rules and save them in database. The user can 
see the whole report and filter the rules based on the support, confidence, and 
correlation value of the rules. Flowchart for customization of fuzzy association rules 
can be seen on Figure 2. 
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Fig. 2. Flowchart for Fuzzy Association Rules 
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5 Results 

A test is conducted to prove the accuracy of the developed application to calculate sup-
port, confidence, and correlation of the multidimensional fuzzy association rules gener-
ated. The test is started from a given simple academic records of students with three 
attributes, such as major, math grade, Grade Point Average (GPA) as shown in Table 1.  

Table 1. Academic Records of Students 

 Student Major Math grade GPA 

1 English Literature 74 3.34 

2 Civil Engineering 75 3.41 

3 Civil Engineering 90 3.9 

4 Interior Design 86 3.75 

5 Interior Design 78 3.45 

6 Business Management 76 3.23 

7 Business Management 68 3.35 

8 Business Management 89 3.56 

9 Informatics Engineering 91 3.84 

10 Informatics Engineering 71 3.01 

11 Science Communication 79 2.71 

12 Science Communication 76 3.03 

 
The test is conducted using three attributes, such as major, math grade, and GPA. 

First, we must determine how to convert each crisp value into fuzzy value for every 
attributes. Major is a non-numerical attribute, so we must determine the fuzzy value 
for each major. For example, we make a group fuzzy set for major named 2014 which 
has a fuzzy set named Engineering. Inside this fuzzy set, we determine business man-
agement has a membership degree of 0.2, civil engineering has a membership degree 
of 1, and so on as shown on Figure 3.  

 

 

Fig. 3. Input for Major Fuzzy Values 
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Math grade is a numerical attribute, so that the fuzzy value of math grade will be 
calculated through a fuzzy membership function which is formed from the points 
stored in the fuzzy set. For example, we make a group fuzzy set for math grade named 
2014 which has a fuzzy set named High. Inside this fuzzy set, we determine math 
grade of 0 has a membership degree of 0, math grade of 75 has a membership degree 
of 0, math grade of 95 has a membership degree of 1, and math grade of 100 has a 
membership degree of 1 as shown on Figure 4. 

 

 

Fig. 4. Input for Math Grade Fuzzy Membership Function 

These four points will form fuzzy membership function as shown on Figure 5.  

 

 

Fig. 5. Visualization of Math Grade Fuzzy Membership Function 

For example, if a student has math grade of 90, then the application will look for 
its membership degree through the equation of the line that formed the point (75, 0) 
and (95, 1), as given by y = { x | 0.05x - 3.75, for 75≤ x ≤95}. Thus, membership 
degree of 90 is 0.05 * 90 - 3.75 = 0.75. 

GPA is a numerical attribute like the math grade, so that the fuzzy value of GPA 
will also be calculated through a fuzzy membership function. For example, we make a 
group fuzzy set for GPA named 2014 which has a fuzzy set named High. Inside this 
fuzzy set, we determine points, such as (0, 0), (3.2, 0), (3.4, 0.6), (3.7, 1), and (4, 1) as 
shown on Figure 6. 
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Fig. 6. Input for GPA Fuzzy Membership Function 

This example of engineering fuzzy set for major attribute, high math grade fuzzy 
membership function, and high GPA fuzzy membership function are determined by 
interviewing one of PCU’s structural officers. Next, we choose the attributes that are 
used during this test and each attribute’s group fuzzy set that we just made before as 
shown on Figure 7. 

 

 

Fig. 7. Input Attributes for Fuzzy Association Rules 

This test will generate all combinations of fuzzy association rules using every 
fuzzy sets of the attributes chosen. For example, one of the rules may be represented 
by: 

Rule-3: 
Major(X, ”Engineering”) ^ Math(X, ”high”) ⇒ GPA(X, ”high”) 

 

Rule-3 is a fuzzy rule, where A={Engineering, high} and B={high}. Next, each 
academic records of students shown in Table 1 will be converted using the fuzzy sets 
to fuzzy values as shown in Table 2. 
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Table 2. Calculation of Fuzzy Values 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, support of Rule-3 can be calculated by (12), 
supp(Rule-3) = 2.45 / 12 = 0.20417 
 
On the other hand, confidence of Rule-3 can be calculated by (13), 
conf(Rule-3) = 2.45 / 2.7 = 0.90741 
 
On the other hand, correlation of Rule-3 can be calculated by (14), 
corr(Rule-3) = 2.45 / 2.31715 = 1.05733 
The manually calculated support, confidence, and correlation of Rule-3 are match 

with the output of the fuzzy association rules generated by this test as shown on Fig-
ure 8. 

 

Fig. 8. Example Output of Fuzzy Association Rules 

To evaluate this application, research on the use of this application is conducted. 
Samples of this research is five structural officers of PCU. To collect the data, distri-
buted a questionnaire containing indicators to evaluate the use of the application. The 
indicators include display of application, determination of fuzzy values, customization 
of fuzzy association rules, ease of use, the ability to address the needs of users, and 
overall. From the data collected, the calculation of the percentage of user satisfaction 
in using this application is done.  

 α β ɣ X Y X*Y Z 

1 0.1 0 0.42 0 0.42 0 0 

2 1 0 0.613 0 0.613 0 0 

3 1 0.75 1 0.75 1 0.75 0.75 

4 0.5 0.55 1 0.5 1 0.5 0.5 

5 0.5 0.15 0.667 0.15 0.667 0.10005 0.15 

6 0.2 0.05 0.09 0.05 0.09 0.0045 0.05 

7 0.2 0 0.45 0 0.45 0 0 

8 0.2 0.7 0.813 0.2 0.813 0.1626 0.2 

9 1 0.8 1 0.8 1 0.8 0.8 

10 1 0 0 0 0 0 0 

11 0.2 0.2 0 0.2 0 0 0 

12 0.2 0.05 0 0.05 0 0 0 

Σ 6.1 3.25 6.053 2.7 6.053 2.31715 2.45 

Note: 
α = µengineering (major) 
β = µhigh (math) 
ɣ = µhigh (GPA) 
X = min(α,β) 
Y = min(ɣ) 

Z = min(α,β,ɣ) 
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Assessment of the feasibility of the application: 
1. Display of application is 100% good 
2. Determination of fuzzy values is 80% good  
3. Customization of fuzzy association rules is 80% good  
4. Ease of use is 100% good 
5. The ability to address the needs of users is 60% good 
6. Overall is 100% good 

6 Conclusion 

The generated fuzzy association rules have been tested and matched with the 
Multidimensional Fuzzy Association Rules algorithm and the reality of academic 
situation of PCU’s students. From the assessment, obtained that overall application is 
100% good. This suggests that the application developed has benefits for PCU and 
can be continued for the purpose of decision-making process by top-level manage-
ment. 
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