

PROCEEDING SEANES 2016

THE 4[™] SEANES INTERNATIONAL CONFERENCE ON HUMAN FACTORS AND ERGONOMICS IN SOUTH-EAST ASIA

29 November - 1 December 2016 Bandung - Indonesia

PERHIMPUNAN ERGONOMI INDONESIA in collaboration with

PROCEEDING

4th SEANES International Conference on Human Factors and Ergonomics in South-East Asia

Green Ergonomics – Sustainability, Productivity, and Well-being

29 November – 1 December 2016 Bandung, Indonesia

Cover design: Sebastianus

Typesetting : Paulina K. Ariningsih Yani Herawati

ISBN: 978-602-6980-44-1

Published by UNPAR PRESS Jl. Ciumbuleuit no 94 Bandung 40141 <u>www.unpar.ac.id</u>

Copyrights are protected by laws

Preface

Southeast Asian Network of Ergonomics Societies (SEANES) is a regional ergonomics society in Southeast Asia, founded by local ergonomics societies of few countries in the region. SEANES holds a biennial conference since 2010, which provides a forum for scientists, academics, and professionals from around the world, especially in the Southeast Asian region.

In 2016, **4th SEANES International Conference on Human Factors and Ergonomics in South-East Asia** will focus on "Green Ergonomics: Sustainability, Productivity, and Well-being". Within this theme, SEANES 2016 Conference supports and expands the application of human factors and ergonomics with regards to recent local and global needs. This international conference aims to enhance the awareness of the importance of Human Factors Engineering (HFE) in various human activities and application domains, including product design, learning, communication, healthcare, transportation, defense and security.

Hosted by Indonesian Ergonomics Society (Perhimpunan Ergonomi Indonesia/PEI), in collaboration with Institut Teknologi Bandung (ITB) and Universitas Katolik Parahyangan (UNPAR), the committees publish this proceeding as publication of communities' participations on research papers.

Foreword from Conference Chair

It is with great pleasure we welcome you to the 4th SEANES International Conference on Human Factors and Ergonomics in South-East Asia (SEANES) 2016. Southeast Asian Network of Ergonomics Societies (SEANES) is a regional ergonomics society in Southeast Asia, founded by local ergonomics societies of few countries in the region. SEANES holds a biennial conference since 2010, which provides a forum for scientists, academics, and professionals in the field of ergonomics from around the world, especially in the Southeast Asian region.

This year SEANES 2016 Conference is organized for the fourth time and is hosted for the first time by Perhimpunan Ergonomi Indonesia (Indonesian Ergonomics Society) in collaboration with Industrial Engineering Department of Parahyangan Catholic University (UNPAR) and Industrial Engineering Department of Institut Teknologi Bandung (ITB). The conference is endorsed by International Ergonomics Association (IEA).

The theme "Green Ergonomics: Sustainability, Productivity, and Well-being" was chosen to reflect our passion to gather and engage ergonomists from academia and industries to exchange state-of-the-art knowledge and share their latest experience relevant to the application of human factors and ergonomics with regards to recent local and global needs. This international conference aims to enhance the awareness of the importance of Human Factors Engineering (HFE) in various human activities and application domains, including product design, learning, communication, healthcare, transportation, defense and security.

SEANES 2016 aims to engage academics and professionals in a number of interactive activities, i.e. keynote sessions, parallel paper presentation sessions, workshops, industry sessions, and also a welcome reception and a conference dinner. We have received the works of about 312 contributors from Indonesia, Malaysia, Singapore, Philippines, Thailand, India, Japan, China, Taiwan, Germany, Estonia, and Mexico through their submissions. Out of 102 research papers submitted, we selected 77 papers through a rigorous review process done by a board of international reviewers. These papers features a number of great and insightful articles related to several topics in the field of human factors and ergonomics.

Organizing the 4th SEANES Conference for the first time in Indonesia has been a great challenge. We knew that this conference would be impossible without the help from many people. We extend our gratitude to our strong and dedicated organizing committee, scientific committee, SEANES steering committee, international board of reviewers, keynote and workshop speakers, and also our generous sponsors.

Last but not least, we do hope that you enjoy the conference and your stay in Bandung. We also wish our international participants a memorable experience during your stay in Indonesia.

Johanna Renny Octavia Hariandja and Manik Mahachandra

(Conference Chairs) On behalf of SEANES 2016 Organizing Committee

Foreword from President of PEI & SEANES

Selamat Datang di Bandung,

On behalf of the Southeast Asian Network of Ergonomics Societies (SEANES), we are very grateful for your participating in SEANES 2016. SEANES is a network of the International Ergonomics Association (IEA), and its societies are also IEA federated members, including Indonesian Ergonomics Society (PEI), Human Factors and Ergonomics Society of Malaysia (HFEM), Human Factors and Ergonomics Society of Singapore (HFESS), and Ergonomics Society of Thailand (EST).

SEANES 2016 provides a great opportunity for sharing of ideas, research experiences and best practices in different areas of Human Factors & Ergonomics among academia, practitioners, and other stakeholders. Let's think of any possibility for collaborations in the future.

Among SEANES countries, we are heading similar challenges in improving our working conditions and promoting safety and health. Our stakeholders are looking forward to hearing our ergonomics success stories, practical ergonomics guidelines, simple ergonomics tool-kit, ergonomics example approach adjusted to local conditions, more of "ergonomics=economics", and etc. We are fortunate to have a draft of SEANES Ergonomics Checkpoints discussed in SEANES 2016. I believe that more programs can be initiated by SEANES such as ASEAN ergonomics month, training and certification, and etc. I believe that better collaborations can be established soon among individuals and societies.

This SEANES 2016 event is hosted and organized by Indonesian Ergonomics Society (Perhimpunan Ergonomi Indonesia/PEI), in cooperation with Institut Teknologi Bandung (ITB) and Universitas Katolik Parahyangan (UNPAR). Hence, I thank all the committee members for their hard work.

Finally, we hope you enjoy this SEANES 2016 event, fruitful workshop and successful conference, and also the most pleasurable stay in Bandung.

Thank you. Sincerely,

Yassierli, Ph.D

President of Indonesian Ergonomics Society (PEI) President of Southeast Asian Network of Ergonomics Society (SEANES)

Table of Contents

Preface	i
Foreword from Conference Chair	iii
Foreword from President of PEI and SEANES	v
Table of Contents	vi
Anthropometry	
Determination of Length, Width, and Height Size of Toilet in Indonesia Using Anthropometry	1
Abraham Prakoso, Ni Kadek Cahya Wahyuni and Anugrah Nurhamid Implementation of ROM and Anthropometry in Manufacturing Company: A Case Study	7
Listiani Nurul Huda and Nismah Panjaitan	
Product Design	
e	15
Muhammad Ridwan Andi Purnomo, Adhe Rizky Anugerah, Nawang Wahyu Widiatmaka, Jatu Sandyakalaning and Damar Mafatir Romadhon	
Design of Upper Limbs Exercise Tool for Post Stroke Patients Based on Rational Method	23
Ade Sri Mariawati, Firdha Anggraini, Ani Umyati, Mohamad Fawaid and Yayan Harry Yadi	
Design Tool Lobster Catcher I-Loca by Approaching TRIZ and BMC (Case Study: Gresik and Lamongan Fishermen Community)	31
Adithya Sudiarno, Sri Gunani Partiwi and Roikhanatun Nafi'Ah	
Work Design	
Ergonomic Re-Design of Areca Nut Axe Tool Based on Anthropometric Data to Reduce Musculoskeletal Risk and Improve Productivity	41
	49
Jembrana Bali Ni Luh Gede Aris Maytadewi Negara, Komang Angga Prihastini, Ika Fitri Wulan Dhari and I Dewa Putu Sutjana	
v v	53
Soo Li Choong, Ahmad Firdaus Ismail, Khairul Nazri Abd Wahib, Nasir Senin and Saidatina Fatimah Ismail	
The Implementation of Ergonomics to Increase Work Productivity and Health of Farmers	61

Ketut Widana

Use Mixer Sugar Machine Could Reduce Work Load and Increasing Productivity in the Coconut Sugar Craftsman at Dawan Village, Klungkung Bali	69
I Ketut Gde Juli Suarbawa and M. Yusuf	
Designing Work Facility for Cutting Pan Handles to Increase Work Productivity of	75
Operator Using Ergonomics Concepts	
Tri Budiyanto	
Working Posture	
Effect of Working Posture on Occurrence of Musculoskeletal Disorders and Productivity Among The Steamed Sponge Cake Industry Workers in Denpasar	83
I Made Krisna Dinata, Luh Made Indah and I Made Muliarta	
Analysis Of Position Working Dentist And Lactic Acid Level to Risk Musculoskeletal Disorders	89
Titiek Berniyanti and Fiory Dioptis Putriwijaya	
Office Ergonomics Assessment Amongst Computer Users: A Case Study on Three Office Towers in Jakarta, Indonesia	95
Indri Hapsari Susilowati, Irma Setiawaty, Anita Herizal, Laksita Ri Hastiti and Julia Rantetampang	
Feeder Operator Working Methods Improvement	103
Choerur Ridho, Wyke Kusmasari and Yayan Harry Yadi	
Identification and Rapid Assessment of Workers' Awkward Postures in A Fabrication Industry Using REBA	109
Yossi Syaiful Ahmad and Juli Soemirat	119
Evaluation of Multirole Fighter Combat Aircraft Design Based on the Pilot's Ingress and Egress Activities by Using Virtual Environment	119
Boy Nurtjahyo Moch, Primalia Atika Hardhiani, Sayidul Fikri, Raisa Khairunnisa and Rendy Saputra	
The Study of Health Impact of Using Smart Device Among Students: Case Study of Laptop and Smartphone Users	127
Triarti Saraswati, Cita Medina Parahita and Ing Irvan Adi Nugraha Ismail	
Improving Cashew Peeler Workstation to Reduce Physical Complaints	135
Anny Maryani, Sri Gunani Pratiwi, Diyah Ayu Ratnasanti	
Increase of Workload Among Radiographers at Sanglah General Hospital Denpasar	141
Putu Adi Susanta, I Wayan Gede Suarjana, Luh Made Indah Sri Handari Adiputra, Made Muliarta and I Made Krisna Dinata	
Occupational Physiology	
The Effect of Music Genre During Post Treadmill Exercise Recovery Time	145
Herry Christian Palit and Debora Anne Yang Aysia	
Effects of Coconut Oil and Palm Oil Based Phase Change Material As Cooling Device in Alleviating Heat Strain During Physical Activity in Hot-Humid Condition	151
Titis Wijayanto, Oggie Afyuddin, Agasi Zain and Farah Handriani	
Occupational Biomechanics	
Relationship Between Muscle Strength and Physical Performance in Sedentary	157

University Student	
Yunita Rusli and Vivi Triyanti	
Morphological Changes in the Median Nerve at the Wrist After Prolonged Keyboard	165
Typing: An Exploratory Study	
Ping Yeap Loh and Satoshi Muraki	
Occupational Health	
Occupational Stress of Corporate Customer Care Agent Using	171
Electroencephalogram	
Maya Arlini Puspasari, Putri Kusumawardhani and Hardianto Iridiastadi	1.77
Access to Personal Hygiene Improves the Quality of Elderly's Life	177
Agus Sri Lestari, Nyoman Adiputra, I B Adnyana Manuaba and I Dewa Putu	
Sutjana Vigual Dereantion From the Primitive Colours: Effect Civen on Mood, and Discorn	181
Visual Perception From the Primitive Colours: Effect Given on Mood, and Discern Exertion for the Administration Staff	101
Wahyu Apri Wulan Sari, Cahyaning Dewi Handayani, and Ratna Tungga Dewa	
Smartphone Addiction and Health Issues Among Young Adults in India: A Cross	187
Sectional Study	
M. Saravanan, Bodar Chetana, Chaudhari Ipsa, Chaudhari Tanvi and Panchal	
Kripal	
Occupational Safety	
Measurements of Unsafe Human Acts as Related to Industrial Accidents Using the HEART Method	195
Kendra Natadiningrat and Juli Soemirat	
Human Error Identification in Train Machinists' Work Using SHERPA and HEART	203
Roy Enggar Achmadi, Mitasya Susilo, Tatak Tiara Sofyan, Zulfikri Muhammad Ripaldi and Hari Purnomo	
Measurements of Inherent Human Factors as Related to Industrial Accidents, Using	213
Five-Factors Personality Traits	
Tedi Gumilar and Juli Soemirat	
Transportation Safety	
Evaluating Driver's Comfort Level for Vehicle Headlamp Standarization in Indonesia	219
Erlinda Muslim, Nadia Faradilla, Gaby Reveria, Dea Indriyani and Dania Zhafarina	
Human Error Analysis of Civil Aviation Accidents in Indonesia Based on HFACS	227
Anjani Putri and Iftikar Z. Sutalaksana	
Workload	
Design of Plastic Mulch Hole Maker to Decrease Work Load and Increase Work	235
Speed Strawberry Farmer in Bali	
Muhammad Yusuf, Nyoman Adiputra, I Dewa Putu Sutjana and Ketut Tirtayasa	
Incentive System Design Based on Workload and Job Analysis (Case Study:	241
Hospital "P" in East Borneo)	
Dyah Santhi Dewi, Arief Rahman and Selma Farista Yulia Puteri	

Workload Comparison Studies: NASA-TLX and Time Based Measures Arief Rahman, Rahmadita Filaili and Magdalena Rosita	251
Fatigue & Materials Handling	
Ergonomic Analysis for Manual Material Handling As A Prevention of Work Accident at Procter & Gamble Indonesia	259
Erwin Maulana Pribadi, Apep Rachmat and Dea Rahmawardani	
Ergonomic Analysis of Train Driver Workplace and Passenger Seats Shubham Gupta and Anil Gupta	267
Design of Working Times	
Shift Work System 3-2-1-1 Pattern Using Ergonomic Participatory Approach Increases the Performance of PS Hotel's Room Attendants	277
Nk Dewi Irwanti, Nyoman Adiputra, Ipg Adiatmika and I M Sutajaya	
Effects of Working Time Patterns on Creative R&D Work Outcome	283
Aaro Hazak, Kadri Männasoo and Marko Virkebau	
Human Information Processing	
Correlation of Short-term Memory and VO2max in Athlete's Achievement	291
Leonardo Lubis, Novitri and Nani Kurniani	• • •
The Effect of Physical Activity and Screen Time to Intelligence of University Students	297
Jane Irena Surjana and Vivi Triyanti Driver's Distraction and Understandability of Using GPS Navigation	305
Wiwik Budiawan, Shara Nica Agung Sahara, Heru Prastawa and Susatyo Nugroho Widyo Pramono	505
I Think You Think I Think That Adversarial Problem Solving Is	311
Angela Li Sin Tan, Shuli Yu, Boon Kee Soh, Yee Siang Chng and Andrea Jiewen Chen	
Human-Computer Interaction	
Toward a Theory of Psychological Trust for Human-Robot-Human Interaction:	321
Effects of Scenarios, Gender, and Ethnicity	
Halimahtun Khalid, Wei Shiung Liew, Martin Helander, Chu Kiong Loo and Ai- Vyrn Chin	
Accuracy of Space Perception Performances in Stereoscopic Displays	331
Bereket Haile Woldegiorgis and Chiuhsiang Joe Lin	
What Pictures and Animations Are Good for Guiding Information	339
Dian Kemala Putri and Hayyu Saputri	
Usability & Kansei Engineering	
Effects of Finger/Thumb Response Distance on Reaction Time Performance	347
Joo Cheng Nicolette Chhua, Kian Wee Daniel Lim, Sheng Tong Lin and Lian Kheng Frederick Tey	

Various Issues on Organizational Ergonomics		
Relationship Analysis Between Social Environment and Quality-Work Life in		353
Small-Medium Enterprises		
Ayudyah Eka Apsari and Hari Purnomo		
Riding a Motorcycle Safety Issues in Term of Socio-Technical and Human Machine		359
Interaction Perspective (Case Study: Road Traffic in Bandung)		
Andrijanto and Alphared Pangaribuan		
Another Structure of New Knowledge Based Ergonomics Risk Assessment System		373
Fazilah Abdul Aziz, Zakri Ghazalli and Nik Mohd Zuki Nik Mohamed		
Lean Ergonomi With 5s Concept: A Case Study in Small Scale Industry		385
Listiani Nurul Huda		
Scientific Committee	xiii	
Author Index	XV	
Keyword Index	xix	

thor Index			
word Index			

Scientific Committee

Adiatmika, I Putu Gede Blewett, Verna Caple, David Charoenchai, Nivit Charoenporn, Naris Daruis, Dian Dewi, Dyah Santhi Falzon, Pierre Ha, Nguyen Thu Hariandja, Johanna Renny Octavia Hartono, Markus Helander, Martin Huda, Listiani Nurul Imada, Andrew Jennifer Gutierrez, Alma Maria Jongkol, Pornsiri Jordan, Patrick Kaburuan, Emil Kogi, Kazutaka Kow, Yong Ming Krungkraiwong, Sudthida Liang, Sheau-Farn Max Lim, Tek Yong Long, Jennifer Mahachandra, Manik Mohd Khalid, Halimahtun Mohd Tamrin, Shamsul Bahri

Mohd Yusuff, Rosnah Muliarta, I Made Muslim, Khoirul Ng, Yee Guan Noy, Ian Park, Jaehyun Putri, Dian Kemala Rau, Pei-Luen Patrick Robielos, Rex Aurelius Seva, Rosemary Sharan, Deepak Straker, Leon Sudiajeng, Lilik Suk Kee Tie, Vivian Sulistyawati, Ketut Tan, Kay Tey, Frederick Tie, Vivian Suk Kee Todd, Andrew Toriizuka, Takashi Ushada, Mirwan Widyanti, Ari Wijayanto, Titis Yap, Edwin Yassierli, Yogasara, Thedy Zink, Klaus J.

CERTIFICATE

This is to certify that

Debora Anne Yang Aysia

has participated as a Presenter in

THE 4[™] SEANES INTERNATIONAL CONFERENCE ON HUMAN FACTORS AND ERGONOMICS IN SOUTH-EAST ASIA

on 28 November - 1 December 2016, Bandung - Indonesia

Yassierli, Ph.D. President of SEANES President of Indonesian Ergonomics Society

PERHIMPUNAN ERGONOMI INDONESIA

Dr. Johanna Renny Octavia Hariandja Conference Chair of SEANES 2016

The Effect of Musical Genre during Post Treadmill Exercise Recovery Time

Herry Christian PALIT, Debora Anne Yang AYSIA Industrial Engineering Department, Petra Christian University

ABSTRACT

Ergonomics focuses on human beings and their interaction with products, equipment, facilities, procedures, and environments that is used in work and everyday living. Ergonomics is applied in various areas of human life, such as manufacture industry, aerospace industry, transportation, education, health, etc. One of its applications is in sport industry, which is called sport ergonomic. Music as a part of working environment, is used to create a comfortable working environment, to reduce boredom and to disguise noise (Kroemer, et al, 2001). The previous reaserch showed that musical tempo significantly affected post treadmill exercise recovery time (Palit, 2015). The aim of this research is to understand the effect of musical genre during post treadmill exercise recovery time. The experiments are done at Ergonomics Laboratory of Petra Christian University. A three minutes treadmill exercise with a speed of 7 km/hour without any musical background is chosen as a physical activity. The recovery time is recorded during the recovering process while respondent listening to the music. Three levels of musical genre with slow tempo are chosen, they are new age, pop and rock. The desired response is faster heart rate recovery time. Randomize Complete Block Design is used as an experimental method. This study concludes that musical genre affects the post treadmill exercise recovery time, and new age genre has the fastest recovery time than pop or rock.

KEYWORDS

Musical genre; recovery time; treadmill exercise.

INTRODUCTION

Ergonomics focuses on human beings and their interaction with products, equipment, facilities, procedures, and environments that is used in work and everyday living (Sanders and McCormick, 1993). The objective of Ergonomics is to enhance the effectiveness and efficiency with which work and other activities are carried out and to enhance certain desirable human values. There are several focuses of Ergonomics, they are anthropometry, biomechanics, work physiology, human information processing, human computer interaction, display and control, working environment, and macro ergonomics (Iridiastadi and Yassierli, 2014). Ergonomics is applied in various areas of human life, such as manufacture industry, aerospace industry, transportation, education, health, etc. One of its applications is in sport industry, which is called sport ergonomic.

Nowadays, music as a part of physical work environment has an important role in human's life. Music is a collection of tones that are arranged to produce rhythm, song and harmony. Music is used to create a comfortable working environment, to reduce boredom and to disguise noise (Kroemer, et al, 2001). Music has several elements, they are sound, tone, rhythm, harmony, notation and genre. Musical genre is a musical grouping according to similarity of the musical technique, style, context and theme of the music. There are several musical genres, such as pop, rock, classic, new age, dangdut, jazz, and etc. According to Sills and Todd in 2015, the difference of musical genre influenced significantly on a person's heart rate. Average heart rate were significantly higher after listening to rock music, and heart rates also significantly decreased after listening to classical music. However, Orman (2011) stated that there was no significant difference in heart rate variability with high frequency measurement when participants listened to a musical selection from a genre they liked as compared with one from a genre they disliked.

Music has also an important effect in sport. Thakur and Yardi (2013) stated that both fast and slow music had a positive effect on treadmill exercise performance, which fast music increased the exercise duration more than slow music. Music also plays a role in post treadmill exercise recovery time. Manjunatha *et all.* (2014) and Bhavsar *et all.* (2014) stated that slow music had greater relaxation effect than fast or no music. Also, Palit (2015) concluded that musical tempo significantly affected the recovery time of post treadmill exercise. In this research, pop music was chosen with four level musical tempo (slow, medium, fast, and very fast). This study found that pop musical tempo significantly affected the post treadmill exercise recovery time, and slow tempo (66-76 bpm) had the fastest recovery time than the others. The preliminary studies still not investigate the effect of musical genre on post treadmill exercise recovery time. Therefore, this research aims to understand the effect of various musical genre with slow tempo on recovery time of post treadmill exercise.

RESEARCH METHOD

Experiment is a series of test in which purposeful changes are made to the input variables of a process or system so that we may observe and identify the reasons for changes that may be observed in the output response (Montgomery, 2005). The objective of an experiment is to determine the influence of some factors (input factor or process factor) toward the output response of the system. The aim of this research is to know the effect of musical genre towards post treadmill exercise recovery time, and determine which musical genre which has best effect to the recovery time. Three levels of musical genre are used in this experiment, they are new age, pop and rock. The genre is determine based on the top three respondent preference genre. Each genre is represented by three song as seen in Table 1.

	U	0
Song	Genre	Tempo (in bpm)
I don't wanna miss a thing	Rock	61
Crazy	Rock	54
Cryin'	Rock	69
Make you feel my love	Рор	69
The Lion Sleeps Tonight	Рор	62
My everything	Рор	63
Hymn of the rising	New age	65
Breathe in Me	New age	52
Whisper to Me	New age	52

Table 1. Song list for each genre

All songs are instrumental (without lyric) in order to avoid the effect of the lyric towards the relaxation time. Songs for each genre are played randomly and continuously. All songs have slow music tempo, around 40 - 69 bpm. Blocking is one of the experiment principles. Blocking is used to reduce or eliminate the variability of nuisance factor, factor that may influence the experimental response but not the main purpose of the experiment. Randomized Complete Block Design (RCBD) is one of the design techniques that is used to against nuisance factors. This method usually use when there is one factor and one nuisance factor. In this study, respondent is chosen as a nuisance factor and being blocked in order to minimize the effect of the respondent's variation.

The experiment is conducted at Ergonomic Laboratory, Petra Christian University. Conditions inside the laboratory are controlled in order to minimize the effect of extraneous factors. The recovery phase is conducted in a soundproof room with 24°C temperature. Respondents listen to the music from the same audio player with the same headset and volume level to avoid player variation. There are 21 male respondents. They are Petra Christian University's students which come from Economic, Communication and Letter Department, 20-21 years old with weight range 60-75 kg, and at least perform an exercise once per week. Each respondent only accepts one treatment per day, so each respondent completes all treatments in three days. Respondent must be in healthy condition, not in the fatigue condition, and neither hungry nor full, when they do the treatment. Totally there are 63 runs in this experiment. Randomization is conducted to determine the treatment's order that will be accepted by each respondent, but not determine the order of the respondent, according to the respondent schedule limitation.

The physical activity is a three minutes' treadmill exercise with a speed of 7 km/hour without any musical background. Heart rate monitor is used to collect the respondent heart rate data. The respondent's heart rate is measured in three phases, before treadmill exercise (initial phase), during the exercise, and after the exercise (recovery phase). Respondent is not allowed to do a verbal communication with others during the three phases and heart rate measurement for initial and recovery phase is done in the sitting position. During the exercise, respondent's heart rate is recorded every 30 seconds, so there are 6 times data collection during 3 minutes' treadmill exercise. At the recovery phase, respondent's listens the music using headset, and his heart rate is recorded every 30 seconds until back to his initial heart rate range. Initial heart rate range is obtained from minimum and maximum heart rate respondent's data of 2 minutes' heart rate data collection before treadmill exercise, which is recorded every 30 seconds as well.

The experimental data is analyzed by using ANOVA test to determine whether musical genre significantly affects the respondents' recovery time or not. Main effect analysis is used to determine which musical genre has best effect towards respondents' post treadmill exercise recovery time.

RESULT AND DISCUSSION

Respondents get one treatment per day. For each treatment, initial heart rate is taken before respondent do the exercise. After three minutes' treadmill exercise, respondent take a rest while listening to the music with certain genre, according to randomization sequence that is done before. The recovery time is counted from the beginning of relaxing time until respondent's heart rate back to his initial heart rate range. The experiments are done by using Randomized Complete Block Design method. The experimental data can be seen in Table 2 and Figure 1.

D	Musical Initial heart rate Exercise heart rate (bpm) Re								Recovery	Final relaxation
Respondent	genre	range (bpm)	30s	60s	90s	120s	150s	180s	time (s)	heart rate (bpm)
	Pop	70-75	122	135	145	144	146	149	270	75
1	New age	68-75	117	138	144	146	150	151	180	75
	Rock	79-83	110	129	132	142	143	148	210	82
	Rock	88-93	111	137	141	146	153	154	390	93
2	Pop	81-88	118	122	138	144	145	148	210	87
	New age	84-90	116	130	138	142	147	151	240	90
	Pop	88-94	137	160	166	175	184	187	360	94
3	New age	90-96	126	148	158	164	178	181	450	96
	Rock	89-95	130	151	154	163	164	174	480	95
	New age	72-78	111	128	137	140	144	146	210	78
4	Pop	69-74	98	127	135	141	140	142	330	74
	Rock	77-82	94	117	132	152	151	156	390	81
	Pop	78-83	109	112	150	152	143	149	240	83
5	Rock	74-80	108	129	133	142	144	146	300	79
	New age	75-79	118	137	152	147	164	154	270	78
	New age	82-89	134	143	157	162	165	171	270	86
6	Rock	81-87	133	148	153	167	169	174	300	90
	Pop	81-88	133	140	147	158	168	171	630	88
	New age	80-87	134	147	155	168	174	179	390	86
7	Pop	79-86	138	143	149	159	166	173	480	86
	Rock	82-89	140	148	156	168	172	177	630	89
	Pop	88-95	143	154	163	168	174	170	360	94
8	Rock	86-89	141	149	158	166	170	176	360	95
0	New age	84-88	137	145	157	164	165	170	300	95
	Pop	72-80	105	112	118	124	127	133	330	80
9	Rock	75-80	101	108	116	125	130	136	390	79
,	New age	72-77	101	106	111	116	124	131	300	80
	Rock	85-91	146	152	158	167	168	161	600	91
10	New age	83-90	131	147	150	152	159	154	330	82
10	Pop	86-91	151	158	167	152	160	168	450	91
	Pop	97-102	165	172	177	188	186	190	600	102
11	New age	91-97	160	172	175	177	175	190	570	96
11	Rock	98-104	161	174	163	171	173	187	660	104
	Rock	87-92	132	142	150	157	166	158	510	105
12	Рор	80-86	132	142	130	157	159	165	330	84
12		82-85	120	111	147	132	139	142	420	75
	New age	89-95	165	173	121	178	143	179	570	95
13	Pop New age	87-91	150	155	177	178	175	179	480	91
15	Rock	87-91	150	160	159	167	167	173	630	94
		64-69								
14	New age		87	114	123	127	134	135	150	<u>66</u> 73
14	Pop	68-75	111	123	129	134	137	141	150	73
	Rock	65-73	119	126	129	143	138	142	180	73
15	Pop	107-112	158	167	174	207	205	175	360	111
15	Rock	105-110	164	176	174	185	187	183	420	108
	New age	99-107	158	167	176	179	186	187	480	106
16	New age	84-88	133	144	155	162	170	172	630	88
16	Rock	86-93	131	139	150	158	169	168	660	93
	Pop	82-88	125	141	147	158	170	171	510	88
	New age	93-96	133	141	154	166	171	168	330	95
17	Pop	95-101	127	144	145	157	166	165	270	101
	Rock	96-100	131	139	153	169	164	159	300	98

 Table 2. Respondent's heart rate data

(continue)

Respondent	Musical	Initial heart rate	Exer	Exercise heart rate (bpm)					Recovery	Final relaxation
	genre	range (bpm)	30s	60s	90s	120s	150s	180s	time (s)	heart rate (bpm)
	Pop	87-94	127	153	157	164	175	177	240	93
18	Rock	85-93	106	117	126	137	152	164	270	92
	New age	84-91	109	124	148	151	153	168	150	94
	Pop	77-83	129	150	159	163	168	171	390	81
19	Rock	73-78	130	144	158	167	170	166	540	78
	New age	71-78	135	152	160	163	167	177	450	76
	Rock	81-86	143	155	162	167	172	179	360	85
20	New age	79-84	147	159	165	168	169	170	360	84
	Рор	83-89	144	158	170	173	173	175	300	89
	New age	87-94	129	139	134	151	149	154	150	97
21	Rock	87-93	124	129	134	146	151	152	150	91
	Рор	86-93	138	136	148	157	167	169	180	92

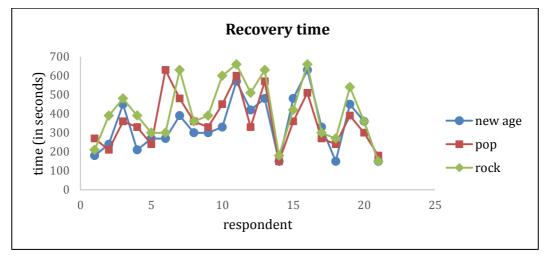


Figure 1. Recovery Time

From Figure 1, it can be seen that rock music makes the recovery time for each respondent is much longer than the others. ANOVA test is done to determine whether musical genre significantly affects respondents' recovery time or not. There is unusual observation for the respondent recovery time, it comes from respondent 6. Therefore, the recovery time data from respondent 6 are ignored and excluded, so there are only 60 recovery time data that are obtained from 20 respondents. The Minitab output for ANOVA test can be seen in Figure 2. The residuals are normally independent distributed, so the ANOVA test assumption is satisfied.

General Linear Model: recovery time versus respondent; genre Туре Values Factor Levels respondent fixed 20 1; 2; 3; 4; 5; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 3 1; 2; 3 genre fixed Analysis of Variance for recovery time, using Adjusted SS for Tests DF Adj SS Adj MS F Ρ Source Seq SS 79770 79770 39885 12,82 0,000 2 genre 17,80 0,000 respondent 19 1052400 1052400 55389 38 118230 118230 3111 Error 59 1250400 Total S = 55,7792R-Sq = 90,54%R-Sq(adj) = 85,32%

Figure 2. Anova test

The null hypothesis for this experiment is musical genre doesn't significantly affect post treadmill exercise recovery time; while the alternative hypothesis is musical genre significantly affect post treadmill exercise recovery time. *P*-value for the musical genre is 0.000. It means that musical genre significantly affects post

treadmill exercise recovery time at 0.05 significant levels. Main effect analysis is done to determine which level of musical genre has the best effect to the recovery time. A lower time is desired and it indicates the fastest post treadmill exercise recovery time. The main effect plot for the recovery time can be seen in Figure 3. Figure 3 shows that faster recovery time is obtained when respondents have relaxing time with hearing new age genre and pop genre (compare to rock genre), and new age genre gives the fastest recovery time.

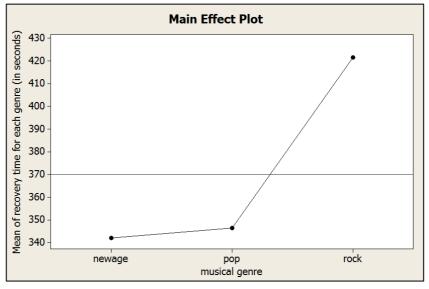


Figure 3. Main Effect Plot for Musical Genre

This result conform the previous study by Sills and Tod (2015) which concluded that various type of musical genre has a different effect on heart rate. New age music has soothing sound environments which give peaceful and calm effect, and it is often used in meditation. That is why, new age music also has a good effect in recovery time post treadmill exercises. This fact is also confirmed in Figure 4 which shows the average of respondent's heart rate during 3 minutes' treadmill exercise and the first 2.5 minutes of its recovery time. It is shown that since the first 2.5 minutes' recovery time, new age music already gives fastest recovery time compare to the others.

Figure 4. Recovery Time Comparation

CONCLUSION

From the experiment result, it can be concluded that musical genre significantly affects the post treadmill exercise recovery time. The fastest heart rate recovery time is obtained when the respondent has a relaxing time and hearing new age music. Further research can be done for analyzing the effect of others musical genre towards post treadmill exercise recovery time, such as jazz, classic, hip hop, and etc. with various musical tempo and considering respondent's musical preferences.

ACKNOWLEDGEMENTS

The authors thank to Lucy Sanjaya, Nico Carol Harsoyo, Roby Heryanto, Ricky Haryanto, Kurniawan Dian Permana, Theofilus Calvin Sudjoko, Gerry Teofilus Susanto, and Erlin Tjahyono who helped during the preparation and implementation of the experiments.

REFERENCES

- Bhavsar, S. D., Abhange, R. S. & Afroz, S. (2014). Effect of Different Musical Tempo on Post-Exercise Recovery in Young Adults. IOSR Journal of Dental and Medical Sciences, 13, 1, 60-64.
- Iridiastadi, H. & Yassierli (2014) Ergonomi: Suatu Pengantar, PT Remaja Rosdakarya Offset, Bandung.
- Kroemer, K.H.E., Kroemer, H.B. & Kroemer-Elbert, K.E. (2001) Ergonomics: How to Design for Ease and Efficiency, 2nd ed., Prentice Hall.
- Manjunatha, S.N., Revathi, D.M.L., Sharan, A.T., Chandrakumar S.G. & Sapna, I. (2014) Cardiovascular responses to different musical tempo during post exercise recovery in healthy medical students, International Journal of Biological & Medical Research 5, 2, 4031-4035.
- Montgomery, D.C. (2005) Design and Analysis of Experiments, John Wiley & Sons.
- Orman, E.K. (2011) The Effect of Listening to Spesific Musical Genre Selections on Measures of Heart Rate Variability, National Association for Music Education, 30, 1, 64-69.
- Palit, H.C. & Aysia, D.A.Y. (2015) The Effect of Pop Musical Tempo during Post Treadmill Exercise Recovery Time, Procedia Manufacturing, 4, 17-22.
- Sanders, M.S. & McCormick, E.J. (1993) Human Factors in Engineering and Design. Mc Graw-Hill.
- Sills, D. & Todd, A. (2015) Does Music Directly Affect a Person's Heart Rate? Emerging Investigators.
- Thakur, A.M. & Yardi, S.S. (2013) Effect of Different Types of Music on Exercise Performance in Normal Individuals, Indian Journal of Physiology and Pharmacology, 57, 4, 448-451.