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 Abstract: In standard FEM, the stiffness of an element is exclusively influenced by nodes associated with
 the element via its element-based shape functions. In this paper, the authors present a method that can be
 viewed as a generalization of FEM for which the influence of a node is not limited by a hat function around
 the node. Shape functions over an element can be interpolated over a predefined set of nodes around the
 element. These node-based shape functions employ Kriging Interpolations commonly found in geostatistical
 technique. In this study, a set of influencing nodes are covered by surrounding layers of elements defined
 as its domain of influence (DOI). Thus, the element stiffness is influenced by not only the element nodes,
 but also satellite nodes outside the element. In a special case with zero satellite nodes, the method is
 specialized to the conventional FEM.

This method is referred to as Node -Based Kriging FEM or K-FEM.

 The K-FEM has been tested on

2D elastostatic, Reissner-Mindlin’s plate and shell problems.

In all cases, exceptionally accurate displacement and stress fields can be

 achieved with relatively coarse meshes. In addition, the same set of

 Kringing shape functions can be used to interpolate the mesh geometry.

 This property is very useful for representing the curved geometry of shells. The

 distinctive advantage of the K-FEM is its inheritance of the computational
 procedure of FEM. Any existing FE code can be easily extended to K-FEM;
 thus, it has a higher chance to be accepted in practice.
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 Keywords: Finite element; kriging interpolation; node-based shape function; satellite nodes. Introduction
 Simulation of physical phenomena is very useful and important both in academic researches and in
 industrial product designs. The underlying mathe- matical models of the simulation are usually so complex
 that it is very difficult or even impossible to obtain analytical solutions. Thus, numerical methods have
 become indispensable in simulations. Among various numerical techniques, the finite element method
 (FEM) has been widely used in industries. Its versatility and robustness have been tested by several
 decades of real engineering practices. Motivated by the desire to minimize efforts in preparing finite element
 meshes, various mesh-free methods have been proposed. Their common advan- tages are as follows: (1)
 No element mesh is required for the construction of approximate functions; (2) High-order continuity of the
 approximate functions can be achieved; (3) Superior performance can normally be expected over the
 standard FEM. A detailed review is presented in [1-3]. Among countless mesh-free methods, the authors
 were interested in the methods of which formulation basis is the same as that of the FEM, i.e., those
 employing a global Galerkin weak form. 1 Asian Institute of Technology, Khlong Luang P.O. Box 4, Pathum-
 thani 12120, THAILAND 2 Petra Christian University, Jl. Siwalankerto 121-131, Surabaya 60236,
 INDONESIA 3 Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, THAILAND.
 *Corresponding author; email: worsak@ait.ac.th One earliest mesh-free method in this category is the
 element-free Galerkin methods (EFGM) presented by T. Belytschko et al. in 1994 [4], which is an improved
 version of the diffuse element method proposed by B. Nayroles et al. two years earlier [5]. The mesh-free
 character of the EFGM is made possible by the use of moving least-squares (MLS) approximant for the test
 and trial functions in the Galerkin weak form. The MLS approximation is essentially a least-squares
 regression with a local weighting function. Therefore, it is generally not passing through the data nodes. In
 other words, MLS shape functions do not possess the Kronecker delta property. Because of this, the
 enforcement of essential boundary conditions has been a major issue in the EFGM; a special constraint
 technique must be utilized to impose essential boundary conditions. In 2003, L. Gu [6] proposed an EFGM
 with moving Kriging (MK) interpolation to replace the MLS because of its two key properties: the Kronecker
 delta property and the consistency (polynomial reproducing) property. Following this work, P. Tong- suk and
 W. Kanok-Nukulchai [7] in 2004 found that, with the same number of nodes, the EFGM with MK
 interpolation consistently outperformed the original EFGM in terms of accuracy. A further application of the
 method to shell problems was presented by V. Sayakoummane and W. Kanok-Nukulchai [8] in 2007. Even
 though EFGM is claimed to be “element free”, a mesh of background cells, a term used to differen- tiate
 from “elements”, is still needed for numerical integration. In problems dealing with material and geometric
 discontinuities, the need for a mesh to outline these discontinuities is practically unavoi- dable. Another
 disadvantage of the EFGM and its variants is the difficulty in their implementation based on existing general
 purpose FEM codes. Due to these inconveniences, their acceptance in real engineering practices seems to
 be unsatisfactory. In 2005, K. Plengkhom and W. Kanok-Nukulchai [9] proposed a more convenient
 implementation of the EFGM with Kriging interpolation (KI). In their method, the field variables (trial and test
 functions) are approximated by “element-by-element” piecewise KI. For each element, KI is constructed
 from a set of nodes in its domain of influence (DOI) defined over surrounding layers of elements, as
 illustrated in Figure 1. Figure 1. Various Layers of Elements Around Element I to Illustrate a System of
 Layered DOI in a Square Mesh of Triangular Elements, and the Corresponding Kriging Shape Functions
 using Quadratic Basis Function, Three Element-layers, and Quartic Spline Correlation Function Like FEM,
 elements are also used as subdomains for numerical integration. The method is named Kriging-based FEM
 (K-FEM). This variant of EFGM can be viewed as a generalization of FEM for which the influence of a node
 is not limited only to hat functions. In standard FEM, the element stiffness is exclusively influenced by its
 element nodes, whereas the element stiffness in K-FEM can also be influenced by satellite nodes not
 directly connected to the element. If we limit the DOI to only one element layer with no satellite nodes, K-



FEM is then iden- tical to the conventional FEM. Kriging Interpolation Named after Danie G. Krige, a South
 African mining engineer, Kriging is a well-known geostatistical technique for spatial data interpolation in
 geology and mining. Using this interpolation, unknown at any point can be interpolated from known values
 at scattered points in its specified neighborhood. The basic concepts of the KI in the context of K-FEM are
 presented in the following. A detail explanation and derivation of Kriging can be found in the geos- tatistics
 literatures (e.g. [10, 11]). Consider a two-dimensional domain modeled by a mesh of triangular elements
 (Figure 1). Suppose there is a single field variable over the domain, u(x). For each element, the KI is
 constructed over a set of nodes in a sub-domain ?E ? ? encompassing a predetermined number of layers of
 elements. The KI over sub-domain ?E can be expressed in the usual FE form, i.e., uh (x) ? N(x) d , where
 N(x) is the 1? n matrix of Kriging shape functions and d is the n ?1 matrix of field values at the nodes. In
 contrast to the FEM, here n is not necessarily only the number of nodes associated with the element, but
 also includes all its satellite nodes. InKrigingformulation,thefieldvariableu(x),which is a deterministic
 function, is viewed as the realization of a random function U(x). The shape function matrix can be
 expressed as N(x)?pT(x)A?rT(x)B,wherepT(x) isthe1?m vectorofm-terms-polynomialbasisandrT(x) isthe 1?
n vectorofcovarianceassociatedwithrespective randomfunctionUatnodesi=1,…,n,andUatthe point under
 consideration, x. Matrices Am?nand B n?n are defined as A ? (PTR?1P)?1PTR?1 and B ? R ?1 (I ? PA) , in
 which P is the n ? m matrix of polynomial values at the nodes in the DOI, R is the n ? n matrix of covariance
 between U(x) at a pair of nodes, and I is the n ? n identity matrix. From the above formulation, constructing
 Kriging shape functions requires a polynomial basis function and a correlation function. For the basis
 function, Kanok-Nukulchai, W. et al. / Generalization of FEM Using Node-Based Shape Functions / CED,
 Vol. 17, No. 3, December 2015, pp. 152–157 besides complete polynomial bases, it is also possible to use
 incomplete polynomial bases such as bi-linear, bi-quadratic and bi-cubic bases. A widely used correlation
 function in the area of computational mechanics is the Gaussian correlation function [6-9]. This function
 contains an important parameter affecting the quality of KI, known as the correlation parameter θ. In order
 to obtain reasonable results in K-FEM, K. Plengkhom and W. Kanok-Nukulchai [9] suggested a criterion for
 choosing a stable range of θ. Recently the authors introduced a new correlation function [12] in the form of
 a quartic spline (QS) correlation function. Our studies indicate a superior performance of QS to the
 Gaussian correlation function, as the resulting Kriging shape functions are less sensitive to the change of θ.
 In Figure 1, to illustrate the concept of element- layered DOI, suppose that the element of interest in a
 square domain is Element 1, the choices of DOI, comprising one up to four element layers, are shown in the
 Figure 1. It is noted that the DOI does not have to be convex. If one uses quadratic basis func- tion (m=6)
 and choose to use three-layered DOI to construct KI over Element 1, the DOI will encom- pass 30 (n=30)
 nodes. The plot of Kriging shape function associated with node I, based on QS correlation function, is
 shown in the right-hand side of Figure 1. Key Advantages of K-FEM The Stress Field can be Obtained with
 Remar- kable Accuracy and Global Smoothness Using the same mesh size, K-FEM yields a stress field
 with higher accuracy and better smoothness than that of the standard FEM. This is because one can freely
 adopt a higher-order basis function and a larger DOI for any fixed mesh. To show this, a cantilever plane-
stress beam, Figure 2, under end parabolic shear is modeled with a crude mesh of 6x10 triangular elements.
 In the same figure, the quality of stress output obtained by K-FEM using cubic basis and three-layered DOI
 is demonstrated by the stress contours generated directly from nodal values with no post-processing
 manipulation. Like FEM, there is no guarantee for stress field to be perfectly continuous across the inter-
element boun- daries; however, the degree of discontinuity is found to be rather insignificant. Solution
 Refinements can be Achieved with no Re-meshing In K-FEM, quality improvement of solutions can be
 achieved by: (a) increasing the order of the basis function or p-refinement, or (b) enlarging the element-
layered DOI or l-refinement. For illustra- tion, the cantilever plane-stress beam is modeled with 3 mesh
 sizes, i.e., with 6x10, 12x20 and 24x40 triangular elements. Each mesh is tested with linear (P1), quadratic
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 (P2) and cubic (P3) polynomial basis functions. For P1, it is possible to use 1, 2, or 3 element layers for the
 DOI. However, at least 2 layers must be used for P2 and at least 3 layers for P3, following the general rule
 that the number of nodes covered in the DOI must not be fewer than the number of terms in the polynomial
 basis. Results of the end deflection, normalized by the exact solution, for all cases are presented in Table 1
 together with the corresponding computational times Normal Stress Normal Stress Shear Stress Figure 2.
 Stress Contours of Cantilever Plane-stress Beam by K-FEM with Cubic Basis Function and Three Element
 Layers of DOI. Table 1. Results Obtained from K-FEM with Different Options for the Plane-stress Model of a
 Cantilever Beam h-refine- ment p-refine- ment l-refine- Normalized Time* ment solution (sec) 1 (FEM) 0.928
 1.22 P1-Basis 2 layers 0.979 6.86 6x10 3 layers 0.986 23.17 P2-Basis 2 layers 0.999 7.02 3 layers 0.998
 23.41 P3-Basis 3 layers 1.000 23.69 1 (FEM) 0.981 4.81 P1-Basis 2 layers 0.994 30.06 12x20 3 layers
 0.997 115.00 P2-Basis 2 layers 1.000 30.20 3 layers 1.000 116.45 P3-Basis 3 layers 1.000 111.78 24x40 1
 (FEM) 0.995 19.34 P1-Basis 2 layers 0.998 134.92 3 layers 0.999 527.44 P2-Basis P3-Basis 2 layers 3
 layers 3 layers 1.000 1.000 1.000 136.55 527.64 531.36 * Note: Execution on Laptop PC with Core2
 DuoT5200 processor, 1.6 GHz Accuracy performance and computational times over the matrix of the h-
refinement and the l-refinement, all using linear basis function, are presented in Figure 3. For relatively
 crude meshes, the accuracy can be enhanced by adopting a larger DOI with more layers of elements.
 Almost the same accuracy can be achieved by h-refinement from 6x10 to 24x40 mesh sizes, or by l-
refinement from 1 to 3 element layers. The latter requires about 20% more computational time. However for
 the case of h-refinement, we do not consider engineer’s time for the remesh. A more detailed comparison of
 beam displacement profile between h-refinement and l-refinement is illustrated in Figure 4. Figure 3.
 Matrices of Solution Accuracy and Computa- tional Times for h-refinement and l-refinement, all using Linear
 Basis Function Accuracy performance and computational times over the matrix for h-refinement and p-
refinement, all using DOI of three element layers, are presented in Figure 5. From the figure, higher
 accuracy can be achieved for a fixed mesh by simply adopting a higher order basis function without
 significantly increasing the computing time. Figure 4. Cantilever Beam Modeled by Tetrahedral Solid
 Elements: Comparison of h-refinement vs l-refinement. Figure 5. Matrices of Solution Accuracy and
 Computatio- nal Times for h-refinement and p-refinement, all using Three Element Layers DOI. Geometry of
 Curved Domain can be Repre- sented More Accurately by KI Isoparame- tric Mapping The same set of
 Kriging shape functions for field variable

can be used to interpolate the geometric field. This is very useful for

 curved

 shell problems. To demonstrate this advantage, a cantilever quarter cylinder shell under pure bending is
 modeled by triangular elements as shown in Figure 6. K-FEM is used to solve the shell problem with quartic
 basis functions and a DOI of 4 element layers. This shell problem will be tested for two different situations,
 one with and the other without isoparametric mapping. In the first case, the geometry of individual shell
 elements shall be interpolated by Kriging shape functions. In the latter case, the geometry of individual shell
 element is basically a flat facet. The results clearly confirm the advantage of the Kriging interpolated shell
 geometry. Implementation of K-FEM can be Easily Incor- porated into Existing FEM Codes. As K-FEM
 inherits

the computational procedure of FEM, existing general-purpose FE

 programs can be easily
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 modified for this new concept. Figure 7 shows the flow diagram of a typical FEM code extended for K-FEM.
 After the modification, the standard FEM becomes in fact a subclass of K-FEM. With this convenience, K-
FEM

has a high chance to be widely accepted in practice.

 Figure 6. Convergence of the Cantilever Cylindrical Shell: Isoparametric Triangular r K-FEM Shell Element
 (with shell surface generated by the same Kriging shape func- tions) Versus Flat Triangular K-FEM Shell
 Element (with shell surface interpolated exclusively from its own 3 nodes). Figure 7. Flow Chart of a Typical
 FEM Code Extended to Include K-FEM Kanok-Nukulchai, W. et al. / Generalization of FEM Using Node-
Based Shape Functions / CED, Vol. 17, No. 3, December 2015, pp. 152–157 Conclusions The basic
 concept and the advantages of K-FEM have been described. The present method is as simple as the
 conventional FEM in terms of its implementation; yet it retains much of the advan- tages of mesh-free
 methods. K.Y. Dai et al. [13] pointed out that the method using standard Galerkin weak form with KI is
 noncom- forming and so is K-FEM. This means the elemental piecewise KI is not fully compatible across
 the inter- element boundaries. Its effect on the convergence was studied in the context of 2D elastostatic
 pro- blems [14, 15]. It was found that K-FEM with appropriate choice of correlation function passes the
 weak patch test and therefore the convergence can be guaranteed. One possible drawback of K-FEM is its
 excessive demand of the computational time, as Kriging shape functions are constructed element by
 element during the computation. Moreover, a larger DOI means a longer time for stiffness formation and for
 solving a system with larger average bandwidth. However under the current trend, the cost of running a
 FEM project is heavily weighted on the engineer’s time for preparing meshes, rather than on the
 computational time. Several investigations have been carried out success- fully on different applications of
 K-FEM. Aside from plane elasticity problems [9, 16, 17], so far Kriging- based finite elements have been
 developed for degenerated solid beams, plates and shells [12, 18, 19]. The results confirmed that K-FEM is
 indeed a viable alternative to the conventional FEM and has great potential in engineering applications.
 Future research may be directed at (1) applications of K- FEM to nonlinear problems and (2) improvement
 of its computational efficiency References 1. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and
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